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Abstract
Purpose: Alzheimer’s disease (AD) has the highest worldwide prevalence of all neurodegenerative disorders, no cure, and 
low ratios of diagnosis accuracy at its early stage where treatments have some effect and can give some years of life quality 
to patients. This work aims to develop an automatic method to detect AD in 3 different stages, namely, control (CN), mild-
cognitive impairment (MCI), and AD itself, using structural magnetic resonance imaging (sMRI).
Methods: A set of co-occurrence matrix and texture statistical measures (contrast, correlation, energy, homogeneity, entropy, 
variance, and standard deviation) were extracted from a two-level discrete wavelet transform decomposition of sMRI images. 
The discriminant capacity of the measures was analyzed and the most discriminant ones were selected to be used as features 
for feeding classical machine learning (cML) algorithms and a convolution neural network (CNN).
Results: The cML algorithms achieved the following classification accuracies: 93.3% for AD vs CN, 87.7% for AD vs MCI, 
88.2% for CN vs MCI, and 75.3% for All vs All. The CNN achieved the following classification accuracies: 82.2% for AD 
vs CN, 75.4% for AD vs MCI, 83.8% for CN vs MCI, and 64% for All vs All.
Conclusion: In the evaluated cases, cML provided higher discrimination results than CNN. For the All vs All comparison, 
the proposedmethod surpasses by 4% the discrimination accuracy of the state-of-the-art methods that use structural MRI.

Keywords Alzheimer’s disease · Mild-cognitive impairment · Early detection · Magnetic resonance imaging · 
Co-occurrence matrix · Texture analysis

1 Introduction

Approximately 70% of all dementia cases worldwide are 
caused by Alzheimer’s disease (AD), a progressive neuro-
degenerative illness. During its early stages - mild-cognitive 
impairment (MCI) - the condition is asymptomatic. Even 
though several studies have been conducted, a cure has not 
yet been discovered [1]. In general, people aged 65 and older 
live 4 to 8 years after being diagnosed with AD. Nonethe-
less, some people can live up to 20 years with AD. This 
extended duration before death significantly impacts public 
health as a considerable part of that period is spent in a state 
of dependence and disability [2]. It is therefore imperative 
to find more precise and reliable means of diagnosing AD 
to minimize its impact.

AD has 3 stages: (1) the pre-clinical AD, distinguished 
by the asymptomatic period that occurs between the initial 
brain lesions and the appearance of the first symptoms; (2) 
MCI, the pre-dementia state, in which individuals have cog-
nitive deficits greater than those that naturally emerge with 
age, but do not fit the criteria imposed for the diagnosis of 
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AD; (3) Dementia due to AD (or simply AD in this study), 
characterized by severe symptoms.

Dementia due to AD has 3 different phases. The mild 
phase corresponds to the period where the individual is 
still operational in several areas, but, for safety reasons, 
may need help in certain activities. The moderate phase 
is distinguished by the difficulty in communicating and 
performing routine tasks. In advanced stages of the disease, 
individuals require 24-hour care as damage to the areas of 
the brain responsible for movement emerges [2].

The diagnosis of the disease can be performed in 
numerous ways. Usually, the main risk factors are pondered 
through physical and history examinations from the 
individual and his family. With these risks and through 
neurological and cognitive exams, it is possible to discard 
other causes of dementia and evaluate the stage of AD. 
The most common cognitive test is the Mini-Mental State 
Examination (MMSE). Its scores range between 0 and 30. 
Scores on the higher end indicate a higher cognitive function, 
while lower scores mean more severe cases of dementia [3]. 
Additionally, there are other employed methods to identify 
both neurodegeneration and amyloid deposition, such as 
Magnetic Resonance Imaging (MRI), Positron Emission 
Tomography (PET), Electroencephalogram (EEG), and 
Cerebrospinal Fluid (CSF) Analysis [1].

