
J Reliable Intell Environ (2015) 1:87–100
DOI 10.1007/s40860-015-0009-z

ORIGINAL ARTICLE

Using Bayesian networks for highly available cloud-based web
applications

Stefano Marrone1

Received: 28 August 2015 / Accepted: 30 September 2015 / Published online: 31 October 2015
© Springer International Publishing Switzerland 2015

Abstract Bayesiannetworks havedemonstrated their capa-
bility in several applications spanning from reasoning under
uncertainty in artificial intelligence to dependability mod-
elling and analysis. This paper focuses on the use of this
language for allocating cloud resources to maximise service
dependability. This objective is accomplished by the defini-
tion of a model-driven approach able to guide the software
engineering to define a cloud infrastructure (applications, ser-
vices, virtual and concrete resources) using a semi-automated
process. This process exploits both high-level languages such
as UML as well as Bayesian networks. Using all their fea-
tures (backward analysis, ease of usage, low analysis time),
Bayesian networks are used in this process as a driver for the
optimization, learning and estimation phases. The paper dis-
cusses all the issues that the application ofBayesian networks
in the proposed process arises.

Keywords Model-driven engineering · Dependability
evaluation · Service dependability · Cloud resource
allocation

1 Introduction

Last years have seen the rise of the cloud computingparadigm
as a key factor to improve efficiency and scalability in the ICT
industry. The decoupling of the offered services from the IT
infrastructures and the possibility to optimise the allocation
of the first onto the second have opened for new business

B Stefano Marrone
stefano.marrone@unina2.it

1 Dipartimento di Matematica e Fisica, Seconda Universitá di
Napoli, viale Lincoln 5, 81100 Caserta, Italy

ideas.1 Entrepreneurs are more and more willing to imple-
ment highly available and scalable web applications to
improve the volume of their business: cloud computing
paradigm is one of the keys to pursue this goal. The IT
industry and the research community have already facedwith
the problem of developing highly dependable applications.
Dependability is one of the most sensitive features of cloud
computing as reported in some white papers and research
surveys [1,2]: in particular, availability is considered a first-
class citizen since the great loss of money during service
downtimes.

The problem to pass from an availability-oriented speci-
fication to an effective deployment of virtual resources has
been quite studied in scientific literature; however, this prob-
lem is often worsened by the capability of cloud-based
service and infrastructure to reuse the greatest part of existing
software artefacts and design/programming paradigms. This
paper focuses on the joint usage of service-oriented architec-
ture (SOA) paradigm and cloud computing infrastructure:
SOA-based applications that use cloud-based services rep-
resent a clear example of modern distributed and stratified
software architecture. These architectures are built following
a system-of-systems logic which also generates the problem
of finding a compositional modelling and designing method-
ology. From a modelling perspective, this need is reflected
by the exigency of aggregating (sub-)models to cope with the
explosion of their extension by exploiting the same composi-
tional logic. Guaranteeing a high-availability level for cloud
infrastructures as well as for SOA-based applications sepa-
rately does not bring to an optimal design of the software
system that holistic approaches would allow.

1 https://www.whitehouse.gov/sites/default/files/omb/egov/digital-
government/digital-government.html.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40860-015-0009-z&domain=pdf
http://orcid.org/0000-0003-1927-6173
https://www.whitehouse.gov/sites/default/files/omb/egov/digital-government/digital-government.html
https://www.whitehouse.gov/sites/default/files/omb/egov/digital-government/digital-government.html

88 J Reliable Intell Environ (2015) 1:87–100

Furthermore, designing an optimal highly available sys-
tem is only the starting point. Environmental and operational
conditions change and, hence, the hypotheses made when
the system has been designed and deployed can fall. Big
“black swan” changes also can occur radically mutating the
behaviour of systems. Antifragility is a modern mathemat-
ical theory and set of engineering practices which aim at
designing robust systems by embracing the change through
flexibility and learning [3].

The main objective of the paper is to define an approach
for the integrated modelling of web applications and cloud
services and infrastructures. These models serve to the soft-
ware engineer to pass from a specification of the availability
requirements of the software infrastructure to an allocation
of these services onto a physical infrastructure and to an eval-
uation of the achieved availability level.

To achieve this objective, the paper provides an automat-
able methodology whose core is the usage of a Bayesian
network (BN) model which drives the optimization, the
search for availability bottlenecks and the overall evalua-
tion of availability at both levels (cloud infrastructure and
SOA-based application).

To make the approach usable, this paper also uses model-
driven engineering.This techniquehas beendescribedhaving
not fully realised its great potential [4]: however, it still
remains a valid tool specificallywhen used to generate formal
models. The paper provides an automatable methodology
whose first step requires the definition of a high-level descrip-
tion of cloud services, underlying software components, as
well as the description of user level availability requirements.
Moreover, a description of the application orchestrating the
services is also modelled. A Bayesian network (BN) model
is generated starting from this composed high-level model.

This work constitutes the extension of another published
paper [5]. The original contribution added in this paper is con-
stituted by a deeper description of the mechanisms by which
BNs are used for analysis, optimization and learning. From a
high-level point of view, the methodology has been extended
by dealingwith the description of the application that orches-
trates cloud services. Some elements of the availability mod-
elling methodology for SOA-based services are taken from
other published resources [6] but they are here completely re-
adapted and re-framed to the chosen modelling languages.

This paper is framed in SPECS, an ongoing EU research
project of the FP7-ICT programme [7]. The aim of SPECS is
to respond to the cloud community need of improving com-
prehensibly the state-of-the-art in cloud computing security
by creating, promoting and exploiting a user-centric frame-
work and a platform dedicated to offer security-as-a-service
using an SLA-based approach. In the SPECS project, a typi-
cal SLA life cycle can be characterised by three main phases
that are cyclically conducted: negotiation, monitoring and
enforcement. While this work focuses on availability that

is only one of the security-oriented features, the proposed
approach is general enough to be extended in the future to
other security concerns.

