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Abstract Intelligent Environments often require the inte-
gration of multi-modal sensing and actuating technologies
with high performance real-time computation, including arti-
ficial intelligence systems for analysis, learning patterns and
reasoning. Such systemsmay be complex, and involvemulti-
ple components. However, in order to make them affordable,
Intelligent Environments sometimes require many of their
individual components to be low-cost. Nevertheless, in many
applications—including safety-critical systems, and systems
monitoring the health and well-being of vulnerable individu-
als, it is essential that these Intelligent Environment systems
are reliable, which the issue of affordability must not com-
promise. If such environments are to find real application
and deployment in these types of domain, it is necessary to
be able to obtain accurate predictions of how probable any
potential failure of the system is in any given timeframe, and
of statistical parameters regarding the expected time to the
first, or between successive, failures. Such quantities must be
kept within what are deemed to be acceptable tolerances if
the Intelligent Environment is to be suitable for applications
in these critical areas, without requiring excessively high lev-
els of humanmonitoring and/or intervention. In this paper, an
introductory overview of statistical reliability theory is pre-
sented. The applicability of this to the context of Intelligent
Environments—particularly those involving safety critical or
other sensitive issues—is discussed, along with how such
reliability modelling can be used to influence the design,
implementation and application of an Intelligent Environ-
ment.
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1 Introduction

The theme of “Intelligent Environments” (IEs) or “Smart
Environments” has been much researched over the last
10–20 years [1,33], and the paradigm combines multi-
modal sensing and proactive assistive technology with
machine learning and AI, often leading to complex multi-
component systems. It has found prototype applications
in many domains—for example, ambient assisted living
[2,3,15], dialogue systems [4], environmental monitoring
[5], smart homes [6], offices [7], transport systems [8], and
even smart cities [9]. The theme of this new journal is “Reli-
able Intelligent Environments”. However, with the exception
of a few studies which have focused-in on the reliability
of some individual aspects [8,10] and a number of empir-
ical [11] or simulation [12,13] studies, very little attention
appears to have been given to investigating the reliability of
such IEs. Such reliability could be essential in safety-critical
applications, where the well-being of people [2,3,14,15],
animals and/or the natural environment [5] could be at risk
in cases of the system failing. Although a distributed sys-
tem may sometimes display “graceful degradation” when a
small number of its components fail, for example through
self-reconfiguration or self-healing [1], models of how likely
failures of components are, and how serious these are for the
performance of the entire system,will still be highly valuable.
Some authors have questioned whether a statistically-based
risk analysis is appropriate for safety-critical systems: Can
any system which has even the smallest risk of failure be
acceptable as a “safety-critical” system? However, in reality,
there is no such thing as a completely risk free, or absolutely
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reliable, system. Indeed, safety and reliability are somewhat
related concepts—“reliability” indicates an assessment of
probability of a system failing, whereas “safety” relates to
assessing the consequences of such a failure, and mitigating
against them [34]. A system—even a so-called “safety-
critical” one—could be regarded as “safe for purpose” if the
expected time before it fails greatly exceeds its expected total
duration of use, or if the consequences of such a failure are not
at all serious. A much more detailed discussion of reliability
theory in the context of safety-critical and similar systems
can be found in [35–37]. The primary aim of this paper is to
raise awareness of this type of approach.

In this paper, I give a review of thewell-established field of
statistical reliability theory, and indicate how it could be rel-
evant to the reliability of IEs. This is only intended as a brief
introduction to the field, and the reader is referred to exist-
ing texts for a more comprehensive coverage of the theory.
Although the theory, and its discussion here, will primarily
be discussed in the context of hardware reliability, it can also
be applied to software and network failures, and indeed part
of the following section will discuss the issue of software
reliability and defects. Although the applicability of relia-
bility theory to software systems is less well-known than its
relevance to physical and hardware systems, software relia-
bility has been modelled statistically since the early 1970s
[38]. The reader is referred to [39,40], and the comprehensive
review paper by Lyu [38], for examples of this.

The remainder of this paper is organized as follows: the
next section provides a reviewof related literature, discussing
some issues of reliability in hardware and software systems,
followed by a section illustrating how a systems modelling
approach to viewing a complex system such as an Intelli-
gent Environment can lead to a perspective which allows
the statistical or probabilistic modelling of its reliability.
Section 4 will first introduce some important terminology
(Sect. 4.1), followed by an introduction (in Sect. 4.2), to var-
ious probabilistic models of reliability. Section 5 discusses
how these concepts can be applied to models of Intelligent
Environments, with examples, and the paper ends with my
conclusions in Sect. 6.

