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Abstract
Purpose To improve the performance of deep-learning-based image segmentation, a sufficient amount of training data is 
required. However, it is more difficult to obtain training images and segmentation masks for medical images than for general 
images. In deep-learning-based colon polyp detection and segmentation, research has recently been conducted to improve 
performance by generating polyp images using a generative model, and then adding them to training data.
Methods We propose SemanticPolypGAN for generating colonoscopic polyp images. The proposed model can generate 
images using only the polyp and corresponding mask images without additional preparation of input condition. In addition, 
the semantic generation of the shape and texture of polyps and non-polyp parts is possible. We experimentally compare the 
performance of various polyp-segmentation models by integrating the generated images and masks into the training data.
Results The experimental results show improved overall performance for all models and previous work.
Conclusion This study demonstrates that using polyp images generated by SemanticPolypGAN as additional training data 
can improve polyp segmentation performance. Unlike existing methods, SemanticPolypGAN can independently control 
polyp and non-polyp parts in a generation.

Keywords Colonscopy · Polyp segmentation · Generative adversarial networks · Deep learning

1 Introduction

According to the International Agency for Research on Can-
cer, colorectal cancer is the third most common type of can-
cer worldwide and has the second highest mortality rate [1]; 
the 5 year relative survival rate for colorectal cancer from 
2013 to 2019 was 65% [2]. Colon cancer can be prevented if 
polyps are detected and removed early [3]. One of the ways 
to detect polyps is through colonoscopy. However, the rate of 
missing polyps during colonoscopy varies from 6 to 27% [4].

Recent studies on colon polyp detection [5–7] and seg-
mentation [8–12] have used deep learning. However, medi-
cal data such as colon polyp images, are more difficult to col-
lect than general images. Due to privacy, personal medical 
data cannot be fully utilized [13]. Even with sufficient data, 

skilled experts are needed to label polyp masks for annota-
tion, consuming significant time and costs. Therefore, most 
polyp studies use publicly available data for research pur-
poses [14–17]. Due to limited data, the diversity of polyps is 
insufficient, limiting the performance of deep-learning mod-
els. To overcome these limitations, studies are being con-
ducted on generating various synthetic colon polyp images 
for use as deep-learning training data for polyp detection and 
segmentation to improve performance [18–20].

In [18], the generator of pix2pix [21] model was modi-
fied to generate polyp images using polyp mask images as 
input. The authors augmented training images by generating 
additional images as training data and achieved improved 
polyp detection and segmentation performance. However, 
the model cannot generate images for normal parts without 
polyps, and the characteristics of the generated polyps are 
limited to the training images.

In  [19], a conditional generative adversarial network 
(GAN) [22] was used to generate polyp images. To gener-
ate realistic polyp images, edge filtering was applied to the 
polyp image. Thereafter, the location of the polyp mask was 
indicated on the edge filtering image, and used as a condition 
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image. In the inference phase, edge filtering was used for 
normal colon images, and an arbitrary polyp mask was syn-
thesized thereon and used as input. A conditional image 
preparation step and a normal colonoscopy image without 
polyps are required as input. Additionally, it is difficult to 
generate polyps of various characteristics.

In [20], the goal was to generate synthetic polyp images 
using only the provided polyp dataset, without additional 
preparation such as a separate normal dataset and edge 
filtering. Different labels were manually inserted into the 
polyp part of the generated polyps with the desired char-
acteristics. The generated images were additionally used 
as training images for the polyp object-detection and seg-
mentation model, improving performance. However, due 
to limited training data, the process requires transforming 
polyp images into normal images and then reversing them 
back into polyp images. Images must be labeled manually 
to control polyp characteristics; however, it is impossible 
to control the shape and characteristics of non-polyp parts.

StyleGAN [23] is used to combine the styles of general 
images. The image is considered a combination of several 
styles and is composited by applying style information each 
time through each layer. However, it is impossible to control 
each class independently; all classes are controlled at once.

