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Abstract
Plant disease quantification, mainly the intensity of disease symptoms on individual units (severity), is the basis for a plethora of
research and applied purposes in plant pathology and related disciplines. These include evaluating treatment effect, monitoring
epidemics, understanding yield loss, and phenotyping for host resistance. Although sensor technology has been available to
measure disease severity using the visible spectrum or other spectral range imaging, it is visual sensing and perception that still
dominates, especially in field research. Awareness of the importance of accuracy of visual estimates of severity began in 1892,
when Cobb developed a set of diagrams as an aid to guide estimates of rust severity in wheat. Since that time, various approaches,
some of them based on principles of psychophysics, have provided a foundation to understand sources of error during the
estimation process as well as to develop different disease scales and disease-specific illustrations indicating the diseased area
on specimens, similar to that developed by Cobb, and known as standard area diagrams (SADs). Several rater-related (experi-
ence, inherent ability, training) and technology-related (instruction, scales, and SADs) characteristics have been shown to affect
accuracy. This review provides a historical perspective of visual severity assessment, accounting for concepts, tools, changing
paradigms, and methods to maximize accuracy of estimates. A list of best-operating practices in plant disease quantification and
future research on the topic is presented based on the current knowledge.
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Introduction

Quantification of plant disease intensity (amount of disease
in a population, Nutter Jr et al. 1991) is required for many
different purposes including monitoring epidemics in ex-
periments or surveys, understanding yield loss, comparing
phenotypes for disease resistance, and evaluating effects of

treatments (chemical, biological, agronomic, or environ-
mental factors) on disease (James 1974; Kranz 1988;
Cooke 2006; Madden et al. 2007; Bock et al. 2010a).
Throughout all of these applications, visual estimates of
disease are used to draw conclusions and/or take actions—
and thus they should be as accurate as possible given avail-
able resource and purpose—where accuracy is operational-
ly defined as the closeness of the visual estimate to the
actual value Nutter Jr et al. (1991). The term agreement
can be considered synonymous with accuracy where actual
values are concerned (Madden et al. 2007). During the re-
search process, incorrect quantification could result in a
type II error (failure to reject the null hypothesis when it is
false) when comparing treatments in any experiment situa-
tion, which will have ramifications for the conclusions
drawn from those experiments. Decisions based on such
conclusions could result in wasted resources, increased dis-
ease, yield loss, and ultimately reduced profit. Thus, accu-
rate disease intensity estimates would appear to be vital.
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Plant disease severity, the subject of this review, is current-
ly defined as the “area of a sampling unit (plant surface) af-
fected by disease expressed as a percentage or proportion of
the total area” Nutter Jr et al. (1991). It is worth considering
this definition of disease severity as it is limited to only the
increase in the magnitude of disease intensity that can be mea-
sured or estimated based on a proportion or percentage of
specimen area (for example, soybean rust [Godoy et al.
2006], pecan scab [Yadav et al. 2013], and rice brown spot
[Schwanck and Del Ponte 2014]). The current definition is not
applicable to diseases that manifest by a progression of symp-
toms that do not lend themselves to area estimations (for ex-
ample, huanglongbing [Gottwald et al. 1989], zucchini yellow
mosaic virus [Xu et al. 2004], and cassava mosaic disease
Houngue et al. (2019)) and for which severity is quantified
and represented by other means. Perhaps it is time to revise the
definition of plant disease severity to include those diseases
that have a symptomatology that does not lend itself to pro-
portion of specimen area diseased. However, as noted, this
review focuses on those diseases that can be assessed quanti-
tatively as a proportion based on visible symptomatic area.
Full definitions of all the terms used in this review and in
phytopathometry can be found in the glossary of terms and
concepts in this special issue. Other terms of disease intensity
germane to this review include incidence (the proportion of
diseased specimens) and prevalence (the proportion of dis-
eased plots or fields in a defined area).

The use of the term visual estimation refers to the eye
sensing a stimulus (a diseased specimen, say), followed by
perception of the sensation by our brains, which is in turn
followed by a cognitive process based on our training, knowl-
edge, and expertise to classify parts of the specimen as dis-
eased (Fig. 1). Such elementary cognition is sufficient to de-
termine incidence of disease, but more complex cognition is

required if an estimate of severity based on the proportion of
area diseased is to be made. That mental process of estimation
may be achieved using various scales, or can be performed
using sensor-based systems and image analysis. There are
three commonly used scale types for visual estimates of plant
disease severity, as defined by Stevens (1946): nominal scales
(where the rater uses simple descriptors to indicate degrees of
severity), ordinal scales of two types, qualitative and quanti-
tative (where the rater may use either a qualitative [descrip-
tive] or quantitative [defined ranges of the percentage scale,
respectively]), both based on rank-ordered classes [Chiang
et al. 2020]), and ratio scales (where the rater bases severity
estimates on the proportion or percentage of the specimen area
diseased). Quantitative ordinal scales are discussed in detail in
another article in this issue (Chiang and Bock 2021). The
argument could be made that a fourth common type of scale,
the interval scale, is not used in measurement of plant disease
severity as interval scales have no defined zero—and all dis-
ease severity by definition has a defined zero when the host
status is healthy. For this reason, we choose to recognize just
the three aforementioned scale types, although the authors
recognize some may have valid reasons for considering addi-
tional scale types.

Our understanding and knowledge of the processes,
methods, and factors affecting the accuracy of severity assess-
ment have evolved as new research results have become avail-
able, and consequently approaches to improve accuracy have
been developed. This review has two purposes: firstly, to
briefly chart the history of plant disease severity estimation
and factors that affect those estimates (including sources of
error), and secondly to outline the approaches and tools avail-
able to maximize accuracy of rater estimates. It is a synthesis
of the history of visual disease severity estimation, and corrals
the tools that we have available at this time to maximize the

Fig. 1 The stages in plant disease
severity estimation by visual
raters and by image analysis via a
sensor
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accuracy of estimates made visually by different raters; the
endeavor will distil a list of best-operating practices that may
be used to maximize accuracy of visual disease severity esti-
mation, and point out some avenues for future research.

A brief history of visual disease severity
assessment

Various original research studies have described error in visu-
al estimates of plant disease severity as well as novel tools and
approaches (Supplementary Table 1 and Fig. 2 list and pro-
vide a timeline of some of the most significant). Review arti-
cles (Table 1) have been written over the decades that have
charted practices and developments in severity estimation.

Interestingly, since 1970 with the publication by Kranz of
an article on rater error and scale design (Kranz 1970),
phytopathometry has fallen primarily under the purview of
botanical epidemiology, perhaps due to its quantitative nature
and the treatment of the subject in many reviews and books
primarily by epidemiologists since 1970 (most references in
Supplementary Table S1). Phytopathometry is indeed critical
to epidemiology, but it is equally vital to other branches of
plant pathology and in other disciplines where plant disease
measurement is required (for example, horticulture, agrono-
my, ecology, and plant breeding). Phytopathometry is needed

in these disciplines, and the importance of accurate assess-
ments is vital in many studies that cut across the needs of these
scientific endeavors. Based on these needs, we contend that
phytopathometry in its broadest sense including visual and
sensor-based assessments should play a more prominent role
in plant pathology than it has hitherto occupied, or at least for
which it has been recognized. Indeed, we believe
phytopathometry warrants a status as an independent branch
of plant pathology, of importance and application in several
other branches of the discipline, and in other disciplines.