2 Related work

As noted above, relatively little work appears to have been
carried out on applying reliability theory to the context of
Intelligent Environments. However, there have been some
studieswhich have applied some concepts from this approach
to empirical studies of reliability in intelligent systems. Suh
et al. [8] address the problem of possible component failure
within an intelligent transportation system by adding redun-
dancy to the system through the replication of critical objects,
enhancing fault tolerance by avoiding the existence of “sim-

ple points of failure” within the system. They compute the
“availability” of such a system for fulfilling its purpose as
the ratio of its mean time to failure [MTTF, also known as
the mean time between failures (MTBF)] to the sum of its
MTTF and its mean time to repair (MTTR, i.e. the mean time
required to repair the system after a failure). They noted the
importance of Brewer’s CAP conjecture (or CAP theorem)
[16,17], namely that any distributed system can at best simul-
taneously provide two, but not three, out of consistency (all
nodes of the system can access the same data at the same
time), availability (failures of individual components do not
prevent the operation of remaining components) and partition
(fault) tolerance (loss of an arbitrary amount of shared infor-
mation does not prevent the system from operating). Poledna
et al. [10] investigated the predictability of the quality of ser-
vice in real-time systems with replicated components and
flexible scheduling schemes.

Augusto and McCullagh [14] discuss safety considera-
tions, and the implications of not taking these sufficiently
into account, in the development of Intelligent Environments,
but do not explicitly apply reliability theory to their study.
Zhang et al. [11] consider the reliability of location detection
in IEs, noting sensor failure, range, location and interference
as possible sources of problems. However, again, they do not
actually employ any analysis based on reliability theory.

Rather more theoretical work has been carried out on
modelling the reliability (or lack of it) of complex software
systems. It has been noted that the complexity of the software
required to govern IEs can develop complex, unexpected
interactions which can lead to instability in the behavior of
the system [1,18]. Lipow [19] and Gaffney [20] undertook
pioneering work to estimate the number of faults present
in a large piece of program code, and this was general-
ized to predicting and controlling the prevalence and effects
of software defects by Compton and Withrow [21]. These
studies have been extensively extended by Hatton [22–24]
who carried out empirical studies on 123 software pack-
ages (55 written in Fortran and 68 in C) covering over 40
different application domains, and also produced a highly
general model of the distribution of software defects in
terms of the size of the software components, using prin-
ciples from statistical physics. Although formal methods for
“program proving”, such as the Z specification method [25–
27] can be used to verify the reliability of simple software
systems, this is not normally practical for highly complex
systems. Similarly, although conventional software engineer-
ing practice quite correctly advocates clear specification of
requirements, careful design and implementation and rigor-
ous testing [1,28,29], for highly complex systems, possibly
involving many thousands of lines of program code, with
many conditional or decision statements and highly numer-
ous potential paths through the code, testing to allow for all
possible situations which might occur during the entire lifes-
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pan of the system being used in application becomes totally
impracticable [23]. Hatton [30] has noted that, at best, soft-
ware systems tend to exhibit approximately one fault per
10,000 lines of code, measured over the working lifetime of
the program, but at worst the fault ratemay be up to 100 times
this—namely one fault per 100 lines of code! Furthermore,
even code written in “standardised” forms of programming
languages may contain ambiguities—the ISO specification
for C lists no fewer than 119 constructions of uncertain
definition [23]! Hatton also notes that different types of soft-
ware defects have widely varying probabilities of resulting
in failure, and are ranked by severity according to these prob-
abilities, over the working lifespan of the software system of
interest [23].

Bearing in mind the above discussions, and the intrinsic
complexity of the hardware and software systems, and their
interactions, required to construct and maintain a typical IE,
plus the previously highlighted need for safety in and relia-
bility of IEs, emphasizes the necessity for better theoretical
understanding and modelling of reliability of IE components
and their interdependencies. This motivates the rationale for
the remainder of this paper.

3 Systems modelling perspectives of Intelligent
Environments

Beforemoving on to the statistical theory of reliability, it may
be instructive and useful to consider some examples of how
a complex system such as an Intelligent Environment could
bemodelled statistically or probabilistically. Crucial tomany
approaches to the modelling of complex systems are the con-
cepts of the system, its constituent units or modules, their
sub-units, and ultimately individual components. These can
be considered as being organized in a hierarchical tree-like
structure, with the entire system beingmade up of the units or
modules, and each of those comprising sub-units, with sub-
units in turn having sub-sub-units, continuing on recursively
until we reach the level of individual simple components.
The reliability of a particular type of component can be mea-
sured using experimental testing—possibly to destruction or
absolute failure, where necessary—of a sample of those com-
ponents as manufactured. Although individual examples of
such a component will vary in their properties—including in
their times to or risks of failure—the use of sampling the-
ory (briefly discussed later in this paper) can give confidence
limits on the actual population distribution parameters for all
such components manufactured in the same way, based on
the measurements of those parameters made on a relatively
small sample of those components.

