Skip to main content
Log in

Damage quantification in Physalis peruviana L. infected by the new putative sobemovirus physalis rugose mosaic virus

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

A putative new virus, physalis rugose mosaic virus (PhyRMV), has been reported more frequently in Physalis peruviana associated with severe symptoms. In this study the damage caused by sap-inoculated PhyRMV in P. peruviana was assessed based on the comparison of host vegetative and reproductive parameters between virus-infected and healthy plants. Infected plants confirmed using molecular assays, showed a reduction in growth, leaf area, specific leaf area (SLA) and relative chlorophyll content. PhyRMV-infected plants yielded 70% less fruit of general lower quality parameters, except for pH, compared with the healty plants. Finally, seeds from PhyRMV-infected plants showed a reduced germination rate and, in accelerated aging assay, vigor of seeds were also significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguirre-Ráquira W, Borda D, Hoyos-carvajal L (2014) Potyvirus affecting Uchuva (Physalis peruviana L.) in Centro Agropecuario Marengo, Colombia. Agricultural Sciences 5:897–905

    Google Scholar 

  • Arthur K, Dogra S, Randles JW (2010) Complete nucleotide sequence of Velvet tobacco mottle virus isolate K1. Archives of Virology 155:1893–1896

    PubMed  CAS  Google Scholar 

  • Baalbaki R, Elias S, Marcos-Filho J, McDonald MB (2009) Seed vigor testing handbook, AOSA, Ithaca, NY, USA. (contribution to the handbook on seed testing, 32). 341p

  • Barbosa JC, Albuquerque LC, Rezende JAM, Inoue-Nagata AK, Bergamin Filho A, Costa H (2016) Occurrence and molecular characterization of Tomato common mosaic virus (ToCmMV) in tomato fields in Espírito Santo state, Brazil. Tropical Plant Pathology 41:62–66

    Google Scholar 

  • Basso MF, Fajardo TVM, Santos HP, Guerra CC, Ayub RA, Nickel O (2010) Fisiologia foliar e qualidade enológica da uva em videiras infectadas por vírus. Tropical Plant Pathology 35:321–329

    Google Scholar 

  • Bianco S, Pitelli RA, Perecin D (1983) Métodos para estimativa da Área foliar de Plantas Daninhas 2: Wissadula subpeltata (Kuntze) Fries. Planta Daninha 6:21–24

    Google Scholar 

  • BRASIL (2009) Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília: Mapa/ACS. 399p

  • Brugidou C, Opalka N, Yeager M, Beachy RN, Fauquet C (2002) Stability of Rice yellow mottle virus and cellular compartmentalization during the infection process in Oryza sativa (L.). Virology 297:98–108

    PubMed  CAS  Google Scholar 

  • Bueso E, Serrano R, Pallás V, Sánchez-Navarro JA (2017) Seed tolerance to deterioration in arabidopsis is affected by virus infection. Plant Physiology and Biochemistry 116:1–8

    PubMed  CAS  Google Scholar 

  • Da Graça JV, Trench TN, Martin MM (1985) Tomato spotted wilt virus in comercial cape gooseberry (Physalis peruviana) in Transkei. Plant Pathology 34:451–453

    Google Scholar 

  • Diniz FO (2008) Estudos da maturação dos frutos e das sementes de Physalis peruviana L. e dos testes de germinação. 110 f. Tese (Doutorado) - Curso de Fitotecnia, Universidade de São Paulo, Piracicaba

  • Eiras M, Resende RO, Missiaggia AA, Ávila AC (2001) RT-PCR and dot clob hybridization methods for a universal detection of tospoviruses. Fitopatologia Brasileira 26:170–175

    CAS  Google Scholar 

  • Eiras M, Costa IFD, Chaves ALR, Colariccio A (2012) First report of a Tospovirus in a commercial crops of cape gooseberry in Brazil. New Disease Reports 25:25