The rest of the paper is structured as follows. Section 2
provides both an overview of the related research as well as
short background on needed information. Section 3 depicts
the approach at a glance and shows the details of the dif-
ferent models. Section 4 describes the structure of the BN
model at the centre of the approach while Sect. 5 focuses
on the optimization matters by which highly available con-
figurations are found and on how the BN model impacts on
this phase. Section 6 ends the paper showing future research
developments.

2 Background and related works

This section gives some basic information needed to under-
stand what is introduced in this paper: Bayesian networks,
model-driven engineering and service-oriented paradigm.
Moreover, a review of the literature is given to highlight simi-
lar works. First, an overview of the SPECS project objectives
and scope is provided.

2.1 The SPECS project

In the context of the SPECS project, a typical SLA life cycle
can be characterised by three main phases that are cyclically
conducted (see Fig. 1): negotiation, monitoring and enforce-
ment.

In the negotiation phase, the SLA is not fully defined, and
the customer(s) andprovider(s) conduct a negotiationprocess
on requirements/services to find agreement on what the SLA
should effectively offer. The customers evaluate the trade-off
across service specifications (base services and options), and
the corresponding performance and costs. Service providers,
instead, have to evaluate the services requested, matching
them to what can be actually granted; moreover, they also
need to evaluate the risks related to incorrect evaluation.
During the monitoring phase, a signed SLA is checked
for its actual degree of conformance or for penalties if in
violation. Note that at the state-of-the-art, no systematic

Fig. 1 SLA life cycle

123

J Reliable Intell Environ (2015) 1:87–100 89

SLA-monitoring solutions exist to support users. This is
typically a cumbersome manual process. From the service
provider view, monitoring implies two different activities:
(a) verifying that the SLAs are respected via access to the
underlying infrastructure that is inaccessible to end users,
and (b) generating alerts before SLAs are broken, to acti-
vate remedial actions. The final step of the SLA life cycle
is the enforcement, where the actions needed to respect the
SLA (i.e., to keep a sustained level of security) are effectively
taken. This may imply the activation of software modules,
the acquisition of resources (in the correct amount), but pos-
sibly even the dynamic reconfiguration of resources after an
alert is generated.

The three phases are correlated: the negotiation cannot
be performed without taking in consideration how SLA
can be granted, i.e., how the enforcement will take place.
Enforcement needs monitoring to evaluate the real state of
the solution before applying the predefined policies and pro-
cedures, while monitoring needs the results of negotiation to
know what to monitor and which alerts should be generated.

2.2 Bayesian networks

Bayesian networks (BNs) [8] provide a graphical represen-
tation of a joint probability distribution over a set of random
variables with a possible mutual causal relationship: the net-
work organised as a directed acyclic graph (DAG) whose
nodes represent random variables and arcs represent causal
influences between pair of nodes. A conditional probability
distribution is defined for each node in the network: in the
common case of discrete random variables, the conditional
probability function is often represented by a table (condi-
tional probability table, CPT). Bayesian networks have been
extensively included in a lot of scientific works in the field
of system dependability and risk prediction [9] as well as
network security [10].

Let X and Y be two BN nodes where X is an ancestor of
Y , i.e., there is a path from X to Y . Three different indexes
can be in general computed by solving the BN model [8]:

• Prior probability Pr(Y = y): the probability that Y has
the value y in absence of any observations;

• Posterior probability Pr(Y = y|X = x): the probability
that Y has the value y when the value x is observed for
the variable X ;

• Likelihood Pr(X = x |Y = y): the probability that X has
the value x when the value y is observed for the variable
Y .

2.3 Model-driven engineering

The unified modelling language (UML) is a well-known
general purpose standardised modelling language for soft-

ware system specification. UML is equipped with a profiling
mechanism that allows to customise UML for a particular
domain or platform. The UML profiling is actually a light-
weight meta-modelling technique to extend UML: in such a
way, the standard semantics of UML model elements could
be refined in a strictly additive manner. Stereotypes, tags and
object constrain language (OCL) constraints are the exten-
sion mechanisms used to define a UML profile. In particular,
a stereotype extends one or more UMLmeta-classes and can
be applied to those UML model elements that are instantia-
tions of the extended meta-classes.

The UML profile for modelling and analysis of real-time
and embedded systems (MARTE) is an OMG-standard pro-
file that customises UML for the modelling and analysis
of non-functional properties (NFP) of real-time embedded
systems, such as timing or performance-related properties.
MARTE provides a general analysis framework called gen-
eral quantitative analysis model (GQAM) sub-profile. A key
feature of MARTE is the NFP framework used to define
new NFP data-types that are necessary to the definition of
a specific analysis domain sub-profile. The dependability
analysis and modelling (DAM) [11] profile is a specialisa-
tion of MARTE-GQAM to enable dependability analysis.
DAM is conceived by following a systematic approach,
which consists of two main steps: firstly, a dependability
domain model is built; later, the model is mapped onto UML
extensions (i.e., stereotypes, tags and OCL constraints).
MARTE-DAM has also been extended towards the main-
tainability and proved its capability to apply in effective
model-driven processes [12,13].

The automation of the workflow underlying these
approaches is based on the development and the usage of
proper model transformations which are key techniques in
model-driven engineering (MDE) [14]. A transformational
approach generally requires the chaining of model-to-model
(M2M) and model-to-text (M2T) transformations.

2.4 Service-oriented paradigm

The service-oriented computingparadigmprovides amethod-
ological foundation for the design of complex distributed
applications by integrating existing components, namely
services. A service is accessible independently from its
implementation details and is designed to be reused. Ser-
vices are commonly implemented byweb service technology
that allows services to be discovered, integrated and used
on the Internet, by running them on a server (that can run
simultaneously more web services). Services are meant to
be integrated, knowing their interfaces, in business processes
(BP) or workflows (WF). Among the several techniques
available for such integration, BPEL (BP execution lan-
guage) [15] is the most widespread solution and took the
role of standard language for services orchestration. Orches-

123

90 J Reliable Intell Environ (2015) 1:87–100

tration is one of the twomain strategies for service integration
and is based on the idea that an application consists of a cen-
trally specified BP or WF that operates all services involved
and is run by a specific executor. Other approaches raise
the level of abstraction of BPEL preferring a modelling
approach rather than a programming oriented one: these
approaches contain business process modelling notation
(BPMN), UML, software and systems process engineering
metamodel (SPEM), etc.