Consider the example of a smart home, possibly occupied
by an elderly or infirm person. The entire intelligent system
making the home a smart home is composed of awide variety

of things—various sensors, actuators, domestic appliances,
and computer-based systems. Taking the systems modelling
approach, we can identify the primary level units or mod-
ules: the home will have an overall supervisory monitoring
and control module—based on some kind of computer—plus
“peripheral” modules, each fulfilling a particular purpose in
terms of data acquisition, data analysis and feature extraction,
and taking particular actions. For example, there may be a
video surveillance module, an audio surveillance module, a
movement sensing and analysis module, a temperature mon-
itoring module, a smell/smoke monitoring module, a module
controlling the heating and air conditioning, another control-
ling the lighting, one to keep the resident informed of the
current situation and any causes for concern and another to
raise alarm in case of fire or other potentially serious accident.
Each of these modules can itself be made up of sub-modules:
for example, the video surveillance module would comprise
one or more video cameras, plus hardware and software to
extract useful features from the video sequences, analyse
these (ideally in real time or close to real time), combine
information from different camera views (if appropriate),
make inferences from what has been captured on camera,
and report to the “master” supervisory monitoring and con-
trol module. In turn, each sub-module, for example, a video
camera, is made up of sub-sub modules. In the case of the
video camera, these include the focusing system (comprising
lenses, and probably mechanical and/or electronic systems
for adjusting the focus), the optical sensor array, a timing
system, and so on, with each sub-module being made up of
simpler components. The role of the “master” module is to
combine evidence from the various modules, make decisions
based on these, and give instructions back to the individual
modules regarding what actions should be taken. We can
either take a “top down” approach by breaking the whole
system down into to smaller and smaller sub-units, or a “bot-
tom up” approach considering individual components, then
using these to build-up more and more complex units, until
we eventually obtain the entire complex system. By mod-
elling the system at appropriate levels, it becomes possible
to investigate its reliability, or that of its modules or compo-
nents, statistically.

4 Statistical reliability theory

The previous section illustrated how a complex system such
as an IE can be viewed as being made up of modules and
components. Once themodules, sub-modules or components
being considered are sufficiently simple, aspects of their reli-
ability can be modelled statistically. Results for components
can then be combined to give predictions for the reliability
of the simpler modules they comprise, and the reliability of
more complex modules predicted on the basis of the sub-
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modules of which they are formed. In this way, working
from the simplest sub-units upwards, inferences can be made
regarding the reliability of the complex system (in our case,
the entire IE) as a whole. This section will introduce and
review the main aspects of statistical reliability theory. As
noted previously, this is a major topic in its own right, and
this article can only provide the briefest of introductions. The
reader is referred to a standard text such as [31] or [35] for a
more detailed discussion of the topic.

4.1 Fundamental concepts and terminology

We can consider reliability at the level of individual (soft-
ware or hardware) components, modules (collections of
closely-related components, such as functions or procedures,
“agents” or hardware units), or entire systems. Issues such
as the MTTF—or (almost) equivalently, the MTBF follow-
ing the system being repaired—are clearly of importance
(the MTTF and MTBF are identical if it can be assumed
that the reliability of the system, module or component does
not change after that item has been repaired following any
failure). The failure rate of an item is the mean number of
failures of that type of item per unit time, which is the recip-
rocal of the MTBF. The MTTR for an item is the average
time required to repair it, restoring it to its normal working
state, following a failure. For simplicity, in this paper we
shall not distinguish between different types of failure at the
individual component level—we effectively assume that any
given component always fails in the same way, with identi-
cal consequences for that component. However, the nature
of failures at the module or system level will still depend on
which individual components have failed. The availability,
Ai , of an item i , is the fraction of time for which the item is
functioning normally, and is defined as:

Ai = MTTF/(MTTF + MTTR)

or equivalently with MTBF replacing MTTF.

4.2 Simple probabilistic models of component and
system reliability

In this section, we discuss some relatively simple models
of reliability, based on elementary probability theory. These
models each make a variety of different sets of assumptions,
and each provides good approximations for a range of differ-
ent situations appropriate to the modelling of IEs. However,
no one of these models is appropriate to every IE scenario,
and it is necessary to first analyse the system of interest
before selecting what type of model is most suitable, making
assumptions and approximations relevant to that particular
system.

4.2.1 Discrete probabilistic models

Let us initially assume that any single given component
has a known probability of failing in a specified unit inter-
val of time. By “component”, we could be referring to an
item of hardware, or software, or network technology, as
appropriate. Such a probability could be estimated from past
experience—for example, if we had observed 5 failures out
of 100 examples of these components whilst operating con-
tinuously over a 4-year period, we could estimate the failure
probability as 5/(4×100) = 0.0125 per component per year.
Alternatively, the estimates could be based on the results
experiments where a sample of components of that type
were tested to destruction or complete failure, leading to an
estimate of their MTTF and hence to an estimate of their
probability of failure in a unit time interval. In cases of more
complex systems, failure probabilities could be estimated by
Monte Carlo simulation [41]. We do not necessarily assume
that this probability of failure is the same across different
types of components, but do assume that the failure proba-
bility is the same for all identical components, and that these
component failure probabilities are constant over time. We
further assume that failures of individual components are
independent—that is, the failure of one given component
does not influence whether any other component fails or not.
However, failure (or otherwise) of constituent components
clearly does influence continuing function or failure of mod-
ules or systems containing those components.