    Google Scholar 

  • Fariña AE, Resende JAM, Lima EFB, Kitajima EW, Diniz FO (2018) First report of Groundnut ring spot virus on Physalis peruviana in Brazil. Plant Disease 102:7

    Google Scholar 

  • Fariña AE, Gorayeb ES, Garcia VMCG, Bonin J, Nagata T, Silva JMF, Bogo A, Rezende JAM, Silva FN, Kitajima EW (2019) Molecular and biological characterization of a putative new species of sobemovirus infecting Physalis peruviana. Archives of Virology 164:2805–2810

    PubMed  Google Scholar 

  • Farooq T, Liu D, Zhou X, Yang Q (2019) Tomato yellow leaf curl China virus impairs photosynthesis in the infected Nicotiana benthamiana with βC1 as an aggravating factor. Plant Pathology Journal 35:521–529

    PubMed  CAS  Google Scholar 

  • Fischer G, Miranda D (2012) Uchuva (Physalis peruviana L.) In: Fischer G (Ed.) Manual para el cultivo de frutales en el trópico. Produmedios, Bogotá, pp 851–873

    Google Scholar 

  • Fischer G, Almanza-Merchán PJ, Miranda D (2014) Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura 36:01–015

    Google Scholar 

  • Fletcher JD, Wallace AR, Rogers BT (2000) Potyviruses in New Zealand buttercup squash (Cucurbits maxima Duch.): yield and quality effects of ZYMV and WMV 2 virus infections. New Zealand Journal of Crop and Horticultural Science 28:17–26

    Google Scholar 

  • Gámez-Jiménez C, Romero-Romero JL, Santos-Cervantes ME, Leyva-López NE, Méndez-Lozano J (2009) Tomatillo (Physalis ixocarpa) as a natural new host for Tomato yellow leaf curl virus in Sinaloa, Mexico. Plant Disease 93:545

    PubMed  Google Scholar 

  • Giordano LB, Fonseca MEN, Silva JBC, Inoue-Nagata AK, Boiteux LS (2005) Efeito da infecção precoce por begomovírus com genoma bipartido em características de frutos de tomate industrial. Horticultura Brasileira 23:815–818

  • Gonçalves MC, Vega J, Oliveira JG, Gomes MMA (2005) Sugarcane yellow leaf virus leads to alterations in photosynthetic efficiency and carbohydrate accumulation in sugarcane leaves. Fitopatologia Brasileira 30:10–16

    Google Scholar 

  • Gutiérrez PA, Alzate JF, Montoya MM (2015) Complete genome sequence of an isolate of Potato virus X (PVX) infecting cape gooseberry (Physalis peruviana) in Colombia. Virus Research 166:125-129

  • Heinze C, Lesemann DE, Ilmberger N, Willingmann P, Adam G (2006) The phylogenetic structure of the cluster of tobamovirus species serologically related to ribgrass mosaic virus (RMV) and the sequence of streptocarpus flower break virus (SFBV). Archives of Virology 151:763–774

    PubMed  CAS  Google Scholar 

  • Jianhua Z, McDonald MB (1996) The saturated salt accelerated aging test for small seeds crops. Seed Science and Techology 25:123–131

    Google Scholar 

  • Jones RAC (2013) Virus diseases of perennial pasture legumes in Australia: incidences, losses, epidemiology, and management. Crop and Pasture Science 64:199–215

    Google Scholar 

  • Kazinczi G, Horvath J, Lukacs D (2000) Germination characteristics of Chenopodium seeds derived from healthy and virus infected plants. Journal of Plant Diseases and Protection 17:63–67

    Google Scholar 

  • Kisten L, Moodley V, Gubba A (2016) First report of Potato virus Y (PVY) on Physalis peruviana in South Africa. Plant Disease 100:1511

    Google Scholar 

  • Lanna NBL, Vieira Júnior JOL, Pereira RC, Silva FLA, Carvalho CM (2013) Germinação de Physalis angulata e P. peruviana em diferentes substratos. Cultivando O Saber, Cascavel 6:75–82