Imaging techniques are used as non-invasive means 
for AD diagnosis. The imaging modalities are currently 
focusing on the identification of amyloid deposition 
or neurodegeneration, e.g., structural MRI allows the 
computation of atrophy and changes measurements in tissue 
[4]. MRI-based atrophy measurements are considered valid 
markers of disease state and progression since atrophy 
seems to be an inevitable and intrinsic factor of progressive 
neurodegeneration. Besides that, changes in structural 
measures, such as ventricular enlargement, hippocampus, 
entorhinal cortex, whole brain, and temporal lobe 
volumes, can be associated with modifications in cognitive 
performance [5]. In general, atrophy progression assessed 
by MRI is being widely used as an efficiency and safety 
outcome measure in clinical trials. Nonetheless, out of all 
the MRI markers, AD hippocampal atrophy is pondered as 
the best established and validated [6, 7].

Regarding MRI state-of-the-art studies done to diagnose 
AD, Ruiz et al. [8] proposed an automated computer-aided 
diagnosis (CAD) system using MRI to extract features 
from regions of interest (ROI). Several machine learning 
classifiers were used, but VAF-FS, Random Forest (RF), 
and XGBoost classifiers were the ones that suit better the 
problem with an accuracy of 85.86% in the Healthy Controls 
(CN) vs AD comparison, 71.92% in CN vs MCI, and 68.92% 
in MCI vs AD.

Thapa et al. [9] used neuropsychological testing coupled 
with MRI. The machine learning classifier that performed best 

was the Support Vector Machine (SVM) feed with information 
from left and right hippocampal volume and MMSE scores. 
The obtained discrimination accuracies were 99.2% for CN vs 
AD, 78.5% for CN vs MCI, and 91.3% for MCI vs AD.

Hon and Khan [10] used MRI images and extracted 
their entropy to characterize AD activity. Two Convolution 
Neural Network (CNN) architectures were used (VGG and 
Inception) and the reached discrimination accuracy was 
96.5% for the CN vs AD comparison. Amini et al. [11] used 
functional MRI (fMRI) images and extracted the average and 
the standard deviation of cortical thickness, cortical parcel 
volume, white matter, and surface area. These features were 
used to feed both machine learning and CNN algorithms. It 
was found that the proposed CNN obtained a discrimination 
accuracy of 96.7% for the CN vs AD comparison.

Al-Khuzaie et al. [12] used MRI images and fed the 
proposed CNN with the 2D image slices. Thus, the 
discrimination accuracy achieved was 99.3% for the CN 
vs AD comparison. Liu et al. [13] used MRI images to 
extract hippocampal features. The chosen classifier was 
a 3D Densely CNN (DenseNet 3D). The discrimination 
accuracies obtained were 88.9% for CN vs AD and 76.2% 
for CN vs MCI. Qiu et al. [14] used MRI images and fed 
a Fully CNN with AD probability maps. A discrimination 
accuracy of 87.0% was obtained for CN vs AD.

Vaithinathan and Parthiban [15] extract ROI-based texture 
measures from MRI images. For the classification, they used 
several algorithms such as RF, linear SVM, and k-nearest 
neighbors (KNN). The discrimination accuracy achieved 
was 87.39% for CN vs AD, 64.74% for CN vs MCI, 63.41% 
for MCI vs AD, and 66.38% for converter MCI (cMCI) vs 
stable MCI (sMCI). A Multi-slice ensemble learning was 
designed by Kang et al. [16] to obtain spatial features to train 
CNNs models. This approach achieved accuracy values of 
90.36%, 77.19%, and 72.36% when classifying AD vs CN, 
AD vs MCI, and MCI vs CN, respectively. Ebrahimi et.al. 
[17] applied several deep sequence-based CNN models for 
AD vs CN with 91.78% accuracy.

In this sense, the main purpose of the present work is 
to develop an artificial intelligence system that enables to 
detect AD in MCI and Dementia Stages (AD) stages, using 
sMRI texture features. The paper is structured as follows: 
Sect. 2 describes the used MRI database; Sect. 3 focuses 
on the image processing methodology and the classification 
process; Sect. 4 discusses the obtained results, lastly, Sect. 5 
concludes the work.