Let us consider two basic types of ways in which com-
ponents interact. The first, which we shall call “series”
interactions—in analogy with electrical circuit theory—is
where the input to one component, which we shall call B,
directly depends on the output of another, called A (see Fig.
1). In this case, even if B is capable of functioning normally,
it cannot do anything useful unless A is also functioning cor-
rectly. If either A or B fails (or both fail), then the “series
combination” of A and B effectively fails. The combination
canbe considered as a “super-component” or “mini-module”,
and combinations of such super-components can be consid-
ered in a recursive manner.

In such a series combination, let the probability of A
failing in a unit time interval be pA and the probability of
B failing in the same interval be pB . Note that these are
the probabilities of the components becoming incapable of

A B 

Fig. 1 “Series” combination of two components A and B, where the
ability of B to do anything useful relies on the correct functioning of
A. The combination only functions correctly if both A and B are func-
tioning normally. The arrows indicate the sequence of any dependency,
e.g. of data flow
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normal function, which we assume to be independent of
each other, in contrast to be able to do anything useful,
which clearly does depend on the other component func-
tioning correctly. The corresponding probabilities of normal
function are (1 − pA) for A and (1 − pB) for B. For the
series combination of A and B to function normally, both
A and B must be functioning, and the probability of this
occurring, under our assumptions, is (1 − pA)(1 − pB).
Thus, the probability of the series combination failing is
pAB = 1 − (1 − pA)(1 − pB) = pA + pB − pA pB .

The MTTF for such a combination is then 1/pAB . Since
each of pA and pB are in the range 0 to 1, the failure probabil-
ity of the combination exceeds that of either component, and
the mean time to failure is therefore lower than the smaller
of the those of the individual components, in agreement with
our intuition. A chain cannot be stronger than its weakest
link.

Now let us instead consider a situation where components
C and D operate independently—that is, each one does not
require anything to be done by the other in order to com-
plete its role successfully (Fig. 2). Again in analogy with
electrical circuit theory, we refer to this as a “parallel” com-
bination of components. In this situation, we assume that
other components (external to the combination) only depend
on at least one of C and D functioning normally. This would
be the case if C and D replicate the same job, i.e. there is
redundancywithin the combination.Wenote that such a com-
bination only fails if both C and D fail. If the probability of
C failing is pC and that of D failing is pD , then the proba-
bility of the combination failing is pC+D = pC pD , and so
the probability of the combination functioning normally is
1− pC+D = 1− pC pD . The MTTF of this type of combina-
tion is therefore 1/pC+D = (1/pC )(1/pD), i.e. the product
of the individual mean times to failure. Since no probabilities
can exceed one, the probability of the combination failing is
lower than that of either component failing, and theMTTF of
the parallel combination exceeds that of either component.
Both of these are consistent with intuition. Two chains teth-
ering the same pair of objects are stronger than either one
chain on its own (Fig. 2).

The above concepts of replacing pairs of components,
connected in “series” or in “parallel” as appropriate, can be

Fig. 2 “Parallel” combination of components C and D. In this case,
neither relies on the other to perform its function correctly, and any
components or modules external to this combination only relies on
at least one of C and D working normally. The arrows indicate the
sequence of any dependency, e.g. of data flow

applied recursively to incorporate larger numbers of com-
ponents, building-up “modules” of several components, and
eventually entire systems.

ExampleFigure 3belowshowsa combinationof four com-
ponents A, B,C , D. These could be simple components, such
as transistors, more complex physical systems—such as the
constituent sub-modules of a video camera, as mentioned
previously—or elements of a software system. Suppose, in a
given year, individually, A has a probability 0.08 (or 8 %) of
failing, B has a probability 0.15 (15 % chance) of failing, C
a 0.05 (5 %) failure probability and D 0.07 (7 %) probability
of failure. The combination continues to function if either
(or both) of B and C function, provided A and D also both
function. Otherwise, the combination fails.

In this example, the parallel combination of B and C
only fails if both B and C fail. This occurs with probabil-
ity pB+C = pB pC = 0.15 × 0.05 = 0.0075, or less than
1 %. The “module” (the combination, as shown, of all four
components) fails if any one (or more than one) of A, D
and the parallel combination of B and C fails. It is prob-
ably more straightforward to consider the situations under
which the module functions correctly, namely when both
A and D function, and at least one of B and C work nor-
mally. The latter occurs unless both B and C both fail, so
the probability of at least one of B and C functioning is
1 − pB pC = 1 − 0.0075, or 0.9925 (>99 %). The proba-
bility that both of A and D work is (1 − pA)(1 − pD) =
(1− 0.08) × (1− 0.07) = 0.92× 0.93 = 0.8556, or around
86 %. Thus, the probability of the entire combination of A,
B, C and D (as shown in Fig. 3) working normally is 0.9925
× 0.8556 = 0.849183, and so the probability of the “module”
failing is 1−0.849183 = 0.150817, or approximately 15 %.
Once again, the “series” aspect of the module is less robust
than the weakest component in the series. We can therefore
see that a “pipeline” in which many devices and/or processes
depend on each other in a serialway, such aswhere the correct
functioning of one process entirely depends on the success-
ful completion of all the preceding tasks in the pipeline, the
overall reliability can be severely degraded even if each indi-
vidual stage in the pipeline is relatively reliable!