2.5 Related works

The problem of defining a proper and effective allocation of
VMs onto physical machines (PMs) has already been studied
in the literature, and several results are available [16–18],
also in the context of funded/open source research projects
as mOSAIC2 and Eucalyptus.3

Some works use energy to guide the allocation of VMs by
pursuing energy efficiency [19,20]. The work of Dougherty
et al., while oriented to energy efficiency, also describes a
model-driven approach, but it does not use standard mod-
elling languages such as UML [21]. The dependability of
services provided in the cloud has received recent attention
by the scientific community: Huang et al. propose a method
based on reliability evaluation by means of series–parallel
composition [22] while Yanagisawa et al. deal with this prob-
lem by defining a mixed integer programming model [23].
Frincu and Craciun propose a multi-objective optimisation
approach for high-availability and cost-effective VMs allo-
cation [24].

The work of Zambon et al. presents many similarities to
the approach here proposed [25]; themain differences are: (1)
the approach proposed here tries to overcome the limitations
of the formalisms used in [25] (i.e., fault trees and relia-
bility block diagrams); (2) the perspective of the approach
here proposed is not limited to planning activities but also
to monitoring and enforcement actions; (3) the proposed
approach is user oriented. While other approaches focus on
traditional straight-forward software development [26], in
this work,model-driven principles and techniques are chosen
to raise the level of abstraction and to improve the participa-
tion of the stakeholders in all phases of the cloud service life
cycle.

Furthermore, two other works present some interesting
features applicable to this paper. De Florio introduces some
fault tolerance patterns (e.g. redoing, diversity and redun-
dancy) for software-based systems that can be used as basic
mechanisms to explore the design space of possible alloca-
tions of cloud services to VMs [27]. From the same work,
the concept of distance-to-failure (dtof) can be improved

2 http://www.mosaic-cloud.eu/.
3 https://www.eucalyptus.com/.

in this paper by calculating it on the probability of failure
(i.e., the residual probability of having a failure consid-
ered the observed faults). Another work is applicable to
this paper; it focuses on some mechanisms able to guar-
antee software reliability through data integrity both at the
design-time and during all the run-time phases of a software
system [28].

3 The methodological approach

Figure 2 depicts the approach at a glance. There are two
stages: the specification of an allocation problem and the
allocation itself. The model is instead specified by means of
three layers: application, service and architecture.

The application contains the specification of the work-
flow of activities and external services that are invoked to
provide complex tasks. All the typical constructs of a pro-
gramming/workflow specification language may be used:
variables, control structures (choice, loops, etc.). Moreover,
according to the principles of the SOA approach, complex
applications rely on the invocation of external services which
are accessed over the Internet. At the second layer, there is the
specification of the services which are to allocate achieving
high-availability levels. Some servicesmaydependonothers.
At the third stage, a high-level architecture is given contain-
ing the software infrastructure and components needed to
provide each specified service: in this view, the components
needed to implement a service and their inter-dependencies
are highlighted. To the allocation stage also belongs another
layer: the infrastructure layer which is responsible for map-
ping the software components described in the architecture
layer to physical/virtual machines hosting the components.

The passage between the specification and the allocation
stages is realised using a formal model which guides the
process of determinationof the values of themanyparameters

Allocation

Application

Service

Architecture

Infrastructure

Specification

Fig. 2 Overview of the approach

123

http://www.mosaic-cloud.eu/
https://www.eucalyptus.com/

J Reliable Intell Environ (2015) 1:87–100 91

Fig. 3 Workflow of the process activities

involved in the specification phase. This choice is made to
maximise the expected availability of the sensitive items and
to minimise the overall cost.

Figure 3 depicts the detailed workflow of the activities
expressed as a UML activity diagram.

The first phases of the workflow are related to the creation
of the high-level model (application, service and architecture
views). The order of specification of these views is the fol-
lowing: the service layer should be specified first, and then
the architecture layer goes deeper into the structure of each

service while the application composes specified services.
These two last activities may be done in parallel. Please note
that by annotating the model with proper UML structures
(UML profiles, stereotypes and tagged values), it is possi-
ble to capture the model itself, the availability requirements
and the sensitive parameters, values of which are subject of
optimization.

Now, the passage between the specification and the
allocation phases is developed as follows: first a model
transformation is in charge of generating a BN model from

123

92 J Reliable Intell Environ (2015) 1:87–100

the specification model. Once a first BN model has been
generated, the workflow enters a loop: first the model is eval-
uated (availability evaluation) by calculating the availability
metric; then, this value is compared with the availability
requirement asked by the user. If the achieved availability
is higher than the requirement, the candidate BN model is
chosen for deployment: in this phase, a high-level model is
returned to the final user explaining all the details of the found
solution. If the requirement is not fulfilled, the model is then
analysed trying to understand which is the most sensitive
availability parameter (availability bottleneck), then a muta-
tion operator is chosen (most promising operator) and then
a new model is generated changing something in the model
to improve it (BN mutation). To optimise allocation, further
data are needed: the CSP repository database contains data
about known CPSs, the availability they offer and the related
costs.

Once the model has been deployed and then the design
of the system has been completed, the workflow continues
with an infinite loop aimed at continuously improving the
system by raising the level of the robustness. By collect-
ing data on the functioning of the system, the workflow can
filter these data and analyse the model by simulating most
probable failures or operational workload. This optimization
phase is devoted to the improvement of the robustness and,
hence, probableweaknesses under robustness aspect are eval-
uated (robustness bottleneck). Then, the operator that could
bring the greatest improvement to themodel is detected (most
promising operator) and applied, and hence the new model
is generated (BNmutation). This notwithstanding, following
a failure, the availability requirements may change and then
the first loop is re-entered.

