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Abstract Fusarium is a large genus that includes animal and
plant pathogenic species as well as saprophytes.Moreover, spec-
imens from this genus are used in biocontrol as well as for
industrial applications. We integrated various disciplines on rep-
resentatives across the genus. Chromosome numbers (CN) were
determined using Germ Tube Burst Method (GTBM), and dif-
ferent sequencing platforms were applied to generate high qual-
ity assemblies. In several species, remarkable genome plasticity
is observed, including variable CNs and the presence of super-
numerary chromosomes that differ markedly from the core chro-
mosomes. It appears that several fusion events between core
chromosomes happened during speciation. In F. poae, these su-
pernumerary chromosomes (~8 Mb) exhibit marked differences
from the core chromosomes: in the core genome only 2.1%
consists of transposable elements (TEs) while TEs make up
25% of the supernumerary chromosomes. The TEs in the core
genome show clear signs of repeat-induced point mutation
(RIP), while no RIP was found in the supernumerary genome.
In addition, no paralogous genes are present on the core, but
many are found in the supernumerary genome. Exchange of
genetic material occurs between the core and supernumerary

genomes. Intact TEs from the supernumerary genome inte-
grate into the core chromosomes, where they are subse-
quently subjected to RIP. In addition, large blocks of se-
quence (>200 kb) from the supernumerary genome have
recently been translocated to the core genome. The re-
verse also appears to have occurred: genes from the core
seem to have undergone duplication followed by translo-
cation of one of the resulting paralogs to the supernumer-
ary genome, where some paralogs may have undergone
further duplications. This exchange of genes between the
core and supernumerary genomes bestows significant op-
portunities for adaptation and evolution on the organism.
This is reminiscent to the compartmentalization of genetic
material in F. graminearum, where non-conserved regions
are found at various places on the four core chromosomes.
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Introduction

The genus Fusarium comprises a huge set of species (Geiser
et al. 2013) that possess a wealth of biological properties.
While some species are used for the preparation of industrially
applicable enzymes, others cause serious diseases in many
agronomically important crops. In addition, some Fusarium
strains are also applied as biocontrol agents (Edel-Hermann
et al. 2009). Finally, strains of F. venenatum are used for the
production of alternatives for meat (Wiebe 2004).

The classification of Fusarium was traditionally based on
morphological characteristics, also known as the Morpholo
gical Species Concept (MSC). The Biological Species
Concept (BSC) was introduced to accommodate the finding
that strains with identical phenotype were only capable of
crossing with a subset of morphological identical isolates.
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This has led to the subdivision of several morphological spe-
cies into multiple biological species as evidenced by the
Fusarium fujikuroi Species Complex, FFSC that is composed
of at least 11 mating populations (e.g. Martin et al. 2011). A
major drawback of this species concept is the fact that many
Fusarium species have no known sexual cycle. This was ad-
dressed by the introduction of the Phylogenetic Species
Concept (PSC), whereby the DNA sequence of one or more
loci is used to discern individuals. The power of this PSC was
already demonstrated in 1998 by O’Donnell and co-workers,
who recognized 45 species in the FFSC, based on the loci for
ITS,β-tubulin and mtSSU (O’Donnell et al. 2008). Since then
the number of loci has gradually increased to a multilocus
sequence analyses (MLSA) spanning 13 loci, encompassing
16.3 kb (O’Donnell et al. 2008). This expansion of MLSA
coincided with the emergence of next-generation sequencing
(NGS) technologies. NGS has greatly enhanced speed and
sequence quality at significantly reduced costs, allowing the
extraction of any given locus for both Fusarium systematics
and comparative research. Currently hundreds of fungal ge-
nomes have been sequenced and are available in the public
domain. Typically two technologies are available that either
generate large numbers of small sequence reads with high
accuracy (e.g. Illumina) or long read technologies, like single
molecule real time (SMRT), that lead to long reads often ex-
ceeding 10 kb. However, SMRT has the drawback that it
yields sequence data with a high error rate, 10–20%. Ideally,
the assembly of raw data from either technology would gen-
erate a small number of contigs, but both platforms have their
complementary pros and cons (Table 1).