    Google Scholar 

  • Lopes MM, Sader R, Paiva AS, Fernandes AC (2010) Accelerated aging test in okra seeds. Bioscience Journal 26:491–501

    Google Scholar 

  • Maguire JD (1962) Spead of germination-aid in selection and evaluation for seedling emergence and vigour. Crop Science 2:176–177

    Google Scholar 

  • Marcos-Filho J (2015) Fisiologia de sementes de plantas cultivadas, 2nd edn. Abrates, Londrina 660p

    Google Scholar 

  • Monteroa R, Pérez-Buenob ML, Barónb M, Florez-Sarasac I, Tohgec T, Ferniec AR, Elaououadd H, Flexasd J, Botad J (2016) Alterations in primary and secondary metabolism in Vitis vinifera ‘Malvasía de Banyalbufar’ upon infection with Grapevine leafroll-associated virus 3. Physiologia Plantarum 157:442–452

    Google Scholar 

  • Morales FJ, Castaño M, Aaroyave JA, Ospina MD, Calvert LA (1995) A sobemovirus hindering the utilization of Calopogonium mucunoides as a forage legume in the lowland tropics. Plant Disease 79:1220–1224

    CAS  Google Scholar 

  • Muniz J, Kretzschmar AA, Rufato L, Pelizza TR, Rufato AR, Macedo TA (2014) General aspects of physalis cultivation. Ciencia Rural 44:960–970

    Google Scholar 

  • Nascimento MB, Fajardo TVM, Eiras M, Czermainski ABC, Nickel O, Pio-Ribeiro G (2015) Desempenho agronômico de videiras com e sem sintomas de viroses, e comparação molecular de isolados virais. Pesquisa Agropecuária Brasileira 50:541–550

    Google Scholar 

  • Opalka N, Brugidou C, Bonneau C, Nicole M, Beachy RN, Yeager M, Fauquet C (1998) Movement of Rice yellow mottle virus between xylem cells through pit membranes. Proceedings of the National Academy of Sciences of The United Stades of America 95:3323–3328

    CAS  Google Scholar 

  • Otsus M, Uffert G, Sõmera M, Paves H, Olspert A, Islamov B, Truve E (2012) Cocksfoot mottle sobemovirus establishes infection throught the phloem. Virus Research 166:125–129

  • Panobianco M, Marcos Filho J (1998) Comparação entre métodos para avaliação da qualidade fisiológica de sementes de pimentão. Revista Brasileira de Sementes 20:306–310

  • Panobianco M, Marcos Filho J (2001) Envelhecimento acelerado e deterioração controlada em sementes de tomate. Scientia Agricola 58:525–531

  • Perea M, Rodriguez NC, Fischer G, Velasquez M, Micán Y (2010) Physalis peruviana - Uchuva. In: Perea M, Matallana LPR, Tirado AP (eds) Biotecnología aplicada al mejoramiento de los cultivos de frutas tropicales. Universidad Nacional de Colombia, Bogotá, pp 466–490

    Google Scholar 

  • Péréfarres F, Thierry M, Becker N, Lefeuvre P, Reynaud B, Delatte H, Lett JM (2012) Biological invasions of geminiviruses: case study of TYLCV and Bemisia tabaci in Reunion Island. Viruses 4:3665–3688

    PubMed  PubMed Central  Google Scholar 

  • Prakash O, Misra AK, Singh SJ, Srivastava KM (1988) Isolation, purification and electron microscopy of mosaic virus of cape gooseberry. International Journal of Tropical Plant Diseases 6:85–87

    Google Scholar 

  • Rocha KC, Sakate RK, Pavan MA, Kobori RF, Gioria R, Yuki VA (2012) Avaliação de danos causados pelo Tomato severe rugose virus (ToSRV) em cultivares de pimentão. Summa phytopatologica 38:87–89