It is important to underline that while the first part of
the approach is typical of model-driven/model-based design
and optimisation approaches, the second (infinite) loop of
the methodology is oriented to a non-ending process which
allows the system improve its robustness by learning from
experience. In other words, this is an “antifragile work-
flow” since continuous robustness improvement is possible
by exploiting experience learnt during the operational life
cycle phase [29,30].

3.1 The UML model

Since the main focus of the paper is not on the UML mod-
elling topics, few details are reserved for the construction of
the UML model. This model has different views according
to the different aspects it wants to capture: in fact, it has to
describe the different layers of the specification stage. Each
layer is well described by a UML diagram.

Figure 4 gives an overview of such models. Figure 4a
shows the service layer where all the services, including the
final application, are specified. One of the most natural way

to model it in UML is using a UML use case diagram (UCD)
where the application service «include»s or «use»s other
services. One or more services may be further specified by
linking to the related use case a UML activity diagram (AD)
which can be used to specify the application: using choice,
merge, fork and join nodes, complex applications can be
specified (see Fig. 4b). Figure 4c finally depicts how services
can be implemented by hierarchies of software components
running on virtual machines.

Moreover, to capture the description of all the parameters,
theUMLmodel canbe annotated using a properUMLprofile.
According to our goal to capture dependability and avail-
ability requirements as well as some performance indices,
MARTE and MARTE-DAM profiles will be mainly used.
These additional elements also serve to link the model ele-
ments among them.

Tables 1, 2 and 3 highlight the stereotypes and the tagged
values used, respectively, for service, application and archi-
tecture layers.

An important modelling rule is constituted by the usage
of the notation of the value specification language (VSL)
of MARTE and MARTE-DAM. Using this notation, the
modeller can specify important model variables also differ-
entiating which are requirements, constants or parameters of
the model. Variables in general are indicated by prefixing
its name by the $ symbol. Furthermore, indicating that the
value of a variable is a requirement is possible by specify-
ing source = req (see the availability of A service in
Fig. 4 as an example). The second category, the constants,
are specified by the clause source = pred (an example
is constituted by the availability of C1 and C2 components).
The last category, the model parameters, is identified by
non-specifying the kind of the source tagged value: two
examples are constituted by the rep value of the A1 step of
by the resMult tagged value of the C1 component.

4 The BN model

This Section shows the structure and the semantics of the BN
model. Since the great number of the elements to translate and
the complexity of the original model, the BN model should
be structured in blocks. Hence, we have a sort of macro-
architecture of the BN model and a micro-architecture: the
first organises the different BN submodels that are related to
the different layerswhile the second is in charge of translating
single model elements.

Figure 5 depicts the general architecture of the model
proposing a layered architecture where the nodes of one layer
may depend only on the nodes of the same layer or on the
nodes of the previous layer.

In the following we present the BN micro-architectures
of the single layers. It is important to underline that the BN

123

J Reliable Intell Environ (2015) 1:87–100 93

Fig. 4 General structure of the
UML specification model: a
application, b service and c
architecture

(a)

(b)

(c)

123

94 J Reliable Intell Environ (2015) 1:87–100

Table 1 MARTE/MARTE-DAM stereotypes and tags for the service
layer

Stereotype Tags: type Meanings

daService ssAvail:
NFP_Percentage[*]

Steady-state availability
of the service

usedResource:
Resource[*]

Resources used by the
service (inherited from
MARTE). This list
contains the
components which
implement the service

Table 2 MARTE/MARTE-DAM stereotypes and tags for the applica-
tion layer

Stereotype Tags: type Meanings

daStep servDemand:
GaRequestedService [*]

A set of operations
requested by the step,
such as calls to
interface operations
(inherited from
MARTE). This tagged
value needs to specify
the list of the service
called by the step

servCount: NFP_Real[*] A set of values for the
number of requests to
the operations given in
servDemand (inherited
from MARTE)

rep: Integer The actual number of
repetitions of an
operation or loop
(inherited from
MARTE)

Table 3 MARTE/MARTE-DAM stereotypes and tags for architecture
layer

Stereotype Tags: type Meanings

daComponent ssAvail:
NFP_Percentage[*]

Steady-state availability
of the service

resMult: Integer Multiplicity of the
resource (inherited
from MARTE):
number of replicas of
the component

model is constituted by binary BN nodes having ok and ko
values: ok means that the node (representing a service or
a component) is running while ko means that the node has
failed.

Infrastructure Layer

Architecture Layer

Service Layer

Application Layer

Fig. 5 Macro-architecture of the BN model

4.1 Application micro-architecture

The application micro-architecture is in charge of translat-
ing the different workflow constructs to obtain the structural
availability of the SOA-based application. This mapping is
inspired by thework in [6] but several differences are present:
(1) the previous work starts from BPEL program rather than
UML AD, (2) the work here is framed in a wider con-
text where application, service and hw/sw architecture are
optimised in a holistic way, (3) while the translation in [6]
generates a Fault Tree (FT) model, this work generates BN
models which have a greater modelling power and allows
to model some situations not allowed in FTs (complex fail-
ure logics, multivalued variables, common mode of failures,
etc.). In the following, some elementary constructs of the
UML Activity Diagrams are mapped aiming at illustrating
the potentiality of the approach:

• Sequence when two «daStep»s are in a sequence, the
availability of the entire process is determined by the OR
of the failing events of the single activities. If at least one
activity fails, the entire sequence fails (Fig. 6a);

• Fork when two «daStep»s are executed in parallel, it
is expected that both of them are needed to accomplish
the whole process. Hence, the availability of the entire
process is determined by the OR of the failing events of
the single activities (Fig. 6b);