Fig. 3 An example “module” combining components B and C “in
parallel”, “in series” with components A and D
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4.2.2 Combinations of independent identical components

We now consider a situation where a combination or mod-
ule which contains several identical components, which we
assume function or fail independently, i.e. form a parallel
combination, but where failure of any individual components
may degrade the overall performance of the combination.
Examples of this include multiple communication channels,
or multiple processors or cores working on the same task.
Assume that there are N such components, and the probabil-
ity of any one of these failing in unit time is p. The probability
of anym out of the N components failing in unit time is then
given by the binomial probability distribution:

P(m = M) = NCM pM (1 − p)(N−M) for M = 0, 1, 2, . . . , N

where NCM = N !/(M !(N − M)!) [32]. In such cases, the
mean number of failures in unit time is given by Np, and the
standard deviation of the number of failures per unit time by√

(Np(1− p)). In this case, individual failures do not make
the combination fail completely (unless all N failed), but the
more components fail, the more seriously the performance
of the combination is impaired.

If N is large, N ! is extremely large (greater than can
be stored in most integer or floating point representations
for N > 70) and calculation of NCM becomes impractical
except for cases where M is close to zero or close to N , in
which situations the majority of the factors involved in the
numerator and denominator of NCM cancel-out. In fact, in
cases where N is very large, P(m = M) will tend to be very
small for all values of M , except for small M if p is rela-
tively small (close to zero), and for large M if p is relatively
large (close to 1). If N is large and p is small, we can make
an approximation by using the Poisson probability distribu-
tion instead of the binomial, which avoids the necessity and
complication of calculating NCM :

P(m = M) = e−μμM/M ! for M = 0, 1, 2, . . . ,

where μ = Np is the mean number of component failures
per unit time [32].

In this context, the MTTF is not necessarily meaningful,
other than noting that the case m = N corresponds to com-
plete failure of the group of components,whichmay then lead
to complete failure of the whole system (depending on the
architecture of the system as a whole). The probability of this
happening is pN = (μ/N )N using the binomial distribution,
or e−μμN/N ! in the Poisson approximation. This then gives
the MTTF of the group of components as 1/pN = (N/μ)N ,
or eμ N! / μN under the Poisson approximation. In the case
of failures occurring independently, but sequentially, over
time, μ can be considered as the average rate of occurrence
of failures, and the times at which these failures occur are

then said to follow a Poisson process. More complex dis-
crete probability models and distributions, and their scope
of applicability, are covered in standard texts on probability
theory, such as [32]. In particular circumstances relevant to
IEs—for example, where assumptions of neither the bino-
mial nor Poisson models are valid—the use of some such
more complicated probability distributions may be required
in a statistical reliability analysis.

4.2.3 Continuously variable failure probabilities

Up to now, we have assumed that the probability of a given
component failing in any unit time interval was a con-
stant. Although this may be a reasonable approximation
for software components, this is not necessarily realistic
for hardware components, for which expected failure rates
may increase as the components age. Now let us con-
sider the failure probability density with respect to time,
f (t), which we allow to vary over time t, of a compo-
nent, module or system. f (t) is defined in such a way that
the probability of the object of interest failing in the time
interval between t and (t + δt) is equal to f (t) · δt , with∫ ∞
−∞ f (t)dt = 1. If we define t = 0 as the start of the
working life of the object of interest, then we can ignore
all values of time t < 0. The probability of the object
failing between times t = a and t = b is then given by∫ b
a f (t)dt and, if T is the time at which the object first
fails, we can define the cumulative failure probability dis-
tribution function F(t) = P(0 < T < t) = ∫ t

0 f (s)ds,
where s is used as a dummy variable. It can then be seen that
f (t) = dF

dt .
The reliability function, R(t), of the object is defined to

be the probability that the object does not fail before time
t : R(t) = P(T > t) = 1 − P(T < t) = 1 − F(t). We
note that no object should fail in zero time, so R(0) = 1,
and, assuming that no object can last forever without failure,
R(t) → 0 as t → ∞.

The MTTF of the object is given by the expected value
of the failure time, MTTF = ∫ ∞

0 t f (t) dt . If R(t) decays
towards zero as t → ∞ in such a way that (t R(t)) → 0 as t
→ ∞, noting that dR

dt = − f (t) and integrating by parts, it
can be seen that MTTF = ∫ ∞

0 R(t)dt .
The so-called hazard function, h(t), of an object is defined

as its relative failure rate at time t compared with its current
reliability, i.e. h(t) = f (t)/R(t).