The rise of phytopathometry

The history of phytopathometry as it relates to visual estima-
tion of disease severity can be divided into two phases. A pre-
1970 phase when there was no basis for assessing accuracy of
severity estimates (Chester 1950; Large 1953 and 1966), and
the phase since 1970 during which there have been quantita-
tive approaches to understanding error and improving accura-
cy and reliability (“the extent to which the same measure-
ments of individuals [e.g., diseased specimens] obtained un-
der different conditions yield similar results” Everitt 1998) of
estimates of severity (for example, Kranz 1970; Forbes and
Jeger 1987; Nutter Jr et al. 1993; Nutter Jr and Schultz 1995;
Nita et al. 2003; Nutter Jr and Esker 2006; Godoy et al. 2006;

Fig. 2 The history of
phytopathometry, 1892 to the
present. Significant events and
articles are indicated
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Bardsley and Ngugi 2013; Bock et al. 2016b; Pereira et al.
2020). The pivot around which these two phases occur is the
recognition of a need for unifying methods of assessment to
quantify crop loss in particular, including standardized
methods allowing for reproducibility (“the extent to which
two or more raters obtain the same estimates of disease sever-
ity of the same specimens”, Madden et al. 2007, also known as
inter-rater reliability), recognized by the United Nations Food
and Agriculture Organization in the mid-1960s (Chiarappa
1970), and culminating in publication of a crop loss assess-
ment manual (Chiarappa 1971).

Over the last 140 years, since the first tool was developed
as an aid to quantify severity (Cobb 1892), various approaches
have been developed in an attempt to standardize and improve
accuracy of visual estimates of disease severity (Chester 1950;
Large 1966; James 1974; Nutter Jr 1999; Nutter Jr 2001;
Nutter Jr and Esker 2006; Madden et al. 2007; Bock et al.
2010a, 2016a, and Bock et al. 2021; Chiang et al. 2014; Del

Ponte et al. 2017). The term “Phytopathometry”was first sug-
gested in the 1950s (Large 1953, 1966)—a term that was at
that time defined as equivalent to “plant disease measure-
ment” or “disease assessment.” Perhaps defining
phytopathometry with the narrower, former meaning is most
appropriate, as disease assessment is more typically the phys-
ical process of measuring disease.

Although various disease assessment terms had been used
and defined previously (Chester 1950; James 1974; Berger
1980), it was only in 1991 that the first comprehensive and
authoritative list of definitions and concepts used in plant dis-
ease assessment was presented in the journal Plant Disease
Nutter Jr et al. (1991). Research on phytopathometry has since
provided knowledge of sources of error, and various methods
for augmenting visual estimates of disease severity, which are
now a basis for recommending practices to improve the accu-
racy of visual estimates of disease severity. During this evo-
lution, new terms have been coined, new technologies and

Table 1 Some review articles and book chapters (or components of book chapters) that have described the status of visual plant disease severity
estimation

Year Author Topic

1950 Chester Review of the first 50+ years of plant disease severity assessment. The first comprehensive treatise.

1955 Large A review of disease severity assessment in the UK, with emphasis on use of the percentage scale.

1966 Large A review of plant disease assessment, including severity. First use of the term “Phytopathometry.”

1970 James A general review of plant disease assessment in relation to estimating crop losses.

1974 Kranz (Chapter 2) The importance of disease assessment to epidemiological studies.

1978 Horsfall and Cowling
(Chapter 6)

A general review on phytopathometry, current knowledge, and approaches used for plant disease assessment.

1979 Zadocks and Schein Considers disease assessment in the context of crop loss.

1982 Hebert In a Letter to the Editor, Phytopathology was first to articulate strong opposition to the basis of the Horsfall-Barratt
scale (the Weber-Fechner law).

1988 Kranz (Chapter 3) A discussion of plant disease measurement, error, and methods.

1989 Hau et al. Combining new data and results from Kranz (1970 and 1977) and Amanat (1977), error in disease severity esti-
mation is discussed. The authors speculate that the power function may be more appropriate than the
Weber-Fechner logarithmic function for ordinal scales and diagrams.

1990 Campbell and Madden
(Chapter 6)

Describe disease assessment, accuracy, precision and reliability, and sensor-based approaches.

1991 Chaube and Singh Review of phytopathometry in relation to crop losses.

1991 Nutter et al. Presents a comprehensive list of definitions used in plant disease assessment.

1999 Nutter Article in “Encyclopedia of Plant Pathology” providing an overview of disease assessment, including severity.

2001 Nutter Conference proceeding on disease assessment and approaches to improve accuracy.

2006 Nutter et al. A description of concepts and status of accuracy and precision in plant disease severity estimation.

2006 Cooke (Chapter 2) An updated discussion of plant disease measurement in relation to crop losses.

2007 Madden et al. (Chapter 3) Authoritative overview with statistical treatment of plant disease severity assessment.

2010 Bock et al. Comprehensive review visual plant disease severity estimation, image analysis, and hyperspectral imaging to
measure disease.

2016 Bock et al. A general review of accuracy in plant disease severity estimation.

2017 Del Ponte et al. A scientometric review of SADs describing the development, validation, and impact of the technology on plant
disease severity estimation.

2020 Bock et al. A review of visual estimation of disease severity in relation to sensor-based methods.
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methods used, and definitions have been revised. Thus, an
updated glossary of terms and concepts in phytopathometry
has been developed (this issue, Bock et al. 2021).

The early years of quantification: scales,
diagrams, and field keys

The first tool developed to standardize severity assessments,
and which utilized a SAD set, was the “Cobb scale” published
by Nathan Cobb (Cobb 1892). This ordinal scale had 5 classes
which corresponded to 1, 5, 10, 20, and 50% severity (andwas
used for “classifying” rather than interpolation to the nearest
percent estimate). The Cobb scale was modified twice. Firstly,
by Melchers and Parker (1922) who labelled a maximum se-
verity of 37% as 100% “infection level”; and secondly, by
Peterson et al. (1948) who included additional infection levels.
Such ordinal scales, both those that are proposed as “qualita-
tive ordinal scales” (descriptive of symptoms) or “quantitative
ordinal scales” (each class representing defined ranges on the
percentage scale) (Chiang et al. 2020), with or without dia-
grams, proliferated during the following decades, often with
diagrams designed to rate severity at the organ or plant level
(Gassner 1915; Tehon and Stout 1930; Trumblower 1934;
Ullstrup et al. 1945; Horsfall and Barratt 1945; Croxhall
et al. 1952a, b). In contrast, field keys were developed to
estimate disease severity in whole fields, which may combine
characteristics of qualitative and quantitative ordinal scales.
An example is the widely used 9-class key developed to assess
late blight of potato (Anon. 1947). Many of the SADs devel-
oped during this period were used to group estimates in an
appropriate “class” or illustrated “degree of symptoms.”
Nonetheless, the value of using the continuous percentage
scale was well recognized even in the 1940s (Anon. 1948).
In that article, the authors point out the nearest percentage
estimates have direct biological meaning and may be com-
pared among seasons and raters, and the percentage scale pro-
vides a single, uniform method for many different diseases
(compared to a diversity of ordinal scales or diagram based
systems).