• Call when a «daStep» calls a service (as indicated in
the servDemand tagged value), its availability depends
on how many attempts are made. If the value of the
rep tagged value is n (i.e., there are n attempts of call-
ing a service), we can model this situation with n BN
nodes which are the parents of the Call node. Each of
these nodes is a replica of the node representing the

123

J Reliable Intell Environ (2015) 1:87–100 95

Fig. 6 Micro-architecture of
the BN application submodel SEQ

P(SEQ=ok | A = ok, B = ok) = 1
P(SEQ=ok | A = ok, B = ko) = 0
P(SEQ=ok | A = ko, B = ok) = 0
P(SEQ=ok | A = ko, B = ko) = 0

(a)

A B

Fork

P(Fork=ok | A = ok, B = ok) = 1
P(Fork=ok | A = ok, B = ko) = 0
P(Fork=ok | A = ko, B = ok) = 0
P(Fork=ok | A = ko, B = ko) = 0

(b)

A B

Call

P(Call=ok | A1 = ok, ..., An = ok) = 1
P(Call=ok | A1 = ok, ..., An = ko) = 1
P(Call=ok | A1 = ko, ..., An = ok) = 1
...
P(Call=ok | A1 = ko, ..., An = ko) = 0

(c)

A1 An

Exc

P(Exc=ok | A = ok, Ca = ok) = 1
P(Exc=ok | A = ok, Ca = ko) = 1
P(Exc=ok | A = ko, Ca = ok) = 1s
P(Exc=ok | A = ko, Ca = ko) = 0

(d)

A Ca

called service. Hence, the failure of the entire call is
the AND of the failures of all the service invocations
(Fig. 6c);

• Exception Handling an activity Amay raise an exception
and another activity (Ca) can catch it. In this situation,
only when both the activities have failed, the exception
handling activity fails (Fig. 6d).

By combining these mappings, it is possible to create a
complex BN model from a workflow.

4.2 Service micro-architecture

The micro-architecture of the Service BN submodel is
simpler since only the case of the service invocation is
considered. Figure 7 depicts the case when a service S is
implemented by three components C1, C2 and C3. In this
case, only when all the components are up, the service
is up.

S

P(S=ok | C1 = ok, C2 = ok, C3 = ok) = 1
P(S=ok | C1 = ok, C2 = ko, C3 = ko) = 0
...
P(S=ok | C1 = ko, C2 = ko, C3 = ko) = 0

C1 C3C2

Fig. 7 Micro-architecture of the BN service submodel

4.3 Architecture micro-architecture

The micro-architecture of the Architecture BN submodel
mainly deals with the levels of hierarchy and redundancy
of the components. Two patterns are described in Fig. 8.
Figure 8a shows when a component C1 (with a p1 proba-
bility of autonomous failure) includes a C2 component. In
this case when C2 is down, C1 is ko; otherwise, it has a p1

123

96 J Reliable Intell Environ (2015) 1:87–100

C1

P(C1=ok | C2=ok) = 1 - p1
P(C1=ok | C2=ko) = 0

(a)

C2

(b)

C

P(C=ok | R1 = ok, R2 = ok) = 1
P(C=ok | R1 = ok, R2 = ko) = 1
P(C=ok | R1 = ko, R2 = ok) = 1
P(C=ok | R1 = ko, R2 = ko) = 0

R1 R2

Fig. 8 Micro-architecture of the BN architecture submodel

VM
P(VM=ok | PM=ok) = 1 - Ps
P(VM=ok | PM=ko) = 0

(a)

PM

(b)

PM

VM1 VM2

P(PM=ok) = 1 - Ph

Fig. 9 Micro-architecture of the BN infrastructure submodel

probability of failure. The second case is when a component
has more than one replica: in this case, all the replicas are
running to improve the fault tolerance: the component fails
when all the replicas are down. The example in Fig. 8b is
related to a component C that has two replicas R1 and R2.

4.4 Infrastructure micro-architecture

The infrastructure micro-architecture has the role of adding
physical hosting infrastructure to the model to understand
how the service, the components and the virtual machines
are allocated to a physical infrastructure also using the CSP
Repository. Two BN fragments are shown in Fig. 9. More
specifically, Fig. 9a shows the hosting of a virtual machine
VM (withPs probability of autonomous failures) by a physical
machine PM (with Ph probability of failure): the schema is
similar to the one presented in Fig. 8a. A refinement of this
schema is in Fig. 9b where two VMs are hosted by a single
PM: in this case the PM node becomes a common mode of
failure for both virtual machines.

For the sake of clarity, here we report the BN model fol-
lowing the example first depicted in Fig. 4. This BN model
is illustrated in Fig. 10.

5 Optimization

This Section gives some details on the optimisation phase:
both the optimisation of the availability and of the robustness
are characterised by the same “meta-schema”. For the sake
of clarity, we illustrate these techniques on the BN model in
Fig. 10. According to theworkflow in Fig. 3, the optimisation
activities are structured as in the Algorithm 1.4

Algorithm 1 Optimization pseudo-code (availability)
Require: bn ∈ BN
Require: req ∈ �
Require: K B
Ensure: bn ∈ BN
N∗ ← nodes(bn) − apps(bn)
avail ← prior(bn)
while (avail < req) ∧ (f reevm(bn) = ∅) do
i ← 0
for all X ∈ N∗ do
causei ← likelihood(X)
i + +

end for
imax ← i | causei = max(cause)
Xmax ← N∗

i
bmo ← get BMO(K B, cause)
bn ← bmo(cause, bn)
bn ← purge(bn)
N∗ ← nodes(bn) − apps(bn)
avail ← prior(bn)

end while

First, let us define some functions and symbols used in
this algorithm:

• BN is the set of all the possible BN models;
• bn ∈ BN | bn = (N , E) is a Bayesian Network model;
• P(N) is the set of all the subsets of N;
• parent : N −→ P(N) is the function that returns the

parent nodes of a given BN node, parent (X) = {Y ∈
N | (Y, X) ∈ E};

• label is a function which tags each node of a BN model
according to its nature, i.e., the element of the high-
level model that generates the node: label : N −→
{app, step, comp, serv, vm, pm}. These labels repre-
sent the nodes, respectively, related to: «daService»
associated to an Activity Diagram, «daStep»,
«daComponent», «daService», «daComponent»
also tagged with the UML’s stereotype «subsystem»,
physical machines.