2  Materials

The data used in this work are the Alzheimer’s Disease 
Neuroimaging Initiative  (ADNI) database  (http:// adni. 
loni. usc. edu). The ADNI was launched in 2003 as a 
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public–private partnership with the aim of testing whether 
serial magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clinical 
and neuropsychological assessment can be combined to 
measure the progression of mild-cognitive impairment and 
early Alzheimer’s disease.

Regarding the MRI scan, time overall was about 45 min 
per subject and session. Each exam undergoes quality 
control so that in case of, for example, subject motion or 
poor anatomic coverage, the scan is considered unusable. 
The database, released in February 2021, consists of 
89 subjects scanned longitudinally at 3T with a 3-year 
follow-up, in which 24 are healthy control subjects, 44 are 
MCI patients, and 21 are AD patients (patients diagnosed 
with dementia due to AD). The demographic data of the 3 
groups are summarized in Table 1.

3  Methods

The proposed methodology is divided into 3 main steps: (1) 
preprocessing, (2) wavelet decomposition and feature extrac-
tion, and (3) feature selection and classification. Figure 1 
summarizes the methodology implementation steps.

3.1  Preprocessing

The dataset was loaded on FreeSurfer 7.1.1 software 
(freely available online at https:// surfer. nmr. mgh. harva rd. 
edu/) to decompose each 3D subject data into 2D slices 

comprising 3 different anatomical planes, namely, coronal, 
sagittal, and axial, and then to execute the skull stripping 
process on the 2D slice MR images. An example of skull 
stripping is illustrated in Fig. 2.

The resulting 2D slice images were loaded to MatlabⓇ 
2019b software. These images were then filtered by the 
median filter with a 3 × 3 kernel to remove noise [18]. 
Subsequently, they were filtered by the imadjust filter to 
adjust the image intensity values to all scales according 
to [19]

where P(m, n) is the input image, Padj(m, n) is the output 
image, m and n are the image pixel indices, and H and L 
are the maximum and the minimum pixel level in the 
original image, respectively, and T = 255 and B = 0 are 
the maximum and the minimum pixel levels in the desired 
image.

3.2  Wavelet Decomposition

The discrete wavelet transform (DWT) was chosen to 
describe the input images because it is possible to maintain 
higher resolution at low-frequency bands [20]. It can be 
obtained by restraining scale (s) and translation (� ) param-
eters to a discrete lattice with s = 2−m and � = n ⋅ p2

−m , 
where m and n are integers. Hence, for a discrete-time 

(1)Padj(m, n) = B +
P(m, n) − L

H − L
∗ (T − B),

Table 1  Database demographic 
data overview

Group # subjects Age average ± SD Age Range Gender MMSE average ± SD

F M

CN 24 78.2 ± 4.64 71–88 14 10 29.50 ± 0.66
MCI 44 73.8 ± 8.92 56 - 90 10 34 24.52 ± 2.91
AD 21 76.2 ± 8.34 59 - 89 14 7 19.81 ± 6.46

Fig. 1  Image processing methodology workflow

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
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signal f(n), the wavelet decomposition on I octaves is given 
by

where ci,k and dI,k correspond to the coefficients of the 
approximation component and coefficients of the detail 
component, respectively [21, 22]. These coefficients are 
given by

The parameters i and k indicate the wavelet scale 
and translation factors, respectively. Besides that, Gi 
characterizes the coefficients of the low-pass and HI the 
coefficients of the high-pass filters. Every wavelet type and 
family is different with regard to these filters [21, 23].

Since images are two-dimensional, the DWT is applied 
to images both vertically and horizontally. The result is 
four images (subbands) with half the width and the height, 
one of which is a decimated copy of the image (LL), and 
the 3 remaining contain information about the details - 
horizontal (HL), vertical (LH) and diagonal (HH). At 
each subsequent step of decomposition, the LL subband 
is replaced by four smaller subbands, so the total number 
of subbands increases by 3 (see Fig. 3).