An early quantitative ordinal scale was that of Gassner
(1915). Other linear and logarithmic scales and methods were
developed to assess severity on individual plant organs, and
whole plants (see Chester 1950). The usefulness of these tools
to quantity severity accurately was implicit, and although con-
siderations of “reproducibility and reliability” (sic) were con-
sidered important (Marsh et al. 1937) they were not addressed
statistically, nor were they defined. Indeed, it was during these
nascent years of phytopathometry that pre-processing of ordi-
nal data for analysis was considered important. McKinney
(1923) proposed the “infection index” (a kind of disease se-
verity index, or DSI), which basically summarized frequency
of severity class ratings on an ordinal scale. The early history

of the DSI is described by Chester (1950). Marsh et al. (1937)
commented that the DSI reduced what may be non-linear data
to a single expression that is continuous and amenable to
statistical analysis “…although the estimates are not necessar-
ily in direct linear relation to the amount of fungus present…
they are reducible to a linear function of this amount.”

Phytopathometry encounters psychophysics

Historically, a widely-used scale for quantifying plant disease
severity is the Horsfall and Barratt (H-B) scale (Horsfall and
Barratt 1945). It is a quantitative ordinal scale with 12 classes
that divide the percentage scale into logarithmically increasing
and decreasing sized ranges below and above 50%, respec-
tively. The rational for the scale design was based in psycho-
physics. According to the authors, the scale was structured to
reflect the “Weber-Fechner law,” which actually combined
two independent laws (Nutter Jr and Esker 2006): (1) there
is a logarithmic relationship between the intensity of the stim-
ulus (in this case severity of disease) and the estimated value
(Fechner’s law, which is false), and (2) the change in a stim-
ulus that will be just noticeable is a constant ratio of the orig-
inal stimulus (Weber’s law, which holds true). Horsfall and
Barratt also presumed that the eye perceives diseased tissue at
severity <50%, and healthy tissue at severity >50%, which has
never been established. Redman et al. (1968) developed a set
of tables based on a formula to convert multiple H-B ratings to
estimated mean percentages, effectively taking the percentage
midpoint values of the ranges for each class to facilitate deter-
mination of percentage mean severity. The H-B scale and its
basis in psychophysics was perhaps the most dominant para-
digm in phytopathometry for many decades, and received
praise as late as the 1980s (Hollis 1984), and remains a tool
used in modern research in the field, although not without the
psychophysical basis and structure of the scale being seriously
questioned (Hebert 1982; Nutter Jr et al. 2006; Bock et al.
2010b). Contrary to the claims of a logarithmic relationship
between estimates and actual severity, it has now been dem-
onstrated on many occasions that there is a linear relationship
between estimates of disease severity and actual severity (Nita
et al. 2003; Nutter Jr and Esker 2006; Bock et al. 2009b).

A flourish of manually prepared black
and white SADs

The major contributions of W. Clive James, a researcher from
the Canada Department of Agriculture, to the field of
phytopathometry, began when he published an influential ar-
ticle in the Canadian Plant Disease Survey (James 1971). In
the article, he presented and described the preparation and
usage of what he defined as “assessment keys,” which in fact
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were SADs for cereal, forage, and field crops, representing 19
diseases. Each key was accompanied by detailed instructions
for sampling and usage. To ensure that percent affected area
was accurate, a drum scanner coupled to a computer was used
to measure drawings made on paper sheets. James
recommended interpolation to the nearest percent estimate
using the SADs. Another important unit of research was that
of Dixon and Doodson (1971) who also published disease-
specific SAD sets, some being recommended to be used for
interpolation, and others to be used alongside ordinal scales
for classification of severity. Given the extensive variation of
type and intensity of symptoms across several diseases, the
diagram sets in those two studies varied in purpose and
number, from as few as three illustrations to 6 or more
depicting different disease severities. James (1971) recog-
nized the advantages of using the percentage scale, but also
warned that, because only a few severities are shown in the
SADs, the extent of interpolation was determined by the abil-
ity of the observer. Moreover, it is interesting that the rationale
for defining the few diagrams and their values was conve-
nience, rather than laws of psychophysics, as suggested de-
cades earlier as well as, surprisingly, in more recent SADs
research (Del Ponte et al. 2017). During that time, no formal
quantification of the accuracy of the estimates was deter-
mined—rather, it was implicitly presumed that the SADs or
scales with diagrams improved accuracy.

Exploring and understanding error

It was also during the early 1970s that a quantitative under-
standing of characteristics of error and accuracy of visual es-
timates of disease severity was established. Kranz (1970),
Analytis (1973), and Amanat (1976, 1977) investigated rater
error and disease scales, and determined standard deviations
of multiple rater estimates of the samemodel leaves were non-
constant with severity, a relationship demonstrated for several
other diseases too (Fig. 3). Standard deviations of unaided
rater estimates tended to be greatest in the range 18 to 62%
severity. Kranz (1970) was first to report the minimum and
maximum estimate, range, and relative errors of unaided esti-
mates, which increased up to 50% severity, then decreased up
to the maximum severity of 100% (Fig. 3). The same pattern
has been confirmed more recently for other diseases, as indi-
cated in the figure. Analytis (1973) confirmed non-
homogeneity of variance with severity in the apple scab
pathosystem. Various transformations of severity data were
suggested to account for the non-homogeneous variance and
lack of normality of these data (Kranz 1970; Analytis 1973).
Amanat (1976) was first to show that training improved pre-
cision (which is the degree of variability; the greater the
variability, the less precise the estimates, in these cases in
relation to the actual values, which is an important point;

Madden et al. 2007). Precision was measured as the scatter
of the points in a regression analysis, and in early studies it
was noted that precision of estimate of severity was low where
symptoms were comprised of small lesions, and raters tended
to overestimate with such symptoms (Amanat 1976). Koch
and Hau (1980) showed that raters preferred certain severities
(“knots”) when estimating severity—generally at 5 and 10%
intervals at severities >10 to 20%, which has since been ob-
served in other pathosystems (Bock et al. 2008a). Sherwood
et al. (1983) and Hock et al. (1992) also showed overestima-
tion was greatest at low disease severities and that, given the
same severity, a disease with smaller lesion size will generally
be overestimated, and that, overall, visual estimates by raters
were not particularly precise, confirming previous reports.
Error associated with estimation due to organ types and dis-
ease severity was explored further by Forbes and Jeger (1987).