• nodes is a function that returns all the nodes of the
Bayesian Network, nodes(bn) = N bn ∈ BN ;

4 Notwithstanding the algorithm refers to the availability optimization,
the robustness optimisation follows a very similar schema with only
few differences.

123

J Reliable Intell Environ (2015) 1:87–100 97

Fig. 10 BN model of the
example A

A1 A2

C2

VM2VM1

C3C1

PM1 PM2

S1 S2

A1/|A2 OK KO
1 0OK/OK

OK/KO 0 1

KO/OK
OK/KO

1

1

0

0

S1 OK KO

1 0OK

KO 0 1

S2 OK KO

1 0OK

KO 0 1

C3 OK KO

1 0OK

KO 0 1
VM1 OK KO

0.99 0.01OK

KO 0 1

PM1 OK KO

0.97 0.03OK

KO 0 1

- OK KO

PH1 1-PH1-

C1/|C2 OK KO
1 0OK/OK

OK/KO 0 1

KO/OK
OK/KO

1

1

0

0

- OK KO

PH2 1-PH2-

VM2 OK KO

0.94 0.06OK

KO 0 1

PM2 OK KO

0.9999 0.0001OK

KO 0 1

VM2 OK KO

0.93 0.07OK

KO 0 1

• apps is a function that returns all the nodes representing
the applications of the BN model, apps(bn) = {M ∈
N | label(M) = app} bn ∈ BN 5;

• prior : BN −→ � is so that prior(bn)= Pr(apps(bn)
= ok). This function executes the prior analysis on a BN
model;

• likelihood : BN × N −→ � is so that
likelihood(bn, X) = Pr(X = ko | apps(bn) = ko).
This function executes the likelihood analysis on the
model;

• f reevm : BN −→ P(N) returns the nodes represent-
ing the non allocated virtual machines: f reevm(bn) =
{M ∈ N |label(M) = vm∧�(G,M) ∈ E wi th label(G)

= pm}, bn ∈ BN ;
• purge : BN −→ BN is a function that deletes all the

non-connected nodes, i.e. all the nodes that appears nei-
ther as source nor destination of any arc.

Let us now analyse in detail this pseudo-program. The first
lines are devoted to detect the availability/robustness bottle-
necks of the system. This is possible using the likelihood
analysis of BNs. By querying the model in this way, we can
ask the following question: “given a failure of the system,
which is the most probable cause?”. Hence, by supposing
that the application fails (A = ko), this query evaluates:

Pr(X = ko | A = ko) ∀X ∈ N − {A}

This represents the likelihood function as we said in
Sect. 2.2. Once the most probable cause has been detected,
the nature of this cause determines which is the next step to
improve the model. First, let us enumerate a list of possible

5 We suppose just for simplicity that there is only one “app” node for
the BN.

BN mutation operators (BMO). A BMO is a function which
mutates an input BN model generating a new BN model:

BMO : BN −→ BN

The set of all the BMOs counts four types of operators:

• insertion I N S: this operator extracts the information
about a CSP from the CSP Repository that is not already
represented in theBNmodel. Then, the operator allocates
a VM (represented by the X node) to this CSP by creating
a new BN node (PM) and an arc from PM to X;

• allocation ALL: this operator does not create a new node
for a physical machine but simply creates an arc from an
existing node labelled as pm to a node in f reevm(bn). In
other words, it allocates an unallocated VM to an existing
PM;

• migration M IG: this operator changes the allocation of a
VMonto the physical infrastructure. Practically, it deletes
the arc fromanodePM1 to anodeVMandcreates another
from PM2 to VM;

• redundancy: the ratio of this operator is to duplicate a
resource and/or the execution of an action to improve the
level of fault tolerance. It can be applied in two contexts:

• component REDA: a component C and all the included
components are duplicated;

• step REDB : an action of an application is repeated more
than one time;

The choice of the most proper BMO to apply is done
according to the value of label function applied to the most
probable failure cause node (cause in the algorithm). The
get BMO function is in charge of accomplishing such task:
it uses the cause node of the BN model and the K B knowl-
edge base in which there is the algorithm for choosing the
right rule; get BMO returns the operator to use. Different

123

98 J Reliable Intell Environ (2015) 1:87–100

K Bs may affect the performance and the quality of the
final result of the optimisation algorithm. We propose here
some if-then rules that may constitute the core of such a
K B:

• Rule1: f reevm(bn)
= ∅ �⇒ bmo = {I N S, ALL};
• Rule2: (f reevm(bn) = ∅) ∧ (label(cause) = step)

�⇒ bmo = {REDB};
• Rule3: (f reevm(bn) = ∅) ∧ (label(cause) ∈

{comp, vm}) �⇒ bmo = REDA;
• Rule4: (f reevm(bn) = ∅) ∧ (label(cause) = serv)

�⇒ (bmo = REDA) ∧ (cause ← parents(cause));
• Rule5: (f reevm(bn) = ∅) ∧ (label(cause) = pm)

�⇒ bmo = MIG.

Please note that some kind of non-determinism is present
in the K B. As an example, the first rule allows to use the
insertion or the allocation operators. The choice can be deter-
mined by further usage policy of the CSP Repository: one

can prefer first to use all the CSPs in the DB (preferring
the I N S operator) or first to saturate a CSP to its maximum
capacity (preferring the ALL operator). The choice of which
form the K B has to assume is subject to different factors. In
this paper, for the sake of simplicity, we chose the simple
structure of an if-then rule set. This notwithstanding, a
BN model can be used for the K B. The advantages of using
such a formalism stay in the possibility to have (a) a prob-
abilistic rule set capable of expressing which is the degree
of belief associated with a selected rule (b) using traditional
and assessed BN learning algorithms to improve and evolve
the K B during the operation of the system.