    Google Scholar 

  • Rojas MR, Gilbertson RL, Russell DR, Maxwell DP (1993) Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease 77:340–347

    CAS  Google Scholar 

  • Salamon P, Palkovics L (2005) Occurrence of Colombian datura virus in Brugmansia hybrids, Physalis peruviana L. and Solanum muricatum Ait. In Hungary. Acta Virologica 49:117–122

    PubMed  CAS  Google Scholar 

  • Sevik MA, Arli-Sokmen M (2012) Estimation of the effect of Tomato spotted wilt virus (TSWV) infection on some yield components of tomato. Phytoparasitica 40:87–93

    Google Scholar 

  • Sõmera M, Sarmiento C, Truve E (2015) Overview on Sobemoviruses and proposal for the creation of the family Sobemoviridae. Viruses 7:3076–3115

    PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zieger E (2013) Plant physiology, 5th edn. Artmed, Porto Alegre

    Google Scholar 

  • Tekrony, DM (1995) Accelerated aging. In: Van deVenter HA (ed.) Seed vigour testing seminar. ISTA, Copenhagen, p 53–72

  • Thomas PE, Hassan S (2002) First report of twenty-two new hosts of Potato leafroll virus. Plant Disease 86:561

    PubMed  CAS  Google Scholar 

  • Thomas-Sharma S, Weels-Hansen L, Page R, Kartanos V, Saalau-Rojas E, Lockhart BEL, MacManus PS (2018) Characterization of Blueberry shock virus, an emerging ilarvirus in cranberry. Plant Disease 102:91–97

    PubMed  CAS  Google Scholar 

  • Torres SB (2004) Teste de envelhecimento acelerado em sementes de erva-doce. Revista Brasileira de Sementes 26:20–24

    Google Scholar 

  • Trenado HP, Fortress IM, Louro D, Navas-Castillo J (2007) Physalis ixocarpa and P. peruviana, new natural hosts of Tomato chlorosis virus. European Journal of Plant Pathology 118:193–196

    Google Scholar 

  • Weintraub M, Ragetli HW (1970) Identification of the constituents of southern bean mosaic virus in crystals of infected cells, and their distribution within the virion. Virology 41:729–739

    PubMed  CAS  Google Scholar 

  • Zhao J, Zhang X, Hong Y, Liu H (2016) Chloroplast in plant-virus interaction. Frontiers in Microbiology 7:1–20

    Google Scholar 

  • Zheng L, Rodoni BC, Gibbs MJ, Gibbs AJ (2009) A novel pair of universal primers for the detection of potyviruses. Plant Pathology 59:211220

    Google Scholar 

Download references

Acknowledgements

This study was funded by Fundação de Amparo a Pesquisa e Inovação do Estado de Santa Catarina (FAPESC- PROC619/2017) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq – 437059/2018-9). The authors thank Dr. Altamir Frederico Guidolin for the use of his laboratory and supply of some reagents. The authors are also grateful to two anonymous referees and the editors for suggestions to improve the readability of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Design of the study: FNS, EGS, AS. Conducting experiments: EGS, AS, MJG, CSM. Statistical analysis: EGS, AS. Data interpretation: FNS, EGS, AS, CMMS, CSM. Paper preparation: FNS, EGS, AS. Contributed reagents and materials: FNS, CMMS, DRB, AB, RTC. Critical paper review: FNS, EGS, AS, MJG, CSM, CMMS, DRB, AB, RTC. Language editing: FNS, ESG, AB. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Fabio Nascimento da Silva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Section Editor: Juliana Freitas-Astua

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorayeb, E.S., Savi, A., Gonçalves, M.J. et al. Damage quantification in Physalis peruviana L. infected by the new putative sobemovirus physalis rugose mosaic virus. Trop. plant pathol. 45, 476–483 (2020). https://doi.org/10.1007/s40858-020-00354-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-020-00354-9

Keywords

Navigation