Intra-rater reliability is the closeness of repeated estimates
of severity of the same specimens by the same rater (also
known as “repeatability”). Inter-rater reliability is the close-
ness of repeated estimates of the same specimen by different
raters, also known as “reproducibility” (Madden et al. 2007).
Reliability does not embrace the concept of accuracy, as no
actual values are involved. Statistical analyses of inter-rater
and intra-rater reliability were made by Shokes et al. (1987)
using analysis of variance and correlation analysis, respective-
ly. Indeed, in regard to plant disease severity estimation, the
test/retest method to gauge intra-rater reliability was first pro-
mulgated by Shokes et al. (1987) but was based on
correlation—although Amanat (1976) used the same test/
retest concept it was in relation to learning capacity. Hau
et al. (1989) summarized much of this early quantitative work
to explore accuracy, and provided further insights into the
nature of the relationships between actual disease severity
and rater estimates. They also questioned the nature of the
logarithmic relationships espoused by Horsfall and Barratt
(1945). Nutter Jr et al. (1993) used regression analysis to fur-
ther establish and understand the concepts of accuracy (using
image-analyzed acetate images), inter-rater and, using the test/
retest method, intra-rater reliabilities in visual plant disease
severity estimation compared to sensor-based methods.
Others also explored accuracy and variability in rater esti-
mates using various approaches (Beresford and Royle 1991;
Newton and Hackett 1994). Several studies compared rater
estimation of symptom components (Beresford and Royle
1991) and rater variability (Beresford and Royle 1991;
Newton and Hackett 1994; Parker et al. 1995a, 1995b).

Arrival of personal computers and programs
to aid in assessment training

Research on visual assessments of severity was impacted in
the mid-1980s when personal computers and programming
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languages become more accessible. Several computer pro-
grams were developed with the purpose of improving raters’
accuracy via training based on computer-generated images of
specific and measured disease severity. The estimate could be
compared to the actual value. AREAGRAM was the first,
described in a university report by Shane et al. (1985) to de-
velop a program where leaves of fixed severities (not random-
ly generated) were shown to raters. This was followed by
other software with similar functionality, but allowing ran-
domly generated series of diseased leaf images in a defined
severity range, including DISTRAIN (Tomerlin and Howell
1988), DISEASE.PRO (Nutter Jr andWorawitlikit 1989), and
ESTIMATE (Weber and Jorg 1991). Later in the decade, new
software was developed for specific diseases, symptoms, and
leaf types, for example, SEVERITY.PRO (Nutter Jr et al.
1998). COMBRO (Canteri and Giglioti 1998) was developed
specifically for sugarcane rust and borer-rot complex.
Research using these tools demonstrated statistically detect-
able improvement in the accuracy of estimates of disease se-
verity after training (Newton and Hackett 1994; Nutter Jr and
Schultz 1995; Parker et al. 1995b; Giglioti and Canteri 1998).
A potential issue with computer training is that the benefits
may be short-lived (Parker et al. 1995b), with raters requiring
regular re-training.

The computer capability to quickly generate digital draw-
ings of diseased leaves not only without the need to hand
draw, scan, and measure, but also with the ability to process
and analyze the data in real time, was a significant advance.
Raters could also do in-house training at any time of the year.
Interestingly, the development of these computer programs in
the 1980s and 1990s was not immediately followed by com-
puterized systems with greater sophistication to draw more
realistic symptomatic digital leaves, despite the advances in
software engineering. Indeed, there have been very few train-
ing programs developed since (Aubertot et al. 2004; Sachet
et al. 2017).

The early psychophysical basis of severity
perception challenged

Starting in the 1980s, the so-called Weber-Fechner law
and the ideal of the H-B scale began to be challenged.
Although Kranz (1970) presented results which showed
that error is not symmetrical (and logits were a suitable
transformation), estimates did not follow the so-called
Weber-Fechner law, because the standard deviation of
rater estimates was similar and greatest between ≈18 and

Fig. 3 The means and ranges of unaided estimates of disease severity A
of stylized disease on 25 model leaves by 200 raters (Kranz 1970), B of
symptoms of citrus canker on 200 leaves by 28 raters (Bock et al. 2009a),

and C of symptoms of soybean rust on 50 leaves by 37 raters Franceschi
et al. (2020). The standard deviations of the means are indicated in D, E,
and F, respectively
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52% compared to other severities (Fig. 3). Hebert (1982)
was first to question the presumed psychophysical basis
of plant disease severity assessment. Forbes and Jeger
(1987) provided the first valuable insights into a number
of factors affecting estimation of severity on different
plant structures, identifying rater, actual disease severity,
and plant structure as factors affecting the accuracy of
estimates, and unequivocally demonstrated and stated that
the rater error was not compliant with the assumptions of
the Weber-Fechner law. The results were reinforced by
other observations that estimation error was not greatest
at 50% (as had been argued by Horsfall and Barratt 1945)
(Hau et al. 1989).

Forbes and Korva (1994) showed that direct use of a H-B
type scale did not necessarily resolve uneven variances of
estimates, and direct percent estimates were more accurate
and precise. Nita et al. (2003) compared scale types using
measured, actual values. In a study on Phomposis leaf blight
of strawberry comparing direct visual estimates to the H-B
scale, the authors pioneered use of Lin’s concordance corre-
lation in determining accuracy in phytopathometry. Accuracy
can be considered a product of bias and precision, where bias
is the difference between the estimated mean severity and the
actual mean severity, and precision is as previously defined.
Bias has two forms. First, bias may be constant with estimates
being higher, or lower on average by a constant amount when
compared to the actual values, and second, bias may be sys-
tematic, where the estimates are higher (or lower) than the
actual values by an amount that is proportional to the actual
severity measured. Constant bias is also known as “fixed bias”
or “location shift,” while systematic bias is also known as
“proportional bias” or “scale shift.” Nita et al. (2003) demon-
strated that the use of the H-B scale did not result in greater
accuracy or reliability when compared to direct nearest per-
centage estimates, and the results of the study further
questioned the basis of the Weber-Fechner law. These and
other observations were confirmed experimentally by Nutter
Jr and Esker (2006) who used the concept of the “just notice-
able difference” to demonstrate that accuracy of raters was far
greater in the mid-ranges (25 to 75%) of the H-B scale than the
scale structure suggests, which is a significant argument
against its use where more accurate methods can be applied
(or use of scales similar to the H-B scale).

Various simulation studies have since confirmed that
the H-B scale lacks the same power for hypothesis testing
compared to the percentage scale (Bock et al. 2010b;
Chiang et al. 2014; Chiang et al. 2016a, b). Indeed, since
Hebert (1982) first articulated his concerns, it is now gen-
erally accepted that a linear relationship exists between
estimated severity and actual severity (Nutter Jr and
Esker 2006; Bock et al. 2009b), although the relationship
between the error of those estimates and the actual values
remains to be fully established.

The importance of instruction and experience

Associated with training is instruction. But this is not like
computer-based training; rather it relates to written or oral
descriptions of symptoms, how to delineate them, and a de-
scription of how to implement the rating scales used for as-
sessments. Only recently has research shown that detailed
instruction in a pathosystem and how to rate disease severity
using the methods of choice is critical for accurate and reliable
assessments (Bardsley and Ngugi 2013). Indeed, instruction
on use of the rating scale is critical too, as error may result
from misuse, as has been noted (Kranz 1988; Bock et al.
2013a, b; Forbes and Korva 1994). Studies demonstrating
the importance of the basic procedure of instruction should
be repeated with other pathosystems to confirm these results.