Unlike [23], SemanticStyleGAN [24] can independently 
control style and semantic elements. It can also control the 
shape and texture of each element. The authors used face 
data with fixed elements as an input mask to control each of 
them. A method was used to create a generator for each ele-
ment and generate them independently rather than all at once 
and then synthesize them. This enabled combining generated 
face images or transforming only desired parts of a specific 
image, such as the eyes, nose, and mouth.

Based on SemanticStyleGAN [24], we propose Seman-
ticPolypGAN, which can control the shape and texture of 
polyps and non-polyp parts while generating polyps. Unlike 
existing polyp-generation methods, it is possible to gener-
ate polyp images and polyp masks without additional input 
preparation steps. The shape and texture can be controlled 
by randomly modifying the latent vector of the generated 
polyp image. Semantic synthesis between generated polyp 
images is also possible. We explore polyp-segmentation 
performance improvement by adding the generated polyp 
images and masks to training data. To evaluate segmentation 
performance, polyp segmentation models UACANet [8], 
PraNet [9], TGANet [10], TransNetR [11], and DilatedSeg-
Net [12] are used for comparison. Additionally, performance 
comparisons with polyps generated in the existing polyp 
generation model [20] are also conducted.

The remainder of this paper is organized as follows. In 
Sect. 2, the proposed generation model, the segmentation 
model used in the experiment, and the experimental data 
are introduced. In Sect. 3, the quality of images generated by 

the generative model is discussed. Experimental results of 
the segmentation model are presented. Finally, we conclude 
this study in Sect. 4.

2  Methods

2.1  SemanticPolypGAN

Figure  1 shows the concept of the image and mask genera-
tion of SemanticPolypGAN. The existing SemanticStyle-
GAN uses fixed elements such as eyes, nose, and mouth in 
face images.

However, the position, size, and shape of the polyp and 
the non-polyp part are not fixed in the polyp image. There-
fore, it is difficult to control the characteristics of polyps 
with the existing SemanticStyleGAN model. To solve this 
problem, we propose SemanticPolypGAN, which optimizes 
the model structure for polyp images. Using SemanticPolyp-
GAN, the polyp mask and non-polyp mask are used as 
inputs. It can adjust the polyp, non-polyp, and background 
parts (black background part of the four corners of the polyp 
image). Figure 2 is an image used to train the proposed 
SemanticPolypGAN model. From the left, are the polyp, 
polyp mask, and non-polyp mask images. The non-polyp 
mask image is created by inverting the polyp mask image. 
The background part is generated automatically during train-
ing, excluding the polyp and non-polyp masks.

In Fig. 1, input images and mask images are entered into 
a multilayer perceptron (MLP) to map randomly sampled 
codes into W space [25]. The W code is used to modulate 
the weight of the local generator. Wbackground is the remain-
ing portion excluding the polyp mask and non-polyp mask. 
Wpolyp is the polyp portion, and WNon−Polyp is the non-polyp 
portion, that is, the colon surface without polyps.

Local generators gbackground , gpolypand , gnon−polyp of the 
background, polyp, and non-polyp parts are generated to 
control the shape and texture of each. Each local generator 
outputs feature maps fbackground , fpolyp , fnon−polyp , and pseudo-
depth maps dbackground , dpolyp , dnon−polyp . Here, the pseudo-
depth map has a similar structure to the z-buffering rather 
than an exact depth map. The z-buffering process stores 
depth information to determine the pixel that must be drawn 
higher when different objects are drawn at the same pixel. 
In this study, the polyp must be placed on the top of the 
non-polyp.

In the existing SemanticStyleGAN, the background 
shape is fixed using face image data, thus there is no need 
to output and train a pseudo-depth map from gbackground . 
Because this study uses polyp data with a variety of 
backgrounds, the background is also trained by output-
ting a pseudo-depth map from gbackground . Using the output 
pseudo-depth maps, masks mbackground , mpolyp and mnon−polyp 
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for each class are generated, and these are combined to 
generate the overall mask m. Thereafter, the entire feature 
map f is generated through the Hadamard product of the 
feature map and masks for each class. RenderNet refines 
the entire mask m into a high-resolution segmentation 
mask and generates a polyp image. Finally, a discrimina-
tor is trained using the generated images and masks.