(2)f (n) =
∑

i=1 to I

∑

k∈Z

ci,kg[n − 2ik] +
∑

k∈ Z

dI,khI[n − 2Ik]

(3)ci,k(n) =
∑

n

f (n)G∗
i
[n − 2ik]

(4)dI,k(n) =
∑

n

f (n)H∗
I
[n − 2Ik]

In this work, for all participants, in each plane, every 
image has been decomposed by the DWT until level 2, 
producing in this way 8 images, as illustrated in Fig. 3.

3.3  Features Extraction

For each of the 89 study participants, 243 images were used 
for feature extraction: the 27 original plane images (9 images 
of each of the 3 planes) and the 8 images resulted from the 
DWT decomposition of each plane image. From each image, 
9 texture features were extracted: contrast, correlation, energy, 
homogeneity, entropy, line and column variances, and line 
and column standard deviations. Therefore, for each possible 
mother wavelet used in the DWT decomposition, 2187 features 
(729 per plane) were computed for each study participant.

The features were computed from the gray level co-occur-
rence matrix (GLCM), which is a statistical method that con-
siders the spatial relationship of pixels and is employed to 
describe the texture of an image [24]. Each element {i, j} of 
the GLCM Pi,j represents the frequency by which the pixel 
with gray level i is spatially related to the pixel with gray 
level j [24]. The formula and description of the features are 
summarized in Table 2, where

and

(5)�i =

N
∑

i=1

N
∑

j=1

iPi,j

Fig. 2  Example of the skull 
stripping process

Fig. 3  Image Wavelet Decom-
position
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are mean values of the GLCM.
For each of the 3 planes (coronal, sagittal, and axial) 

of each study participant, each feature was averaged 
considering the 9 original images and the 72 images 
resulting from their DWT decompositions. This leads to 
9 average features (1 value per feature) for each plane of 
each study participant. These average features were used for 
the selection processes of mother wavelets and features to 
improve classification results. The averaging processes per 
plane were applied to decrease the data dimensionality and 
consequently improve the execution time of these selection 
processes.

3.4  Wavelet Selection Process

The extracted features were used for binary classification 
within the pairs CN vs MCI, AD vs MCI, and CN vs AD, 
and for multi-class classification All vs All. All binary 
classifications were performed using exclusively the 
information of each of the 3 planes (coronal, sagittal, and 
axial) and also using together the information of the 3 
planes.

Since the values of each feature depend on the mother 
wavelet used in the DWT decomposition, a search to find 
the five wavelets that result in features with greater dis-
criminant capacity considering all study group pairs (CN 
vs MCI, AD vs MCI, CN vs AD and All vs All) and 
all study planes (coronal, sagittal, axial, and 3 planes) 
was performed. The evaluated wavelet families were 
Haar, Daubechies (Db), Symlets (sym), Coiflets (Coif), 
Biorthogonal (Bior), Reverse biorthogonal (rbio), Meyer, 
and Fejer-Korovkin (fk). The average features were used 
for this purpose.

(6)�j =

N
∑

i=1

N
∑

j=1

jPi,j

The average values of each feature were separated for 
each combination of study group pair, study plane, wave-
let, feature, and subband (or full-band). Each combination 
that uses only 1 plane leads to 1 value per study participant. 
Each combination that uses together the 3 planes leads to 
3 values per study participant. Within each combination, 
including all study participants, the average values were nor-
malized using z-score [25] and then applied to the Kruskal-
Wallis (KW) test [26]. The KW test was used to determine 
if the null hypothesis that the data of the study groups come 
from the same distribution is accepted. In this test, p-values 
lower than 0.05 indicate that there is a significant difference 
between the distributions and then the null hypothesis is 
rejected [26]. It is worth mentioning that, for the multi-class 
study group All vs All, the p-values were corrected by the 
Bonferroni method [27].