Over the last 10 years, several studies have demonstrated
that raters’ lack of experience can result in inaccuracy and
unreliability (Bock et al. 2009b; Pedroso et al. 2011; Yadav
et al. 2013; Lage et al. 2015). Experienced raters tend to esti-
mate disease severity on specimens more accurately (although
some novice raters may also be intrinsically accurate too). The
research has demonstrated that as a group experienced raters
are more accurate, but experience does not guarantee more
accurate estimates.

Establishment and evolution of SADs research

The pioneering work byWClive James was highly influential
to subsequent SAD research. A selected list of SADs is pre-
sented in the chapter on disease monitoring in the Plant
Disease Epidemiology book by Campbell and Madden
(1990). The list shows 17 published studies by other authors
from 1971 to 1988, averaging one per year, but between 1991
and 2017, 105 articles were published (averaging 6 articles per
year; Del Ponte et al. 2017). A study conducted by Amorim
et al. (1993) was a turning point and the first to use regression
analysis to report a measure of accuracy, although the benefits
from using SADs were not checked because there was no data
on unaided estimates. The Amorim et al. study was used as a
model in several articles that followed (Godoy et al. 1997;
Michereff et al. 1998, 2000; Diaz et al. 2001; Leite and
Amorim 2002). Nutter Jr and Litwiller (1998) were first to
show that SADs improved rater estimates of disease severity
in an abstract from a conference. Michereff et al. (2000) for-
mally published the first comparison of accuracy of estimates
without and with SADs for assessing citrus leprosis via com-
parison of linear regression coefficients. A plethora of SADs
followed (see review by Del Ponte et al. 2017) with analyses
demonstrating statistically detectable improvements in accu-
racy and reliability due to using SADs. Many SADs from
1970 to 2010 were based on the “Weber-Fechner” law. As
noted earlier, theWeber-Fechner law is non-existent, although
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Weber’s law holds true. Consequently, the Weber-Fechner
law as a principle to guide SAD design has generally been
abandoned as a stated basis for scale development in more
recent years (Yadav et al. 2013; Lage et al. 2015; Araújo
et al. 2019). Interestingly it was not a stated basis for defining
incremental interval and number of diagrams in the pioneering
work of James (1971). The basis for SADs design should
probably be a linear scale, but with additional diagrams at
low severity (Bock et al. 2010a; Schwanck and Del Ponte
2014; Franceschi et al. 2020).

Two advances in the methodology for SADs validation
were important to more appropriately understand the benefits
of SADs. First, the shift from using linear regression to Lin’s
concordance coefficients as a measure of accuracy and its two
main components (precision and bias), recommended as more
appropriate for the purpose (Nita et al. 2003; Madden et al.
2007). Spolti et al. (2011) were the first to apply them to the
study of SADs. Second, the use of statistical approaches other
than regression analysis to explore accuracy including (or-
dered by first use) confidence intervals (Spolti et al. 2011)
equivalence tests (Yadav et al. 2013), non-parametric tests
(Schwanck and Del Ponte 2014), and generalized linear mixed
models (Correia et al. 2017).

Research on the topic has demonstrated that several aspects
of the SADs design and evaluation might affect accuracy (and
reliability) including rater experience (Yadav et al. 2013),
pathosystem (Godoy et al. 1997), number of diagrams and
structure and/or color of SADs (Schwanck and Del Ponte
2014; Bock et al. 2015; Franceschi et al. 2020), and the pro-
cedures followed during SAD development and validation,
and other factors (Melo et al. 2020; Pereira et al. 2020).
Franceschi et al. (2020) demonstrated the substantial improve-
ments that could be made with carefully designed SADs com-
pared to older, basic, previously developed SADs (Fig. 4)—
raters’ estimates were significantly more accurate with the
new SADs. Thus, there may be useful room for improving
accuracy based on SADs characteristics. With SADs, research
showed that those raters who are least accurate tend to benefit
the most from using SADs, while raters who are already ac-
curate remain about the same (Yadav et al. 2013; Bock et al.
2015).

The inexpensive availability of scanners and portable dig-
ital cameras in the early 2000s, and the development of plant
disease-specific image analysis software facilitated develop-
ment of SADs (Del Ponte et al. 2017). Image analysis soft-
ware included APS Assess 2.0 (Lamari 2002) and QUANT
(Vale et al. 2003). The development of empirical approaches
to develop more realistic SADs, combined with accessibility
of image analysis for measuring actual values of test images,
made the use of SADs as a training tool a practical and easy to
use option compared to computer training programs (and a
less expensive one), which may have contributed to the de-
cline of computer training systems. Only a few examples exist

linking SADs and training software either based on an ordinal
scale (Aubertot et al. 2004) using Didacte-PIC (Training pro-
gram: Canker-didacte. Online https://www62.dijon.inrae.fr/
didactepic/choix_nombre_et_mode.php) or a percent scale
(Sachet et al. 2017).

The intersection of portable devices and SADs was ex-
plored by Pethybridge and Nelson (2018). The iPad app
“Estimate” has SADs for assessing the severity of
Cercospora leaf spot in red and yellow table beets and allows
direct data entry, using either different ordinal (linear or log-
arithmic) or continuous scale data. For the ordinal scales, a
higher resolution linear scale was most accurate (Del Ponte
et al. 2019).

Comparing scale types and characteristics
and evaluating impact on decisions

An early study was that of O’Brein and van Bruggen (1992),
which compared three quantitative ordinal scales to relate to
yield loss caused by corky root of lettuce. The scales had 7,
10, and 12 (the H-B scale) classes. Although the actual values
on which accuracy was based were merely “expert” visual
estimates, the authors concluded that no scale was most
accurate and precise overall, and depended on the specific
severity ranges or lettuce growth stages. Two years later,
Forbes and Korva (1994) were the first to demonstrate that
direct use of H-B scale types did not necessarily resolve un-
even variances of estimates, and direct percent estimates were
more accurate and precise (direct use of the scale resulted in a
“linearization” of unequal scale class intervals). As noted, Nita
et al. (2003) compared direct visual estimates to H-B scale
converted values and demonstrated the H-B scale was not
more accurate or reliable compared with direct nearest per-
centage estimates. Similar studies on citrus canker by Bock
et al. (2009b) drew similar conclusions, and Bardsley and
Ngugi (2013) demonstrated that direct estimation resulted in
more accurate and reliable estimates than an ordinal scale
when estimating severity of foliar bacterial spot symptoms
on peach and nectarine. Hartung and Piepho (2007) also
showed that accuracy was greatest using the percentage scale
(although they considered a 5% ordinal scale to be sufficient).