2.2  Network Architectures

Figure 3 is the architecture of the local generator used in 
SemanticPolypGAN. In SemanticStyleGAN, a coarse structure 
is placed in the local generator and used to control the overall 
part of the image. However, the coarse structure is unnecessary 
in polyp images because the position, size, and shape of the 
normal parts and polyps are not fixed. Therefore, the number 
of training parameters is reduced by removing coarse layers. 
To improve the quality of the generated polyps, the number 
of structure and texture layers is increased from four to six. 
Each layer is a 1 × 1 convolution layer. The shape and texture 
latent codes are contained in wk

s
 and wk

t
 , respectively. Here, 

w means W space, and k represents the polyp and non-polyp 
background, s represents shape, and t represents texture.

We use the Fourier feature map [26] for position encod-
ing, to better train features by emphasizing the high-frequency 
components of the input data. First the shape and texture latent 
codes wk

s
 , wk

t
 , and p are input to the local generator gk . There-

after, the structure layer passes through the toDepth layer, a 
linear fully connected layer, and outputs a 1-channel pseudo-
depth map dk . Finally, the texture layer passes through the 
toFeat layer, a linear fully connected layer, and outputs a fea-
ture map fk with 512 channels. Using Eq. 1, dk and fk can be 
calculated.

(1)Generator ∶ (p,wk
s
,wk

t
) ⟼ (fk, dk)
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Fig. 1  Proposed SemanticStyleGAN-based polyp image and mask 
generation framework. The polyp and mask image pass through the 
multilayer perceptron (MLP) and is mapped into the W space. Each 
W code is used to modulate the weight of the local generator. The 
local generator outputs a feature map and a pseudo-depth map. Each 
output pseudo-depth map is used to generate a mask for each class, 

and then these are combined to generate the overall mask m. The 
feature map and mask for each class are combined to generate the 
overall feature map f, which goes through RenderNet to generate a 
polyp image. Finally, the discriminator is trained using the generated 
images and masks

Fig. 2  Images used to train SemanticPolypGAN. From the left, polyp 
image, polyp mask, and non-polyp mask
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Figure 4 is the RenderNet structure proposed by Seman-
ticPolypGAN. The output of RenderNet is adjusted accord-
ing to the input feature map. It is very similar to the genera-
tor of StyleGAN2 [25] in that it uses a ConvBlock composed 

of two convolution layers. In this study, to better generate the 
features of small polyps, upsampling is started at 8 × 8 by 
reducing the input feature map size from the existing 16 × 
16. The feature map is also concatenated on all blocks during 
upsampling. During upsampling, the entire mask image is 
also refined into a high-quality image.

The proposed local generator and RenderNet structure 
achieved better FID (Frechet inception distance) and IS 
(inception score) than the existing model when generating 
polyp images. (Refer to Sect. 3.2)

2.3  Polyp‑Segmentation Model

To compare model performance based on the generated 
images, we used the latest polyp-segmentation models, 
UACANet [8], PraNet [9], TGANet [10], TransNetR [11], 
and DilatedSegNet [12]. We used polyp images generated 
by SemanticPolypGAN as additional training data for the 
five segmentation models to compare and evaluate the 
performance

2.4  Experimental Datasets

We used two sets of data for training of SemanticPolypGAN. 
One is 560 of the 612 images of the CVC-ClinicDB [14] 
dataset used in the Medical Image Computing and Com-
puter-Assisted Intervention 2015 Colonoscopy Automatic 
Polyp Detection Challenge. The other is 880 of the 1000 
images of the Kvasir-SEG [15] dataset released by Simula 
for research and education purposes. The remaining sam-
ples from each dataset were used for testing. To augment 
the data, shearing, translation, and 80% zoom were first 
applied, followed by 90-degree, 180-degree, and 270-degree 
rotation, up-down, left-right, and left-right symmetry, and 

Fig. 3  Local generator architec-
ture proposed in this paper. The 
blue block is a 1 × 1 convolution 
layer, and the gray block is a 
linear fully connected layer
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finally, transpose augmentation. The same augmentation was 
applied to the mask images.