Example Suppose a given component has reliability func-
tion given by R(t) = e−0.2t , where t is measured in years.
The cumulative failure distribution function is then given by
F(t) = 1− e−0.2t and the failure probability density is f (t)
= 0.2 e−0.2t . It can be seen that, as would be expected, F(t)
is an increasing function with F(0) = 0 and F(t) tending
towards 1 as t → ∞. Here, R(t) = e−0.2t . The MTTF of
that component is then MTTF = ∫ ∞

0 t f (t)dt = ∫ ∞
0 R(t)dt .
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In this case, the latter expression is the easier to evaluate,
giving MTTF = 5. The hazard function for the object is then
h(t) = f (t)/R(t) = 0.2, i.e. the hazard function, or relative
failure rate, is constant.

Noting that the probability of any given object failing in
a specified time interval a ≤ t ≤ b is given by F(b) −
F(a), the reliability of “serial” or “parallel” combinations of
objects can then be dealt with in an analogous manner to that
illustrated in the earlier sectionwhere the failure probabilities
of each object were fixed.

4.2.4 Normally (Gaussian) distributed component failure
times

If the failure times of objects follow certain distributions
which are particularly well-understood theoretically, then
various quantities of interest for collections of such objects
can be calculated easily. One such distribution is the Normal
or Gaussian distribution, for which there is an extensive body
of theoretical results [32]. The Normal distribution is sym-
metrical about its mean value, and has identical mean, mode
and median.

Consider a set of components for which the “lifetimes”
(i.e. working times to failure) are individually normally dis-
tributed, such that the lifetime of component i , Ti , is normally
distributed with mean μi and standard deviation σi :

Ti ∼ N (μi , σi ). The failure probability density function

for the component’s lifetime is f (t) = 1
σi

√
2π

e
−(t−μi )

2

2σ2i . This

function cannot be integrated analytically between general
limits, but it is straightforward to compute good numerical
estimates for the probability thatTi lies in any specified range,
using any suitable method of numerical integration:

P(a ≤ Ti ≤ b) = ∫ b
a f (t)dt . In fact, for the “standard”

Normal distribution which has mean μ = 0 and standard
deviation σ = 1, the function Φ(z) = P(Ti < z) is tabu-
lated (see, e.g. [32,42]), and also computed bymost statistical
software and many programming environments and spread-
sheet packages, and the probability that Ti lies in any interval
of interest can be calculated from these tabulated (or numer-
ically computed) values: P(a ≤ Ti ≤ b) = Φ(b) − Φ(a).
For a component whose lifetime is normally distributed
with mean μi and standard deviation σi , a transformation
Zi = (Ti − μi )/σi , with inverse Ti = μi + Ziσi , will con-
vert the lifetime Ti into the variable Zi which follows the
standard normal distribution, for which probabilities of Zi

falling into any specified range can be calculated using the
tabulated (or computed) function Φ(z).

Example A component has a “lifetime” (i.e. time to fail-
ure) which is normally distributed with mean 10 years and
standard deviation 2 years. What is the probability that the
component will last (1) less than 8 years, (2) at least 10 years,
(3) at least 12 years, (4) between 8 and 12 years?

Firstly, we convert each of the given lifetime values to Z
values using the above transformation, with μi = 10 years
and σi = 2 years. Thus, for (1) T = 8 gives Z = −1, (2)
T = 10 corresponds to Z = 0, (3) T = 12 becomes Z = +1.
Φ(Z) is usually only tabulated for positive values of Z , but
Φ values for negative Z values can be determined using the
symmetry of the Normal distribution function graph. In the
case of (1), we note that P(T < 8) = P(Z < −1) = P(Z >

+1) by symmetry. Furthermore, P(Z > +1) = 1− P(Z <

+1), and P(Z < 1) = Φ(1), which is tabulated, taking the
value 0.8413 to 4 decimal places. Hence, we find that the
required probability, P(T < 8) = 1 − 0.8413 = 0.1587, so
the probability of the component lasting less than 8 years is
0.1587, or about 16 %. This would mean that, given a large
number of such components whichwere notionally identical,
about 16%of themwould last less than 8 years before failing.
For (2), we need P(T ≥ 10), which is equal to P(Z ≥ 0) =
1 − P(Z < 0) = 1 − Φ(0) = 1 − 0.5000 = 0.5000.
Thus, the probability of one such component lasting at least
10 years is exactly 50 %. In this instance, we could have
spotted this straight away, since the mean lifetime of the
component was given as being 10 years, and the symmetry
of the Normal distribution about the mean results in values
below the mean and values above the mean being equally
likely. In the case of (3), we want to find P(T > 12), which
corresponds to P(Z > 1) = 1 − P(Z < 1) = 1 − Φ(1) =
1− 0.8413, from tables of the standard Normal distribution.
This gives the probability of the component lasting at least
12 years as 0.1587, again equal to about 16 %. Finally, for
(4), the required probability is P(8 < T < 12) = P(−1 <

Z < +1) = P(Z < +1) − P(Z < −1). Using the values
we have already found, we observe that P(Z < +1) =
0.8413 and P(Z < −1) = 0.1587, so P(8 < T < 12) =
0.8413 − 0.1587 = 0.6826. Thus, the probability of the
component lasting between 8 and 12 years is about 68 %.
Put another way, out of a large number of such supposedly
identical components, we would expect about 68 % of them
to last between 8 and 12 years before failing.