Some studies have compared treatments using different
methods of assessment on the outcome of an analysis. Todd
and Kommedahl (1994) compared severity of symptoms of
Fusarium stalk rot of corn caused by three different species of
Fusarium assessed either as a percentage by image analysis
(considered objective) or visually using a 1 to 4 severity
scale—means separation was dependent on assessment meth-
od. Similarly, Parker et al. (1995a, b) found that data from
objectively measured severity of barley powdery mildew
(using image analysis) gave different outcomes compared to
visual estimates after data analysis. Bock et al. (2015) also
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found that use of the H-B scale could result in different means
separation among treatments compared to direct percentage
estimates. In a study of QTLs for oat crown rust resistance
genes, a quantitative analysis found that 64% of the pheno-
typic variation was accounted for using q-PCR to quantify the
pathogen (which also most precisely mapped the gene), 52%
was accounted for using digital image analysis, but only 41%
by visual assessments, respectively (Jackson et al. 2007).
Although Poland and Nelson (2011) observed little difference
in the QTLs identified to northern leaf blight of corn using
either a 1 to 9 scale or a direct percentage estimation, the
results showed the direct percentage estimates to be more
precise.

During the last decade, several simulation-based studies
exploring the power of the hypothesis test have demon-
strated the issues associated with using quantitative ordinal
scales compared to a continuous ratio scale (Bock et al.
2010b; Chiang et al. 2014). In the former, type II errors
are elevated, although increasing sample size can resolve
most issues. Rater bias also has problematic effects that
can be magnified by quantitative ordinal scales (Chiang
et al. 2016a). Several of the studies described in this para-
graph, and in other works (for example, Chiang et al.
2014), indicate that the H-B scale (and similar scales) has
drawbacks and can result in elevated type II errors. The
research has also provided a basis for developing ordinal
scales that have similar accuracy or minimized risk of type

II error compared to nearest percentage estimates (Hartung
and Piepho 2007; Chiang et al. 2014) (Table 2).
Furthermore, selection of scale type can affect resource
use efficiency (Chiang et al. 2016b), with more replica-
tions required to achieve the same level of power in a
hypothesis test (the type II error rate) when using some
ordinal scales. Furthermore, percentage scale severity data
estimated by very accurate raters almost always leads to
the rejection of the null hypothesis (when it is false), but
for accurate raters using H-B type scales is more detrimen-
tal to the probability to reject the null hypothesis compared
to inaccurate raters (Bock et al. 2010b).

The impact of using a DSI on accuracy and type II error
when using a quantitative ordinal scale was investigated by
Chiang et al. (2017a, b). Results showed that DSIs based on
ranges of the percentage scale are prone to overestimation if
the midpoint values of the rating class are not considered.
Rater bias can further detract from accuracy of the DSI com-
pared to the actual mean. However, Chiang et al. (2017b)
using quantitative ordinal rating grades or the midpoint con-
version for the ranges of disease severity resulted in similar
powers of hypothesis testing. The authors concluded that the
principal factor determining the power of the hypothesis test
(the complement of the type II error rate) when using a DSI is
the nature of the intervals in the quantitative ordinal scale—an
amended 10% interval scale provided a type II error rate close
to direct estimation of disease severity. Thus, steps can be

Fig. 4 Standard area diagrams (SADs) to estimate severity of rust
(Phakopsora pachyrhizi) on soybean (Glycine max) leaves. A The orig-
inal SADs (Godoy et al. 2006) B the relationship between the illustated
SAD severity and diagram number for the original SAD C the absolute
errors of estimates when using the original SADs D the newly developed
and validated SADs (Franceschi et al. 2020) that is a tool for more

accurate estimates of rust severity E the relationship between the
illustated SAD severity and diagram number for the newly
developed SAD F the absolute errors of estimates when using the newly
developed SADs. The numbers under each leaf represent
actual percentage leaf area showing symptoms (necrosis and chlorosis)

34 Trop. plant pathol. (2022) 47:25–42



taken that maximize the utility of the DSI when selecting the
scale intervals on which it will be based. DSIs remain quite
widely used (Hunter and Roberts 1978; Koitabashi 2005;
Nsabiyera et al. 2012; Gafni et al. 2015).

The previous sections have outlined the history and many
of the advances in phytopathometry since Nathan Cobb de-
veloped a cereal rust scale in the 1890s. But there remain
many unanswered questions, and there are further avenues
to explore that may provide a basis for added improvements
in accuracy and reliability of visual estimates of plant disease
severity.

The need for a baseline for accuracy

So, a couple of questions may remain regarding all this prog-
ress: what is an accurate visual estimate of disease severity?
How do we know when we are close enough to the actual
value? Accuracy may in part be dependent on the needs of a
specific study, so these are not easy questions to answer.
Nonetheless, based on empirical results from rater studies over
the last 10 years we can determine that raters with Lin’s con-
cordance correlation coefficient (ρc) of approximately 0.90, or
more may be considered accurate (Capucho et al. 2011; Spolti
et al. 2011; Rios et al. 2013; Domiciano et al. 2014; Duarte
et al. 2013; Yadav et al. 2013; Bardsley and Ngugi 2013;
Schwanck and Del Ponte 2014; Lage et al. 2015; Araújo
et al. 2019; Franceschi et al. 2020). Inevitably this is some-
what arbitrary, and the references show that it varies with the

study, and quite likely the pathosystem and several other fac-
tors. But based on the studies that have been done, and the
accuracies achieved with and without instruction, training,
and SADs, it is a reasonable magnitude for a ρc for the rater
to be considered accurate on the spectrum of known rater
capability. Rarely will a visual rater have a consistent ρc >
0.95. Most commonly raters with training instruction and/or
SADs will have an ρc ≥ 0.85 to 0.95. The SADs, individual
rater, and other factors will contribute to imprecision, constant
bias, and systematic bias. In a real disease assessment situa-
tion, it is quite likely that accuracy will be a little lower. But
this is a lot better compared to the capability of some raters
with no experience or assessment aid, and possibly just rudi-
mentary instruction, who may have a ρc = 0.60 or less. It
should be noted that accuracy too may be in the eyes of the
beholder: whereas Altman (1991) considers 0.90 to be
accurate, and McBride (2005) does not believe “substantial”
accuracy is achieved until ρc ≥ 0.95 (anything less being con-
sidered only moderately accurate or poor).

Using regression analysis, permissible accuracy has been
based on a range of percentages around the actual severity
(Amanat 1977; Newton and Hackett 1994). In these studies,
ranges considered accurate at specific actual severities were
1% (0.5 to 1.5%); 5% (3.75 to 7.00%), 10% (7.50 to 12.50%),
and 30% (25 to 35%). As observed by Newton and Hackett
(1994), this gives an upper limiting regression line with an
intercept of 0.28 and a slope of 1.2, and a lower limiting
regression line with an intercept of −0.28 and a slope of 0.78.

As noted, many decisions are based on estimates or mea-
surements of plant disease severity. Thus, for these decisions
to be of greatest value, they must be based on data that is true
to the actual severities—i.e., it must be accurate. The work
done to date has explored many facets that affect accuracy and
reliability, and plant pathologists have developed an under-
standing of sources of error to address some of the shortcom-
ings by implementing improved tools and approaches to esti-
mate plant disease severity. The main sources of error are
briefly considered in the next section.