As already said, the application of the BMO functions
allows to pass from a BNmodel to a new BNmodel. Starting
from the BN model in Fig. 10, the exemplary application of
all these rules are depicted in the following.

Figure 11 depicts the case of the application of Rule1.
Figure 12 shows the case of the application of Rule2 and

Rule4 since, in both cases, the effect is the duplication of a
software component (C1 in this case).

Fig. 11 Application of Rule1 A

A1 A2

C2

VM2VM1

C3C1

PM2

S1 S2

A

A1 A2

C2

VM2VM1

C3C1

PM2

S1 S2

Insertion

PM1

A

A1 A2

C2

VM2VM1

C3C1

PM2

S1 S2

Allocation

Fig. 12 Application of
Rule2/Rule4

A

A1 A2

C2

VM2

VM1a

C3

C1a

PM2

S1 S2

PM1Redundancy

VM1b

C1b

C1

A

A1 A2

C2

VM2VM1

C3C1

PM2

S1 S2

PM1

123

J Reliable Intell Environ (2015) 1:87–100 99

Fig. 13 Application of Rule3
A

A1 A2

Redundancy
A

A1 A2

C2

VM2VM1

C3C1

PM2

S1 S2

PM1

A1a A1b

C2

VM2VM1

C3C1

PM2

S1 S2

PM1

C2a

VM2aVM1a

C1a

S1a

Fig. 14 Application of Rule5
A

A1 A2

C2

VM2VM1

C3C1

PM2

S1 S2

PM1

A

A1 A2

C2

VM2VM1

C3C1

PM2

S1 S2

Migration

PM1

Figure 13 illustrates when the redundancy is applied to
an application step (application of Rule3). In this case, it is
possible to see how the duplication of the nodes is propagated
from upper to lower levels.

Figure 14 reports the case of the application of Rule5
when one virtual machine, VM1 in this case, migrates from
PM1 to PM2.

After created a new BN model, some refinements can be
possible. An example is constituted by eliminating all the
non-connected nodes, i.e., nodes that are neither parents nor
children of any other node. This operation can be necessary
after the application of a migration BMO (see Fig. 14).

6 Conclusions and future works

This paper has shown how holistically to improve the
availability and the robustness of cloud-based web applica-
tion. The category of the information systems considered

counts web applications, provided services, software archi-
tectures, guested virtual machines as well as hosting physical
machines. The approach, which starts from annotated UML
models, is based on the use of a Bayesian Network model
as the founding brick in an optimisation algorithm. By mod-
elling andmapping all the high-level elements into BN nodes
and their relationships, the different analyses that are possible
to make on the BN model, can address the search of optimal
allocation and replication of the resources.

The paper is strongly centred on the notion of antifragility
and its related themes.According to the formula “Antifragility
= Elasticity + Resilience + Machine Learning”, this paper
tackles with all of these topics by addressing a flexible evolv-
ing and experience-learning approach.

The limitations of this work are that it catches the theo-
retical aspects of the approach but does not discuss a real
implementation of the optimisation engine notwithstanding
the optimisation logic is expressed in pseudo-code. Further
research efforts will be devoted to: (1) implement and assess

123

100 J Reliable Intell Environ (2015) 1:87–100

the approach, (2) explore the usage of the BN formalism to
express the optimisation K B and (3) improve the approach
also considering learning techniques by which K B may
evolve in time.

References

1. Dekker M, Hogben G (2011) Survey and analysis of security para-
meters in cloud slas across the european public sector. Tech. rep.
European Network and Information Security Agency

2. Kritikos K, Pernici B, Plebani P, Cappiello C, Comuzzi M, Benr-
ernou S, Brandic I, Kertész A, Parkin M, Carro M (2013) A survey
on service quality description. ACMComput Surv 46(1):1:1–1:58.
doi:10.1145/2522968.2522969

3. Taleb N (2013) Philosophy: ’antifragility’ as a mathematical idea.
Nature 494(7438):430. doi:10.1038/494430e

4. SchmidtDC (2006)Guest editor’s introduction:model-driven engi-
neering. Computer 39(2):25–31. doi:10.1109/MC.2006.58

5. Marrone S, Nardone R (2015) Automatic resource allocation for
high availability cloud services. Procedia Computer Sci 52:980–
987. doi:10.1016/j.procs.2015.05.176 (The 6th International Con-
ference on Ambient Systems, Networks and Technologies (ANT-
2015), the 5th International Conference on Sustainable Energy
Information Technology (SEIT-2015))

6. Iacono M, Marrone S (2014) Model-based availability evaluation
of composed web services. J Telecommun Inf Technol 2014(4):5–
13

7. Rak M, Suri N, Luna J, Petcu D, Casola V, Villano U (2013) Secu-
rity as a service using an SLA-based approach via SPECS. In: IEEE
5th International Conference onCloudComputing Technology and
Science (CloudCom), vol 2, pp 1–6. doi:10.1109/CloudCom.2013.
165

8. Pearl J (1988) Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Morgan Kaufmann Publishers Inc.,
San Francisco

9. Weber P, Medina-Oliva G, Simon C, Iung B (2012) Overview on
bayesian networks applications for dependability, risk analysis and
maintenance areas. Eng Appl Artif Intell 25(4):671–682. doi:10.
1016/j.engappai.2010.06.002

10. Frigault M, Wang L (2008) Measuring network security using
bayesian network-based attack graphs. In: Computer Software and
Applications, 2008. COMPSAC ’08. 32nd Annual IEEE Interna-
tional, pp 698–703. doi:10.1109/COMPSAC.2008.88

11. Bernardi S, Merseguer J, Petriu DC (2011) A dependability profile
within MARTE. Softw Syst Model 10(3):313–336

12. Bernardi S, Flammini F, Marrone S, Mazzocca N, Merseguer J,
Nardone R, Vittorini V (2013) Enabling the usage of UML in the
verification of railway systems: the DAM-rail approach. Reliab
Eng Syst Saf 120:112–126