For distinct components, of which failures can be assumed
to be independent, the “combination rules” derived in the
earlier section can be employed. For lifetimes of such inde-
pendent components, the mean of a sum of lifetimes is equal
to the sum of the individualmeans: if T = T1+T2+· · ·+TN ,
then the mean μ is given by μ = μ1 + μ2 + · · · + μN .
However, it is variances rather than standard deviations of
independent quantities which can be added, so the standard
deviation of the sum of independent lifetimes is given by
the square root of the sum of squares of the individual stan-

dard deviations: σ =
√

σ 2
1 + σ 2

2 + · · · + σ 2
N , where σi is the

standard deviation of the lifetime of the i th component. For
scaling of a quantity by a constant factor α, the mean value
and standard deviation also get scaled by the same factor α.
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Direct consequences of these results are that, given a set of N
notionally identical components, with lifetimes Ti indepen-
dent of each other but identically normally distributed with
mean μ and standard deviation σ , then the mean lifetime,
T = 1

N

∑N
i=1 Ti , of the sample of N such components is

itself Normally distributed, with mean equal to μ but with
standard deviation equal to σ√

N
. For example, a sample of

N = 100 notionally identical components whose lifetimes
are distributed with mean 8 years and standard deviation 2
years will have a sample mean lifetime which will be dis-
tributed such that its mean is 8 years, but standard deviation
of the sample mean equal to σ√

N
= 2√

100
= 2

10 or just 0.2
years! This result is extensively used in process quality con-
trol based on samples of the product being manufactured,
particularly if the quality test makes the sampled product
unusable or unsaleable after testing. However, the result is of
much wider applicability to any type of sample.

The models and results outlined above can be applied to
multi-component systems, which in principle can be of arbi-
trary complexity. However, many of the processes described
here require recursive analysis, which will become more
complicated for systems with a large number of interacting
components, which may not be identical or have identically-
distributed properties. However, in the next section, some
possible applications of the theory to the field of Intelligent
Environments will be proposed.

5 Applications to Intelligent Environments

As noted previously, Intelligent Environments tend to be
complex, hybrid systems, involving large numbers of soft-
ware and hardware components. Adopting amathematical or
statistical approach to modelling their reliability may appear
daunting, particularly if the reliability, in the quantitative
sense, of individual componentsmay not be precisely known.
However, by using estimates of failure rates or probabilities,
and taking a “modular” approach to analysis of the system
of an entire IE can lead to invaluable predictions about how
reliable it is likely to be, in terms of how likely are complete
failures of the system, or situations where its performance is
severely degraded.

Example 1 Consider once again the combination of com-
ponents (or modules) illustrated in Fig. 3. Suppose the
component A is some sensor (for example, a video camera),
and components B and C are some pieces of inference-
making software which, other than both being dependent on
the output from the sensor A, function independently of each
other. Let component D then be another piece of software
which takes the outputs from B and C and then uses these to
make some decision.

The correct functioningof thismodule relies onboth A and
D working correctly, and at least one of B andC functioning
normally. The previously-given analysis based on the failure
probabilities of the individual components can then be used.

Example 2 Suppose part (one “module”) of an intelligent
environment incorporates a fairly large number of identical
sensors, for example movement sensors. The performance
of the environment is robust to a few of these failing, but
is severely degraded if 4 or more of them fail, and the sys-
tem will not function satisfactorily if more than 6 of them
fail. We assume here that the correct functioning of the
individual components is not monitored continuously, or at
least failed components are not replaced or repaired straight
away, so all components which fail during the same “unit
time interval” (e.g. week or month) do not get replaced
until the end of that interval. Suppose that the mean num-
ber of these components which fail in the module of interest
during any one unit time interval is μ. If the total num-
ber N of these sensors in the module is relatively small,
then μ = Np, where p is the probability of any one of
the sensors failing in that time period, and we can calcu-
late the probability of m of the sensors failing, P(m), in
the same time interval using the binomial distribution pre-
viously discussed. If N is larger, so that using the binomial
distribution becomes impractical, but p is reasonably small
(as an approximate guide, p ≤ 0.2), then we can instead
use the Poisson distribution to estimate the value of P(m)