The advantages of a completely assembled genome are
multifaceted. Factors influencing life style, adaptability to
(changing) environments, and evolution often not only rely
on the coding capacity of the genome, but rather on genomic
features beyond genes. These include non-coding regions as
well as repetitive elements. Proper assessment of the role of
specific genetic elements such as telomeres, centromeres and
repetitive elements will benefit from the availability of a fully
assembled genome. To date, the best assembled genomes of
Fusarium species are F. graminearum (King et al., 2015);
F. fujikuroi (Wiemann et al., 2013) and F. poae (Vanheule
et al., 2016). In addition, genome compartmentalization and

structural rearrangements within and between chromosomes
can only be studied accurately, when a genome is assembled
to chromosome-sized contigs. To this end, the chromosome
number of isolates and/or species is a prerequisite.
Chromosomes in fungi are too small to be studied using cyto-
logical karyotyping. This problem was tackled during the pre-
vious decade, when cytogenetics was used to examine fila-
mentous fungi (Tsuchiya and Taga 2010). When this technol-
ogy was applied to F. graminearum, it revealed that this fun-
gus has only four chromosomes (Gale et al. 2005). Similar
results were obtained with several other members of the
Fusarium sambucinum species complex, as exemplified by
F. culmorum (Fig. 1).

The advantages of a fully assembled genome were recently
reviewed by Thomma and co-workers (Thomma et al. 2016).
These authors presented seven reasons that underpin the im-
portance of generating complete genome assemblies.
Centromeres as well as telomeres play a vital role in mitosis
and meiosis, because they are required for proper segregation
of chromosomes during cell division and protection against
progressive shorting of chromosomes following DNA repli-
cation, respectively. Centromeres are often difficult to assem-
ble due to their very high AT content, while telomeres consist
of tandem repeats of the hexanucleotide TTAGGG that reside
on the ends of chromosomes. Many features that regulate the
interaction between fungi and their environment have been
shown to reside in the vicinity of either centromere of telo-
meres. For example, in the rice blast fungus Magnaporthe
oryzae the gene encoding the AVR-PITA protein is located
near one of the telomeres. This protein is recognized by resis-
tant rice cultivars and the fungus seems to overcome this re-
sistance by loss of the gene (Chuma et al. 2011). In addition, in
F. graminearum, genes involved in the secretome of the fun-
gus (e.g. genes encoding extracellular proteins) are preferen-
tially located in the neighborhood of chromosome ends
(Cuomo et al. 2007).

The crosstalk between microbes and their host is often
established through effector molecules that can be typically char-
acterized as small cysteine–rich secreted proteins with very lim-
ited sequence similarity. Effector genes appear to reside in fast-
evolving genomic regions, like telomeres where their presence/
absence can be accelerated. Similarly, specialized metabolites

Table 1 Advantages and
disadvantages of popular NGS
(next generation sequencing)
platforms

Characteristic NGS platform

Illumina SMRT

Read length Short usually < 500 bp Long, up to several kb

Quality Very accurate (<1 nt per kb) Prone to errors (10–20%)

N50 Several to many contigs/chromosome 1 contig ~ 1 chromosome

Cost $ $$$

Coverage High coverage (>100x) Low to intermediate (5-20x)

Repetitive sequences -- ++

Trop. plant pathol. (2017) 42:184–189 185



have important roles in the interactions between host and fungus
and/or other microorganisms in the environment. These complex
molecules require multiple enzymes involved in sequential
chemical conversions leading to the final product. Likewise,
many genes are required for synthesis of these biologically rele-
vant compounds. To ensure concerted expression these genes are
often clustered into biosynthetic gene clusters, BGCs (van der
Lee and Medema 2016; Hoogendoorn et al. 2016). For instance,
the cluster involved in the mycotoxin fumonisin encompasses 15
clustered genes in a 40-kb region (~Proctor et al. 2003;Waalwijk

et al., 2004). In a fragmented genome with maybe hundreds of
contigs, it is likely that one ormore of these BGCswill bemissed
and proper annotation of the specializedmetabolism of fungi will
clearly benefit from fully assembled genomes.