Factors affecting accuracy

Scale type: Several studies have demonstrated that assessment
method can affect accuracy and the outcome of an analysis
(Todd and Kommedahl 1994; Parker et al. 1995a, b; Nita et al.
2003; Bock et al. 2015; Bock et al. 2009a; Bock et al. 2010b;
Jackson et al. 2007; Poland and Nelson 2011; Chiang et al.
2014; Chiang et al. 2016a, b).

Raters: Probably the single biggest source of error and var-
iability in assessment. Raters have been demonstrated to be
inherently variable (Hau et al. 1989; Nutter Jr et al. 1993;
Bock et al. 2009b). The majority of raters tend to overestimate

Table 2 The “Chiang” scale: an improved 16-class quantitative ordinal
scale for general assessment of plant disease severity based on the scale
developed byChiang et al. (2014) (with modification byBock et al. 2021)

Ordinal equivalent Midpoint Severity (% range)

0 - -

1 0.05 0+ to 0.1

2 0.30 0.1+ to 0.5

3 0.75 0.5+ to 1.0

4 1.50 1.0+ to 2.0

5 3.50 2.0+ to 5.0

6 7.50 5.0+ to 10.0

7 15.0 10.0+ to 20.0

8 25.0 20.0+ to 30.0

9 35.0 30.0+ to 40.0

10 45.0 40.0+ to 50.0

11 55.0 50.0+ to 60.0

12 65.0 60.0+ to 70.0

13 75.0 70.0+ to 80.0

14 85.0 80.0+ to 90.0

15 95.0 90.0+ to 100.0
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disease severity, especially at low severity, while a few may
also underestimate, but it is less common.

Rater preferences for particular severities: Raters tend to
have a preference for certain severities, generally at 5 and
10% interval, particularly at severities >20% (Koch and Hau
1980; Bock et al. 2008b, 2009b; Schwanck and Del Ponte
2014).

Lack of experience, training, and instruction: Over the last
10 years, several studies have demonstrated that lack of expe-
rience can result in inaccuracy and unreliability (Bock et al.
2009b; Pedroso et al. 2011; Yadav et al. 2013; Lage et al.
2015). Training improves accuracy of estimates (Parker
et al. 1995a; Nutter Jr and Schultz 1995; Bardsley and
Ngugi 2013). Similarly, instruction in the pathosystem and/
or rating methods can result in more accurate and reliable
estimates (Bardsley and Ngugi 2013).

Symptoms: The characteristics of the symptoms can influ-
ence rater accuracy. Severity characterized by numerous small
lesions will tend to be more seriously overestimated compared
to diseases with fewer, larger lesions (Sherwood et al. 1983;
Forbes and Jeger 1987). Also, that tendency to overestimate is
relatively greatest at severities <20% (Sherwood et al. 1983;
Bock et al. 2008b). Whether lesions are regularly or irregular-
ly distibuted may also impact error (Hock et al. 1992).

Plant structure: The organ (plant part) or whole plant being
assessed can influence the accuracy of estimation (Amanat
1977; Forbes and Jeger 1987; Nita et al. 2003). Roots in par-
ticular are especially challenging to accuracy in severity esti-
mation (Forbes and Jeger 1987).

Time: The speed with which rating is performed may affect
accuracy, although not many studies have been performed.
Faster raters tended to have less precise estimates of severity
(Parker et al. 1995b), and by extension these estimates would
be individually less accurate.

Other causes: Color blindness has been reported to be det-
rimental to estimation of disease severity (Nilsson 1995).

There may also be interactions among the various factors
listed here. A more in-depth discussion of sources of error
affecting disease severity estimation is provided by Bock
et al. (2010a). Other factors not yet studied may also play a
role in rater error. A chart presenting the sources of error in
plant disease assessment and the tools, methods, and ap-
proaches to increase accuracy is presented in Fig. 5.

Can visual estimates be more accurate? A
primer on best practices

The advantages of the percentage ratio scale for estimating
those diseases amenable to such estimations were articulated
in an article in the Transactions of the British Mycological
Society (Anon. 1948). In addition, the authors: (i) encouraged
use of pictorial diagrams of known severities to more

accurately guide estimates, (ii) commented that the percentage
estimates have direct biological meaning, and (iii) stated it
provides a single, unifying method for estimating severity
for all those diseases where area estimates are appropriate
measures for severity. As noted, the data also lend themselves
to direct parametric analysis. It is also bounded by 0 and
100%, the scale can be subdivided, is universally known,
and is applicable to measures of incidence as well as severity
(James 1971). Large (1955) stated that wherever possible they
strove to assess using percentages because it provided the
“percentage of the total green area of the plant rendered inop-
erative by reason of the disease at the time of observation,”
rather than arbitrary or subjective ordinal grading systems
based on psychology of perception, and due to its objectivity
allowing comparisons.

There may be reasons for selecting any one of the types of
scales used in plant pathology for a specific disease assess-
ment purpose, but the user should remember that the objectiv-
ity and statistically available information content is least with
the nominal scale, and increases progressively with the ordinal
and ratio type scales, respectively. Of course, there are many
diseases that must be assessed using a qualitative ordinal
scale, but those are not considered in this review. There are
various criteria to consider, and a sequence to approaching
severity assessment that can be followed that will help con-
tribute to accuracy of rater estimates, and at the same time
minimize risk of type II errors. Best-operating practices
(summarized in Table 3) for consideration in a disease severity
assessment activity to maximize accuracy should include:

First, select the most appropriate scale for the
pathosystem involved, the requirements of the experiment,
and the resource availability. In some cases, a pathosystem
may dictate the scale to be used: thus, many systemic diseases
that have relatively amorphous symptoms are more readily
scored using a qualitative ordinal scale. Other pathosystems
where symptoms are easily defined and quantified on an organ
or whole plant lend themselves to rating using a quantitative
ordinal scale or a ratio scale (the percentage scale). The per-
centage scale may be preferable to provide greater accuracy of
individual estimates, and the ability to use parametric statistics
directly with no loss in accuracy or precision (taking mid-
points of quantitative scale ordinal estimates is less accurate
and precise compared to direct estimates). Furthermore, a rater
must learn the characteristics of the quantitative ordinal scale.

Second, provide raters with detailed instruction of (i) the
pathosystem, (ii) the rating scale being used, and (iii) common
sources of error in rating. These instructions should include a
description of the disease symptoms and the stages they may
go through, and any fungal structures that are relevant to assess-
ment, and where to consider a boundary between healthy and
diseased tissue. Other diseases or conditions that could be a
source of misidentification, confusion, and error should also be
described. Explicit instruction should be provided, even for the
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percentage ratio scale (for example, if using SADs, raters should
understand to use the SADs as a guide for interpolation of their
best estimate, not as a tool to classify the specimen as represented
by a SAD or a preferred value—which has happened in some
studies [Parker et al. 1995a, b; Melo et al. 2020]). Raters should
be instructed on common sources of error including avoiding the
common tendency to overestimate (especially at low severity)
and to avoid rating in “knots”—specific values at 5 and 10%
intervals. The importance of instruction is demonstrated
(Bardsley and Ngugi 2013).