for any particular value of m. In either case, the probability
of at most S sensors failing in that time period is given by
P(m = 0)+P(m = 1)+· · ·+P(m = S), and the probability
of more than S of them failing in that time interval is there-
fore 1−[P(m = 0)+ P(m = 1)+· · ·+ P(m = S)]. We are
particularly interested in more than 4 sensors failing (which
makes the performance of the system severely degraded),
namely 1− [P(m = 0) + P(m = 1) + P(m = 2) + P(m =
3) + P(m = 4)], and the case of S = 6 (more than 6 sen-
sors fail in the same time interval, so the system fails), with
probability 1−[P(m = 0)+ P(m = 1)+· · ·+ P(m = 6)].
The mean time to such a degradation or failure is given by
the reciprocal of the corresponding probability. As a specific
example, consider the case where the mean number of sensor
failures per month, based on evidence from previous experi-
ence, isμ = 1.6, and the number of such sensors in the IE (or
the part of it currently of interest) is large. We therefore use
the Poisson distribution to calculate the probabilities, P(m),
ofm of the sensors failing in any given month. Recalling that
we are assuming that the performance of the IE is seriously
degraded if m > 4, and the IE fails to function satisfactorily
ifm > 6, the values of P(m)which we require for our analy-
sis, calculated using the Poisson distribution formula given
previously, are given in Table 1 below.

Thus, from Table 1, we can see that, under the specified
assumptions, there is a probability of 0.02368, or about 2.4%,

123



J Reliable Intell Environ (2015) 1:23–32 31

Table 1 Probabilities of m
sensors, no more than m
sensors, and more than m
sensors failing in 1 month,
assuming that failures are
independent of each other, but
the number of failures per month
are Poisson distributed, with a
mean of 1.6 failures per month

Number of sensors
failing, m

Probability, P(m) Cumulative probability,
P(M ≤ m)

Probability of more
than m sensors failing,
P(M > m) = 1−P(M ≤ m)

0 0.201897 (∼20 %) 0.201897 (∼20 %) 0.79810 (∼80 %)

1 0.323034 (∼32 %) 0.524931 (∼52 %) 0.47507 (∼48 %)

2 0.258428 (∼26 %) 0.783358 (∼78 %) 0.21664 (∼22 %)

3 0.137828 (∼14 %) 0.921187 (∼92 %) 0.07881 (∼7.9 %)

4 0.055131 (∼5.5 %) 0.976318 (∼98 %) 0.02368 (∼2.4 %)

5 0.017642 (∼1.8 %) 0.993960 (∼99.4 %) 0.00604 (∼0.6 %)

6 0.004705 (∼0.5 %) 0.998664 (∼99.9 %) 0.00134 (∼0.1 %)

of at least 4 sensors failing in the same month and the mon-
itoring performance of the IE being seriously degraded, but
only a 0.00134, or about 0.13 %, probability of more than 6
sensors failing in the same month and that aspect of the IE
failing completely. This gives the mean time before the sys-
tem’s performance is serious degraded as 1/0.02368 ≈ 42.2
months, and the mean time before that part of the IE fails
completely as 1/0.00134 ≈ 746.3 months, or a little over 62
years!

Example 3 Consider a situation where a component (or
module) of an IE is monitored, and is replaced as soon as it
fails. However, only the original and three (notionally iden-
tical) replacements of that component are held “in stock”.
We assume that the time to replace the component “from
stock” and repair the IE is negligible, but obtaining the com-
ponent when not in stock and then repairing the IE would
take a long time and result in the IE being unavailable for
that period. Let us assume that the lifetimes (i.e. operating
time until failure) of each such component is randomly, but
identically distributed, following a Normal distribution of
mean μ months and standard deviation σ months. Assum-
ing that the lifetimes (once installed) of the individual copies
of the components are independent of each other, the total
lifetime of the four copies, and thus the time before the IE
becomes unavailable due to their failure is also Normally
distributed, with mean (4μ) months and standard deviation√

(4σ 2) = 2σ months. For known values of μ and σ , for
example μ = 20 months and σ = 4 months, probabilities
of the set of 4 copies of the component lasting less than a
specified number, at least a specified number, or more than a
specified number of months can be calculated using Normal
distribution tables or software, as outlined previously.

The above examples illustrate how elementary statisti-
cal reliability theory can be usefully applied to predicting
the reliability of parts of Intelligent Environments, or even
complete Intelligent Environments, provided that appropri-
ate assumptions can be made. It may be the case that in
some circumstances, the precise assumptions which are at
least approximately valid may have to be varied, making
the reliability analysis more complicated. However, in the

majority of situations, provided the Intelligent Environment
can be decomposed into “modules” which are individually
not excessively complex, it should be possible to undertake
at least an approximate theoretical evaluation of the reliabil-
ity of each module, and thence of the whole system of the
Intelligent Environment.

6 Conclusions

This paper has presented some of the issues relating to the
reliability of complex systems, such as Intelligent Environ-
ments, and highlighted how important it is to gain a better
theoretical understanding of, and to be able to model and
predict, the reliability of such systems. The basic concepts
of statistical reliability theory, along with examples illustrat-
ing how these may be applicable to the context of Intelligent
Environments, have been presented. Although this article can
only hope to give a very brief introduction to this highly
important topic, suggestions for further reading to give more
in-depth knowledge of the field have been given.
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