Comparative genomics of Fusarium and other fungal ge-
nomes have revealed that genomes can be divided into at least
two components, core and supernumerary/accessory ge-
nomes, that differ in multiple characteristics: i) evolutionary
speed; ii) expression level and iii) gene repertoire. Genes re-
sponsible for primary metabolism reside in the core compart-
ment, where evolution occurs at slow speed. This class of
genes is (highly) conserved among species. In contrast, many
of the BGCs in F. graminearum are found in non-conserved
(NC) regions across the four chromosomes (Zhao et al. 2014).
In these compartments, the expression of genes is significantly
lower than in the remainder of the genome. Aligning of the
chromosomes of F. graminearum with those of
F. verticillioides, substantiated the role of these NC-regions.
As shown in Fig. 2, chromosome 1 of F. graminearum shows
synteny with chromosomes 1, 8 and 5 of F. verticillioideswith
the exception of the NC regions. The NC-regions coincide
with the telomeres of the three F. verticillioides chromosomes.
Moreover these NC-regions have a higher density of genes
encoding secretory proteins and BGCs. In contrast, genes pre-
sumed to be involved in primary metabolism, like transcrip-
tion factors (Fig. 2, line a) or genes encoding ribosomal pro-
teins (Fig. 2, line b) are evenly distributed along all four
chromosomes.

Adaptation of a population to changing ecological environ-
mental conditions can require changes in gene function and/or
expression. On the other hand, mutations in genes can be bene-
ficial or detrimental on the organism. Hence diversification is

Fig. 1 Cytology on the chromosomes of F. culmorum isolate IPO39
Figure. The Germ Tube Burst Method was applied on germinating
conidia and the emerging hyphae were lysed by osmotic shock. In
metaphase, chromosomes stained with DAPI appear as brightly colored
molecules. The Nucleolar Organizing region (rDNA) appears as a thread-
like extension of one of the chromosomes (white arrow). This end of the
chromosome is stained less dense as a consequence of this protrusion

Fig. 2 (Top) Synteny between and chromosomes 1, 8 and 5 of
F. verticillioides and chromosome 1 of F. graminearum. Note that the
syntenic regions are intertwined with NC regions that are not conserved
between the two species. In F. verticillioides these regions are located at
the ends of the chromosomes e.g. (sub) telomeric regions. (Bottom)
Positions of transcription factor genes (a); ribosomal protein genes (b);

genes putative encoding secreted proteins (c) and BGCs (d) on
F. graminearum chromosome 1 are given. Note that TFs and ribosomal
genes are mapped along the entire chromosome. Secretome related genes
and BGCs preferentially map at or near NC regions. Source: adapted from
Zhao et al., BMC Genomics 2014
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often preceded by duplication of parts of the genome. However,
high-level expression of mutated genes can cause an energetic
burden on the organism. If the expression of paralogous genes
can be reduced, such burdens will be diminished. Therefore it
was hypothesized that these NC regions function as a cradle
for evolution, contributing to the ability of fungi to adapt to
changing conditions. Modification of histones in nucleosomes
by either methylation or acetylation strongly influences the
expression of genes in BGCs and methylation profiles across
chromosomes provide independent support for the presence of
BGCs at their anticipated positions. Histone H3methylation is
associated with gene silencing, and in F. graminearum meth-
ylated histones were predominantly found in regions contain-
ing BGCs (Connolly et al. 2013).

Intra-and inter-chromosomal rearrangements are powerful
mechanisms by which regions of DNA involved in interaction
with the host can be brought together, e.g. recombinations that
generate novel combinations of genes and BGCs with novel
functionalities. Similar mechanisms allow to enrich for effec-
tor genes. In the smut fungus Sporisorium scitamineum, evo-
lution of effector genes is driven by tandem gene duplication
(Dutheil et al. 2016). These authors also showed that trans-
posable elements (TEs) play an important role in the evolution
of clustered genes.