Figure 4 shows the 15 cases with the highest number of 
average features that reject the null hypothesis and the cor-
responding wavelet. It is observed that the five wavelets with 
the highest number of significant features were Biorthogonal 
1.1, Reverse Biorthogonal 1.1, Reverse Biorthogonal 1.3, 
Reverse Biorthogonal 1.5, and Reverse Biorthogonal 3.1. 
These wavelets were chosen for feature selection and clas-
sification procedure steps.

3.5  Features Selection and Classification

As mentioned earlier, classification within each study 
group pair (CN vs MCI, AD vs MCI, CN vs AD, and 
All vs All) was carried out for each study plane (coronal, 
sagittal, axial, and 3 planes). For improving the execution 
time and the classification results, for each combination 
of study group pair and study plane, a search was carried 
out to find the features, computed through the five selected 
wavelets, that result in the highest classification accuracy. 
Once again, the average features were used for selection 
purposes.

Table 2  Features overview 
description

Feature Formula Description

Contrast ∑N

i=1

∑N

j=1
Pi,j(i − j)2 Measures the local variations between pixels

Correlation ∑N

i=1

∑N

j=1
Pi,j

�

(i−�i)(j−�i)

�i�j

�

Estimates the combined probability occurrence of 
the indicated pixel pairs

Energy ∑N

i=1

∑N

j=1
P2

i,j
Specifies the sum of squared elements in the GLCM

Homogeneity
∑N

i=1

∑N

j=1

Pi,j

1 + (i − j)2

Measures the nearness of GLCM elements 
distribution to the GLCM diagonal

Entropy −
∑N

i=1

∑N

j=1
Pi,j lnPi,j

Assesses the randomness of an intensity image

Variance �
2

i
=
∑N

i=1

∑N

j=1
Pi,j(i − �i)

2, Measures the dispersion of the elements of an image

�
2

j
=
∑N

i=1

∑N

j=1
Pi,j(j − �j)

2

Standard Deviation �i, Measures the dispersion of the image elements
�j
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The non-normalized average values of each feature were 
separated for each combination of the study group pair and 
study plane. Each combination initially had 369 features (9 
features × 8 images resulting from DWT decomposition × 5 
wavelets + 9 features × 1 original plane image) for each plane 
of each study participant included in the study group pair. 
Within each combination, including all study participants 
belonging to the corresponding study group pair, the aver-
age values were normalized using z-score [25]. Then for each 
combination, including all study participants belonging to 
the corresponding study group pair, the normalized average 
values of all features were applied as inputs to a cascade of 
one F-score algorithm [28] and one classical machine learn-
ing (cML) algorithm to select, according to the maximum 
classification accuracy, the best set of features. The F-score 
algorithm individually assesses and rates the features based 
on their F-score. The features with an F-score value above the 
average are chosen as the relevant features [28].

The number of features selected by the f-score algo-
rithm ranged from 2 to 9 in unit steps and from 10 to all in 
steps of 5. The cML algorithms were different configura-
tions of decision trees, discriminant analysis, naive-Bayes, 
support vector machines (SVM), k-nearest neighborhood 
(KNN), and ensemble. In addition to the cML algorithms, 
a convolution neural network (CNN) was also applied. For 
each combination of study group pair and study plane, the 
CNN was fed with the sets of selected features that, used 
as inputs to the cML algorithms, led to the best classifi-
cation result. The classifiers and their configurations are 
described in Table 3. In all cases, in order to verify the 
generalization capacity of the classifiers, a leave-one-out 
cross-validation procedure was used, a well-known pro-
cess that allows the use of the whole dataset for testing, 
without leakage between train and test sets [29].

4  Results and Discussion

For each combination of study group pair and study 
plane, the highest classification accuracy achieved using 
the cML algorithms, and the corresponding number 
of selected features (ft), are shown in Table  4. The 
classification accuracy achieved employing the CNN, and 
the corresponding number of selected features (ft) and 
study plane, are shown in Table 5.