For training segmentation models, we used 1000 sheets of 
BKAI-IGH NeoPolyp-Small [16] and 880 sheets of Kvasir-
SEG [15], which are publicly available. We generated 350 
polyp images using SemanticStyleGAN and added them to 
the training data. For comparison, 350 polyp images gener-
ated in [20] were also used as additional training data to train 
each polyp-segmentation model. For testing, 52 images from 
CVC-ClinicDB [14], 120 images from Kvasir-SEG [15], and 
300 images from CVC-300 [17] were used.

3  Results and Discussion

3.1  Generated Polyp Images and Masks

Figure 5 shows polyp and mask images generated by Seman-
ticPolypGAN. The yellow part of the mask is the non-polyp, 
and the blue part is a polyp. The color, shape, and texture of 
the generated polyps are diverse and naturally match with 
the non-polyp parts. The generated background is diverse 
due to augmentations applied to the training image. There 
is white text at the top left, bottom left, and center of the 
image because there are many images with white text in the 
Kvasir-SEG data among the training images.

3.2  Generation Quality Evaluation

Table 1 shows the comparison of polyp-image quality gen-
erated after training with SemanticStyleGAN and Seman-
ticPolypGAN. We used FID [27] and IS [28] as performance 
indicators. FID compares the quality and diversity of image 
sets by measuring the statistical distance between generated 
images and real images. IS evaluates model performance by 
predicting generated images by class through the inception 
network and using the entropy of the group. The first model 
was trained by inputting polyp images and masks into the 
SemanticStyleGAN. The second was trained by applying 
only RenderNet modification to SemanticStyleGAN. The 
final structure was trained using SemanticPolypGAN.

Results showed that when only RenderNet was modified, 
the performance was second best with FID and average IS 
of 21.77 and 3.81, respectively. When trained using the pro-
posed SemanticPolypGAN, the performance was the best 
with FID and average IS of 20.64 and 3.91, respectively.

Fig. 5  Polyp images and masks generated by SemanticPolypGAN. 1st, 3rd, and 5th columns are the generated polyp images, and 2nd, 4th, and 
6th columns are the masks of the generated polyps. The blue parts of the masks are polyps, and the yellow parts are non-polyp parts

Table 1  Comparing the generated image quality

Model FID ↓ IS ↑

SemanticStyleGAN 22.46 3.7
RenderNet Revise 21.77 3.81
SemanticPolypGAN 20.64 3.91
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3.3  Shape and Texture Control of Polyp Images 
Through Latent Interpolation

SemanticPolypGAN can change the shape and texture of a 
specific semantic area by changing the latent code. Fig. 6 
is the result of interpolating the background, polyp, and 
non-polyp areas of the image generated by SemanticPolyp-
GAN. The polyp image and mask in 1st and 2nd rows are 
generated images to which interpolation is applied. Unlike 
SemanticStyleGAN, SemanticPolypGAN allows back-
ground interpolation. The background part of a colonos-
copy image may vary depending on the endoscope cam-
era or shooting environment. Thus, it can be transformed 
into an appropriate environment through interpolation or 
semantic synthesis. The black border background of the 
1st row changes while the background texture does not 
change because it is all black.

In the 2nd row, the shape part of the non-polyp shows 
slight changes in the size of surface wrinkles and holes. The 
non-polyp part in 3rd row is changed to various textures for 
the same polyp. In the 4th row, the shape of the polyp varies 
from a large polyp to a very small polyp. In the 5th row, the 
texture can be adjusted for a polyp of the same shape.