Third, raters should be tested and trained for two rea-
sons: (i) to ascertain their native ability and (ii) to ascertain
whether they can improve with experience, training, and/or
the use of SADs. A rater who is consistently very inaccurate
should probably be replaced. Most raters respond favorably to
training and it ensures that their estimation accuracy is suffi-
cient. This can be done using computer training programs (not
easy to obtain now) or through the use of SADs and sets of
image-analyzed, diseased specimens of known actual value
that raters can gain experience by using. The value of training
for improving accuracy is demonstrated (Nutter Jr and Schultz
1995; Bardsley and Ngugi 2013).

Fourth, related to the previous two criteria is experience.
Wherever possible raters should be experienced (perhaps
through instruction and training) so that they are comfortable
rating disease severity. Thus, raters should be selected based
on demonstrated experience wherever possible. Again, expe-
rience has been shown in several studies to be an important
gauge of accuracy (Pedroso et al. 2011; Yadav et al. 2013;
Lage et al. 2015).

Fifth, wherever possible, raters should use SADs as an aid,
especially if not highly experienced and demonstrated to be ac-
curate. There are now well over 100 studies that show SADs
improve accuracy, particularly for those less experienced or less
accurate raters (Pedroso et al. 2011; Yadav et al. 2013; Lage et al.
2015; Del Ponte et al. 2017). The SADs also improve inter- and
intra-rater reliability, which is most likely a result of the increase
in accuracy of individual raters.

Sixth, where possible the minimum number of raters
should be used in any particular experiment, and if different
raters are used, ideally they should be allocated randomly across
the experimental units. This provides a further method to isolate
rater-related error in a way that can be accounted for in the
analysis. If raters vary and have assessed across statistical units,
the error will detract from the power of the analysis. Although
peripheral to disease assessment, resource use efficiency and
sample size may be critical considerations. Chiang et al.
(2016b) demonstrated the need for a minimum sample size to
minimize the risk of type II errors. Ideally this should be at least
30 samples. Subsequent analysis should be appropriate for the
data type (Shah and Madden 2004; Chiang et al. 2020).

The future of visual plant disease severity
estimation

Based on applying these methods, and implementing appro-
priate tools, the potential improvement in accuracy of direct
visual severity estimates, especially for inherently “accurate”
raters, is likely approaching its limit. Further gains, of variable

Fig. 5 Sources of error that affect rater accuracy of individual specimen disease severity estimates during the assessment process, and approaches and
tools to increase accuracy
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magnitude, may be made from results of additional studies
understanding aspects of rater error, and from the optimization
of SADs design and their deployment, in particular. But there
remain many areas for future research.

For example, how does rater accuracy really vary over the
full range of disease severity? Nutter Jr and Esker (2006)
provided valuable information over the mid-range of disease
severity (25 to 75%) using the just noticeable difference. But
what about severity estimates <25% or >75%? A comprehen-
sive study will lay to rest the question of the relationship
between ability to estimate and actual disease severity.

How do symptom types and characteristics, and likely
range of disease severity for a pathosystem affect an optimum
selection of SAD severities and the range and individual se-
verities illustrated? Further research is needed to determine
how many diagrams are really needed in a SAD set. And at
what point are there too many? What are critical aspects of
SAD development and validation that should be followed in

all labs developing this tool to ensure that differences due to
approach are not a source or error in design or validation?

What aspects of rater instruction are most important to
accurate assessments? How do personality types and other
psychological or gender factors affect rater accuracy?

Similarly, with ordinal scales: what further improvements
might be made to scale structure that will improve accuracy of
estimation? Does training or instruction impact quantitative
ordinal scale use (this has never been explored)? Do SADs
aid accuracy of classification using ordinal scales (both quan-
titative and qualitative)?

Do the same raters need to be used for all stages in disease
assessment studies of accuracy and reliability? Or can a ran-
dom “sample” of raters be used to represent the population? If
so, how many raters should be used in any given study to
encompass likely variability?

There are several other methods used for assessing disease
severity which are sensor-based. These may incorporate

Table 3 Best-operating procedures for maximizing the accuracy of plant disease severity estimates (adapted from Bock et al. 2021)

Factor Procedures

Scale selection Know the pathosystem – are there appropriate, previously published scales? Select the most appropriate scale for measuring
disease severity for that pathosystem and for the purpose of the experiment. Scale choice is:

i) Nominal scales
ii) Field keys
iii) Qualitative ordinal scales
iv) Quantitative ordinal scales
v) Ratio scales (most often the % scale)
The scales have an increasing information content from (i) to (v), and only some quantitative ordinal scales and ratio scales offer

themselves to parametric analysis without the need of transformation of the original data (e.g., index or ranks).

Experience Where possible ensure that raters have at least some prior experience and appreciation of their own ability to estimate severity:
i) Provide raters with some experience rating the disease. Check rater results against known values and check accuracy. This can

be repeated as needed.
ii) Where possible, gain knowledge of rater ability and select the most accurate raters for assessing experiments or conducting

surveys.

Instruction Instruction on the specificities of pathosystem and scale used to rate the disease:
i) Describe characteristics of healthy and diseased foliage, and where the boundary should be drawn.
ii) Describe characteristics, and variability, of the symptoms of the target disease
iii) Describe other conditions, most likely to be encountered, that might be confused with the target symptoms, and how to

differentiate them.
iv) Explain common sources of error in estimating disease severity
v) Particularly the tendency for overestimation at low severity, and use of preferred values at 5 and 10% intervals.
vi) Explain how to use the selected scale.

Training Train raters on how to assess the particular disease. If available, use computer- or internet-based software or diagrams (printed or
in digital format) of specimens with symptoms of known severity to train raters prior to assessment of experiment specimens.

Use of SADs SADs can be developed for any scale type, but are most commonly used for the percent ratio scale. But they have been developed
and used as an aid to visual classifications for qualitative and quantitative ordinal scales. Wherever possible validated SADs
should be used for rating to increase accuracy and reliability, regardless of rater ability.

i) If no SAD exists that match the target disease, consider developing one. If a SAD has been developed, it is important to confirm
it is adequate.

ii) Train raters in use of SADs – how to interpolate, and if being used for a quantitative ordinal scale how to assign class
appropriately for an interval.

Deployment of raters Although not directly related to accuracy, if using multiple raters deploy them in a way that can ensure the rater variability is
accounted for in the experiment design.

Sample size and
analysis

Also not directly related to accuracy of estimates, employ a sufficient sample size, ideally determined by a power analysis, and
choose the most appropriate methods for descriptive and inferential statistics and data visualization.
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artificial intelligence (AI) and have the potential for an even-
tual capability to provide accurate estimates of disease sever-
ity Bock et al. (2021). Nonetheless, in most pathosystems,
visual disease estimation is and will be a standard for many
years to come, underlining the importance of accuracy in vi-
sual estimation of disease severity.
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