Scrutiny of Table 4 reveals that, for the study group pair 
CN vs AD, the highest classification accuracy achieved 
through the cML algorithms was 93.3% using 35 features 
from the sagittal plane and also with 115 features selected 
from the 3 planes, both with bagged trees classifiers. 
The lowest classification accuracy achieved through 
the cML algorithms was 77.8% using the axial plane. 
For this study group pair, as indicated in Table 5, the 
highest classification accuracy achieved through the CNN 
algorithm was 82.2% using the 115 features selected from 
the 3 planes.

For the pair AD vs MCI, it is observed from Table 4 that 
the highest classification accuracy achieved through the 
cML algorithms was 87.7% using 80, 95, and 140 features 
from the coronal plane and the quadratic SVM classifier. 
The lowest classification accuracy achieved through the cML 
algorithms was 78.5% using the sagittal plane. For this study 
group pair, as indicated in Table 5, the highest classification 
accuracy achieved through the CNN algorithm was 75.4% 
using the 95 features selected from the coronal plane.

Regarding the pair CN vs MCI, it is observed from 
Table 4 that the highest classification accuracy achieved 
through the cML algorithms was 88.2% using 30, 40, 60, 
65, 70, 75, 80, 85, and 90 features selected from the coronal 

Fig. 4  Best performances in the Kruskal-Wallis test and the corresponding wavelets
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Table 3  Used classifiers and 
optimal parameters

Classifier Optimal parameters

Decision Trees Fine Tree - FT Maximum number of splits = 150
Medium Tree - MT Maximum number of splits = 150
Coarse Tree - CT Maximum number of splits = 150

Discriminant Analysis Linear Discriminant - LD Covariance structure: Full
Quadratic Discriminant - QD Covariance structure: Full
Logistic Regression - LR Covariance structure: Full

Naive Bayes Gaussian Naive Bayes - GNB –
Kernel Naive Bayes - KNB –

SVM Linear SVM - LSVM Box constraint level = 3
Quadratic SVM - QSVM Box constraint level = 3
Cubic SVM - CSVM Box constraint level = 4
Fine Gaussian SVM - FGSVM Box constraint level = 3
Medium Gaussian SVM - MGSVM Box constraint level = 3
Coarse Gaussian SVM - CGSVM Box constraint level = 1

KNN Fine KNN - FKNN Number of neighbors = 3
Medium KNN - MKNN Number of neighbors = 3
Coarse KNN - CKNN Number of neighbors = 3
Cosine KNN CosKNN Number of neighbors = 3
Cubic KNN - CubKNN Number of neighbors = 3
Weighted KNN - WKNN Number of neighbors = 3

Ensemble Boosted Trees - BossT Maximum number of splits = 150
Bagged Trees - BagT Maximum number of splits = 150
Subspace Discriminant - SubD Covariance structure: Full
Subspace KNN - SubKNN Number of neighbors = 3
RUSBoosted Trees - RUSBT Maximum number of splits = 150

CNN ImageInputLayer = 1
Convolution2dLayer = 1
ReluLayer = 1
FullyConnectedLayer = 3
SoftmaxLayer = 1
ClassificationLayer = 1
Training algorithm = adam
Max Epochs = 1000

Table 4  Classical machine learning classification per plane

CN vs AD AD vs MCI CN vs MCI All vs All

3 planes 93.3% 115 ft 84.6% 80 ft 85.3% 120 ft 69.7% 25 ft
 Coronal 88.9% 100 ft 87.7% 80, 95,140 ft 88.2% 30,40,60,65,70,75,80,85,90 ft 75.3% 80,95,105,115 ft
Sagittal 93.3% 35 ft 78.5% 6,170 ft 82.4% 40 ft 65.2% 8,9,10,65,165,175 ft
Axial 77.8% 45 ft 84.6% 85 ft 82.4% 10 ft 69.7% 35,80ft
Best result 93.3% 35,115 ft 87.7% 80,95,140 ft 88.2% 30,40,60,65,70,75,80,85,90 ft 75.3% 80,95,105,115 ft

Table 5  Summary of the DL classification results

CN vs AD AD vs MCI CN vs MCI All vs All

Best result 82.2% 115ft (3planes) 75.4% 95ft (Coronal) 83.8% 85,90 ft (Coronal) 64.0% 80,85,95 ft (Coronal)
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plane and the Fine KNN. The lowest classification accu-
racy achieved through the cML algorithms was 78.5% using 
the sagittal plane. For this study group pair, as indicated in 
Table 5, the highest classification accuracy achieved through 
the CNN algorithm was 75.4% using the 95 features selected 
from the coronal plane.