3.4  Semantic Synthesis Between Generated Polyp 
Images

Figure 7 below shows the result of the semantic synthesis 
between the generated polyp images. Images in 1st row, 1st 
column, and 2nd column were generated by SemanticPolyp-
GAN. In the 1st column is the target image to which seman-
tic synthesis was applied, and in the 1st row is the image 
used for semantic synthesis. SemanticPolypGAN can control 
the basic background, non-polyp, and polyp respectively. 
The 3rd and 4th columns show the results of compositing 

Fig. 6  Random latent interpolation results. The 1st and 2nd columns 
show the generated polyp images and masks. The 3rd and 5th row 
show transformed images after applying a random latent interpolation 
to the 1st row image, and the 4th and 6th row show transformed mask 
images. The 1st row shows the shape of the background. The 2nd row 

shows the shape of the non-polyp. The 3rd row shows the texture of 
the non-polyp part. The 4th row shows the shape of the polyp. The 
5th row shows the result of randomly transforming the latent of the 
polyp texture
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the background; the 5th and 6th columns show the results 
of compositing the non-polyp part, while the 7th and 8th 
columns show the results of compositing only the polyp 
part. The shape of the polyp in 7th column and 2nd row has 
enlarged, and the color of the polyp has also changed.

SemanticPolypGAN can also control the shape and tex-
ture characteristics of each element. Figure 8 shows the 
results of compositing the shape and texture of non-polyp 
and polyp parts, respectively. The images in 1st row, 1st 
column, and 2nd column of Fig. 8 were generated by Seman-
ticPolypGAN. In 2nd row and 5th column of (a), the texture 
of the polyp changed to show bleeding like the polyp in 1st 
row used for synthesis. Rather than simply using images 
generated by SemanticPolypGAN, polyps with more diverse 
features can be generated by semantic synthesis between 
images.

3.5  Evaluation of Segmentation

Tables 2 and 3 show the results of training the five polyp-
segmentation models using only the original training images 
(Original) and adding 350 images generated in [20] and 350 

images generated by SemanticPolypGAN to the original 
images. Evaluation indicators of intersection-over-union 
(IoU) and Dice were used. Table 2 shows the results of 
comparing the performance of CVC-300, CVC-ClinicDB, 
and Kvasir-SEG as test sets after training using generated 
polyp images combined with BKAI-IGH data as the original 
training set.

Adding images generated using the proposed method to 
the training set improved performance compared to using 
only the original training set for all models. When the 
TransNetR model was tested on CVC-300 data, mean Dice 
showed the greatest performance improvement with a dif-
ference of 0.1003 compared to the original data. When 350 
polyp images generated by the proposed method and the 
existing method [20] were added to training data, the mean 
IoU and mean Dice performance of the proposed method 
improved in 14 out of 15 experiments.

Table 3 shows the performance results of CVC-300, 
CVC-ClinicDB, and Kvasir-SEG test sets trained using gen-
erated images combined with Kvasir-SEG dataset. In 14 of 
15 experiments (excluding the CVC-ClinicDB dataset test in 
the TransNetR model), the performance improved compared 

Fig. 7  Result of semantic synthesis of the shape and texture of the 
background, non-polyp, and polyp at the same time. The images in 
the 1st row, 1st column, and 2nd column were generated by Seman-

ticPolypGAN. The image in the 1st column is the image to which 
semantic synthesis was applied, and the image in the 1st row is the 
image used for semantic synthesis
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with that using only the original training set. When the 
DilatedSegNet model was tested on the CVC-300 data, the 
mean IoU and mean Dice showed the greatest improvement 

with differences of 0.0641 and 0.0609, compared with using 
the original set. When 350 polyp images generated by the 
proposed method were added in 14 experiments, the mean 

Fig. 8  a Result of semantic synthesis of the polyp part, and b result 
of semantic synthesis of the shape and texture of the non-polyp part. 
The images in the 1st row, 1st column, and 2nd column were gener-

ated by SemanticPolypGAN. In the 1st column is the target image to 
which semantic synthesis was applied, and the image in the 1st row is 
the image used for semantic synthesis
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IoU and mean Dice were better than those of the existing 
method [20].