Repetitive elements in particular TEs are powerful elements
that can separate or bring together different portions of the ge-
nome. However, de novo sequencing using short reads will not
allow to read across the TE (Table 1) thereby resulting in (many)
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Fig. 3 RIP analysis of the transposable element DTF2_Fot2 in the core
and the supernumerary genome. A comprehensive RIPcal analysis was
performed on the core and the supernumerary genome, separately. In the
core genome, DTF2_Fot2 exhibits RIPcal patterns that are typical for RIP

(strong dominance of CpA→ TpA mutations; red trace). In the
supernumerary genome, all mutations occur at similar frequencies.
(Picture adapted from Vanheule et al., 2016)
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Fig. 4 Mummerplot showing the
synteny between chromosome-
sized contigs of F. subglutinans
isolate JL22 and F. temperatum
strain JL513. The synteny is
illustrated by the diagonal that
shows a very high degree of
similarity for each chromosome,
as indicated by the red color (syn.
~ 100%)

Trop. plant pathol. (2017) 42:184–189 187



contig ending in (parts) of TEs. As no full-size TEs will be
obtained, all TEs from the same class will collapse and the esti-
mated genome size will be underestimated. In fact, in F. poaewe
obtained a genome size of 39 Mb using Illumina Hiseq
(Vanheule et al. 2016). Contrarily, when the long read technology
was applied on the same isolate, the length of the genome ex-
panded to 46 Mb. Comparison between assemblies from both
sequencing platforms also showedmajor differences e.g. in num-
bers of contigs (176 for SMRT and 1253 for HiSeq) and N50
(>8 Mb for SMRT vs. 700 Kb for HiSeq). The distribution of
TEs across the genome showed a substantial disequilibrium:
while TEs covered 2.1% of the four chromosomes in F. poae,
in the supernumerary genome they occupied>25% of the extra
8 Mb (Vanheule et al. 2016). Interestingly, TEs from the same
family could be found in both the core genome as well as in the
supernumerary genome. However, the copies that are located in
the core genome appeared to be subject to repeat-induced point
mutations (RIP). This process is unique to fungi and specifically
acts as defense system against repetitive sequences by silencing
repeated copies. RIP is presumed to occur during the sexual cycle
and a hallmark for RIP is the dominance of CpA→TpA muta-
tions (Galagan and Selker 2004). The activity of the RIP process
in F. poae showed a strong bias between TEs in the core genome
and in the accessory genome (Vanheule et al., 2016). All copies
in the core genome are mutated by RIP with an extreme prefer-
ence for CpA→TpAmutations. In contrast, TEs in the supernu-
merary genome are not RIPped (Fig. 3). If (active) TEs residing
in the supernumerary genome transpose to the core genome, they
become subject to inactivation by RIP, implying that sex (still)
may occur in this organism that is generally considered to be
asexual.

Concluding remarks

NGS technologies have generated hundreds of fungal ge-
nomes, the majority of which still are composed of large num-
bers of contigs. Integration of high quality short reads using
HiSeq and long- read SMRT, allows the construction of as-
semblies that cover chromosomes from one telomere to the
other. The assembly of AT rich regions such as centromeres
and repeat clusters, such as the ribosomal RNA repeats re-
mains challenging. Nevertheless, we were recently successful
in assembling the genomes from F. subglutinans and
F. temperatum into 12 contigs each (Zhang et al.,. manuscript
in preparation). These Fusaria may represent sibling species in
the Fusarium fujikuroi species complex, FFSC. All contigs in
both species are telomere to telomere representations of the 12
chromosomes visualized in FFSC by both Pulsed Field Gel
Electrophoresis as well as GTBM. In addition, all contigs
contained long stretches of high AT content and multiple tan-
dem repeats of the telomere repeat TTAGGG. Synteny to the
chromosomal level could be demonstrated using mummer

(Fig. 4). On the second largest contig in both species one of
the telomere repeat is missing. This was due to the presence of
the rDNA repeat, located at the end of a chromosome in most
species (viz. Figure 1) as was also shown by King et al.
(2015). The number of rDNA repeats was 110 in JL22, while
80 copies were observed in F. temperatum JL513.
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