13. Bernardi S, Flammini F, Marrone S, Merseguer J, Papa C, Vittorini
V (2011) Model-driven availability evaluation of railway control
systems. In: Computer Safety, Reliability, and Security, LNCS, vol
6894, pp 15–28. Springer, New York

14. Bézivin J (2004) In search of a basic principle for model driven
engineering. Novatica J Special Issue 5(2):21–24. http://www.dei.
isep.ipp.pt/~alex/publico/mde/up5-2Bezivin.pdf

15. Alves A et al (2007) Web services business process execution lan-
guage version 2.0 (OASIS Standard).WS-BPELTCOASIS. http://
docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

16. Calheiros R, Ranjan R, Beloglazov A, De Rose C, Buyya R
(2011) Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms. Softw Pract Exp 41(1):23–50

17. Ezugwu Absalom E, Buhari SM, Junaidu SB (2013) Virtual
machine allocation in cloud computing environment. Int J Cloud
Appl Comput (IJCAC) 3(2):47–60

18. Xiao Z, SongW,ChenQ (2013)Dynamic resource allocation using
virtual machines for cloud computing environment. IEEE Trans
Parallel Distrib Syst 24(6):1107–1117

19. Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing. Future Gener Computer Syst 28(5):755–768

20. Quang-Hung N, Thoai N, Son N (2014) EPOBF: energy efficient
allocation of virtual machines in high performance computing
cloud. In: Transactions on Large-Scale Data and Knowledge-
Centered Systems XVI, LNCS, pp 71–86

21. Dougherty B, White J, Schmidt D (2012) Model-driven auto-
scaling of green cloud computing infrastructure. Future Gener
Computer Syst 28(2):371–378

22. Huang C, Chen J, Zhang L, Zhu Q (2013) Architecting dependable
virtual computing system with considering error propagation. J
Comput Inf Syst 9(4):1593–1601

23. Yanagisawa H, Osogami T, Raymond R (2013) Dependable virtual
machine allocation. In: INFOCOM, 2013 Proceedings IEEE, pp
629–637. doi:10.1109/INFCOM.2013.6566848

24. Frincu ME, Craciun C (2011) Multi-objective meta-heuristics for
scheduling applications with high availability requirements and
cost constraints in multi-cloud environments. In: 2011 4th IEEE
International Conference on Utility and Cloud Computing (UCC),
pp 267–274. IEEE (2011)

25. ZambonE, Etalle S,WieringaRJ (2012)A2thos: availability analy-
sis and optimisation in slas. Int J Netw Manag 22(2):104–130.
doi:10.1002/nem.790

26. Ardagna D, di Nitto E, Mohagheghi P, Mosser S, Ballagny C,
D’Andria F, Casale G, Matthews P, Nechifor CS, Petcu D, Ger-
icke A, Sheridan C (2012) Modaclouds: a model-driven approach
for the design and execution of applications on multiple clouds.
In: 2012 ICSE Workshop on Modeling in Software Engineering
(MISE), pp 50–56. doi:10.1109/MISE.2012.6226014

27. De Florio V (2010) Software assumptions failure tolerance: role,
strategies, and visions. In: Architecting Dependable Systems VII,
LNCS, vol 6420, pp 249–272. doi:10.1007/978-3-642-17245-8_
11

28. De FlorioV,BlondiaC (2008)On the requirements of new software
development. Int J Bus Intell DataMin 3(3):330–349. doi:10.1504/
IJBIDM.2008.022138

29. DeFlorioV (2015)On resilient behaviors in computational systems
and environments. J Reliab Intell Environ 1(1):33–46. doi:10.1007/
s40860-015-0002-6

30. Florio VD (2014) Antifragility = elasticity + resilience + machine
learning models and algorithms for open system fidelity. Procedia
Computer Science 32:834–841. doi:10.1016/j.procs.2014.05.499
(The 5th International Conference on Ambient Systems, Networks
and Technologies (ANT-2014), the 4th International Conference
on Sustainable Energy Information Technology (SEIT-2014))

123

http://dx.doi.org/10.1145/2522968.2522969
http://dx.doi.org/10.1038/494430e
http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/10.1016/j.procs.2015.05.176
http://dx.doi.org/10.1109/CloudCom.2013.165
http://dx.doi.org/10.1109/CloudCom.2013.165
http://dx.doi.org/10.1016/j.engappai.2010.06.002
http://dx.doi.org/10.1016/j.engappai.2010.06.002
http://dx.doi.org/10.1109/COMPSAC.2008.88
http://www.dei.isep.ipp.pt/~alex/publico/mde/up5-2Bezivin.pdf
http://www.dei.isep.ipp.pt/~alex/publico/mde/up5-2Bezivin.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://dx.doi.org/10.1109/INFCOM.2013.6566848
http://dx.doi.org/10.1002/nem.790
http://dx.doi.org/10.1109/MISE.2012.6226014
http://dx.doi.org/10.1007/978-3-642-17245-8_11
http://dx.doi.org/10.1007/978-3-642-17245-8_11
http://dx.doi.org/10.1504/IJBIDM.2008.022138
http://dx.doi.org/10.1504/IJBIDM.2008.022138
http://dx.doi.org/10.1007/s40860-015-0002-6
http://dx.doi.org/10.1007/s40860-015-0002-6
http://dx.doi.org/10.1016/j.procs.2014.05.499

	Using Bayesian networks for highly available cloud-based web applications
	Abstract
	1 Introduction
	2 Background and related works
	2.1 The SPECS project
	2.2 Bayesian networks
	2.3 Model-driven engineering
	2.4 Service-oriented paradigm
	2.5 Related works

	3 The methodological approach
	3.1 The UML model

	4 The BN model
	4.1 Application micro-architecture
	4.2 Service micro-architecture
	4.3 Architecture micro-architecture
	4.4 Infrastructure micro-architecture

	5 Optimization
	6 Conclusions and future works
	References