Figure 9 shows two examples: failure to segment a test 
image when trained with the original training set, and a 

successful segmentation after adding 350 images gener-
ated by SemanticPolypGAN. (a) is the original image of 
the Kvasir-SEG test set, and (b) is the corresponding polyp 
ground truth mask of (a). The mask result after training the 

Table 2  Original versus  [20] 
versus proposed, training 
dataset: BKAI-IGH

The bold text denotes the best score among the methods

Original [20] Proposed

Methods Mean IoU Mean dice Mean IoU Mean dice Mean IoU Mean dice

Training dataset: BKAI-IGH–Test dataset: CVC-300
 UACANet 0.6858 0.7683 0.6891 0.7624 0.7078 0.7821
 PraNet 0.6697 0.7562 0.6721 0.7438 0.6878 0.7565
 TGANet 0.706 0.7845 0.7041 0.7872 0.7332 0.815
 TransNetR 0.6324 0.7144 0.6763 0.7658 0.72 0.8147
 DilatedSegNet 0.7063 0.7994 0.7034 0.8033 0.7545 0.8403

Training dataset: BKAI-IGH–Test dataset: CVC-ClinicDB
 UACANet 0.7151 0.7963 0.6912 0.7602 0.7422 0.8116
 PraNet 0.6663 0.752 0.6785 0.743 0.6954 0.7622
 TGANet 0.7165 0.795 0.713 0.7933 0.717 0.7972
 TransNetR 0.6641 0.7396 0.6834 0.7682 0.6937 0.7802
 DilatedSegNet 0.7061 0.7896 0.7328 0.8099 0.7444 0.8242

Training dataset: BKAI-IGH–Test dataset: Kvasir-SEG
 UACANet 0.7545 0.8274 0.7531 0.8322 0.7668 0.8356
 PraNet 0.7071 0.7875 0.7241 0.7876 0.7614 0.8301
 TGANet 0.763 0.8382 0.7282 0.807 0.7258 0.8171
 TransNetR 0.723 0.8113 0.7229 0.8082 0.7258 0.8171
 DilatedSegNet 0.7481 0.8284 0.7442 0.8322 0.7511 0.831

Table 3  Original versus [20] 
versus proposed, training 
dataset: Kvasir-SEG

The bold text denotes the best score among the methods

Original [20] Proposed

Methods Mean IoU Mean Dice Mean IoU Mean Dice Mean IoU Mean Dice

Training dataset: Kvasir-SEG–Test dataset: CVC-300
 UACANet 0.6951 0.7749 0.7002 0.7731 0.7015 0.7909
 PraNet 0.6596 0.7456 0.6941 0.7698 0.6947 0.776
 TGANet 0.6884 0.7797 0.6963 0.7775 0.7006 0.7845
 TransNetR 0.622 0.7076 0.6388 0.7126 0.6686 0.7438
 DilatedSegNet 0.6615 0.7451 0.6988 0.7751 0.7256 0.806

Training dataset: Kvasir-SEG–Test dataset: CVC-ClinicDB
 UACANet 0.7456 0.8226 0.7342 0.7986 0.7539 0.8323
 PraNet 0.69 0.7721 0.7272 0.8017 0.7382 0.8116
 TGANet 0.7305 0.8124 0.7479 0.8242 0.752 0.8323
 TransNetR 0.6908 0.7713 0.693 0.7733 0.718 0.7674
 DilatedSegNet 0.7379 0.8164 0.7649 0.839 0.7722 0.8455

Training dataset: Kvasir-SEG–Test dataset: Kvasir-SEG
 UACANet 0.8315 0.8916 0.8406 0.896 0.8571 0.9163
 PraNet 0.8265 0.8896 0.8428 0.9001 0.8475 0.9054
 TGANet 0.8315 0.8925 0.8343 0.8969 0.8354 0.9019
 TransNetR 0.7961 0.8679 0.8088 0.878 0.8241 0.8853
 DilatedSegNet 0.8357 0.897 0.8306 0.8929 0.8362 0.8939
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PraNet model with the BKAI-IGH original training set and 
testing the image in (a) is shown in (c). The mask result of 
testing the image in (a) is shown in (d) after training the 
PraNet model by combining the BKAI-IGH original train-
ing set and 350 images generated by SemanticPolypGAN. A 
significant difference from the ground truth mask is shown 
in mask image (c); however, the mask image shows similar 
results to the ground truth mask in (d). This shows that the 
images generated by SemanticPolypGAN improve model 
performance.

3.6  Limitations and Future Work

Many polyp images can be generated using the proposed 
model, using semantic synthesis between the generated 
polyp images, a variety of polyp images can be generated. 
Fig. 10 shows performance improvement when generated 
polyp images are additionally added to the training set. For 
the UACANet and TGANet models, which showed good 
results in the previous polyp-segmentation performance 
evaluation in Tables 2 and 3, mIoU improved when the 
generated polyp images added to the original Kvasir-SEG 
data were increased by 200 to 600. The experiments con-
firmed that adding generated images improved the per-
formance of both models. However, segmentation perfor-
mance does not continue to improve with the addition of 
more generated images to training set. The performance of 

TGANet improved significantly when the number of gener-
ated images increased from 200 to 400; however, adding 
600 images slightly improved the performance. The perfor-
mance of UACANet improved the most with the addition 
of 200 images; after adding 400 images, there was no fur-
ther improvement. Rather a slight decrease was observed. 
We believe that performance improvement varies with the 
number of images generated due to differences in the model 
size e.g., the number of training parameters for each model.

Figure 11 shows two poorly segmented images from the 
results of training the UACANet model by adding 350 gener-
ated polyp images to the Kvasir-SEG data and testing them 
on CVC-300 data. The original image of CVC-300 test data 
is shown in (a), the ground truth polyp mask is shown in (b), 
and the prediction mask is shown in (c). In (c), the location 
is found to some extent, however, the division is not accu-
rate. Thus, it is still difficult to segment polyp images with 
small shapes or unclear features. This might be caused by 
not having many such images in the training set and gener-
ated images.

4  Conclusion

It is difficult and expensive to collect sufficient train-
ing data and labels for deep-learning-based colonos-
copy polyp-image segmentation. Therefore, we propose 

Fig. 9  a Test data set from the Kvasir-SEG data set, b ground truth 
mask image of a and c is the PraNet model trained using the BKAI-
IGH original training set and tested (a). d Resulting mask image is 

the result of training BKAI-IGH by adding 350 images generated by 
SemanticPolypGAN and testing (a)
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SemanticPolypGAN to generate colonoscopy polyp 
images. In existing polyp-generation models, input con-
dition preparation steps are required, and it is difficult 

to independently control semantic elements during gen-
eration. SemanticPolypGAN uses only polyp images and 
masks as input images and controls the shape and texture 
of polyps and non-polyp parts when generating images. 
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Fig. 10  Change in performance due to the addition of images gener-
ated using the method proposed in this paper is shown in a and b. a 
mIoU change when training the UACANet model by adding 200, 400, 

and 600 generated images to Kvasir-SEG training set and b change 
in mIoU when the TGANet model is trained by adding 200, 400, and 
600 generated images to Kvasir-SEG training set

Fig. 11  a CVC-300 test data set image, b the correct mask image of (a), c the UACANet model trained by adding 350 generated images to 
Kvasir-SEG training data, and a image
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We compared the segmentation performance of five mod-
els between training on original data and training by add-
ing generated images. Adding generated images improved 
polyp-segmentation performance for all models. The pro-
posed model outperformed existing polyp-generation mod-
els in polyp segmentation.
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