Concerning the study group pair All vs All, as indicated 
in Table 4, the highest classification accuracy achieved 
through the cML algorithms was 75.3% using 80, 95, 105 
and 115 features selected from the coronal plane and the 
subspace KNN classifier. The lowest classification accuracy 
achieved through the cML algorithms was 65.2% using the 
sagittal plane. It is observed from Table 5 that, for this study 
group pair, the highest classification accuracy achieved 
through the CNN algorithm was 64% using the 80, 85, and 
95 features selected from the coronal plane. The lowest clas-
sification results were obtained for this study group pair, 
which indicates that the multi-class classification is the one 
in which the extracted features and the ML algorithms have 
more difficulty in discriminating between the groups.

Analyzing the results, it is observed that the CNN algo-
rithm did not obtain classification accuracies higher than the 
cML algorithms in any of the four study group pairs. In fact, 
except for the pair CN vs MCI, the best result achieved using 
the CNN algorithm is worse than the worst result achieved 
using the cML algorithms. The overall poor performance of 
the CNN algorithm may be due to a non-optimal selection 
of the features to be applied on its inputs since the features 
were selected by applying the f-score algorithm combined 
with the cML algorithms and not with the CNN.

The only result above 90% was obtained in the pair CN vs 
MCI. This high classification accuracy is particularly impor-
tant because, due to the lack of a cure for Alzheimer’s dis-
ease, early detection plays a key role in medical intervention 
to reduce brain damage, preserve daily functioning for longer, 
and give the patient time to plan the future. Despite not hav-
ing obtained the highest accuracy, the pair CN vs AD was 
the only one for which classification results above 80% were 
achieved in all study planes. This overall high performance 
was expected because CN and AD are the groups that have 
the greatest anatomical differences in the brain [30].

Among the study planes, the coronal plane was the one 
in which the best overall classification accuracies were 
obtained. This result is sustained by previous studies [31] 
and [32] and can be justified by the fact that the coronal 
plane enables a clearer view of 3 of the most important tis-
sues for AD, namely, the cerebral cortex, ventricle, and hip-
pocampus. Consequently, it is possible to indicate that the 
coronal plane allows the best visualization of the differences 
in the various anatomical regions of the 3 groups studied.

It is worth noting that the results presented and discussed 
above were obtained by using all study participants on wave-
let and feature selection. Although easily found in literature, 

this is not the most rigorous way to select features because it 
may introduce a risk factor of overfitting. The selection was 
performed in this way due to the small size of the database, 
but this risk was reduced by the cross-validation employed 
on the evaluation performance.

A comparison between the classification results obtained 
in the present work and those found in the literature also 
using the ADNI image database is depicted in Table 6. 
It is observed that not all state-of-art methods performed 
the three binary classifications made in the present work, 
focusing on the pair CN vs AD. And, more importantly, only 
three of the state-of-art methods carried out the multi-class 
classification All vs All.

For the pair CN vs MCI, crucial for early detection, 
the sMRI-based method proposed in the present work 
outperformed the methods developed in Ruiz et al. [8], 
Lebedev et al. [33], and Zhang et al. [34], Thappa et al. [9], 
and Liu et al. [35], by 21, 19, 16, 14, and 14%, respectively. 
However, the 88% accuracy achieved in the present work is 
1% lower than that obtained in Lee et al. [36].

In the AD vs MCI case, the 88% achieved in the present 
work is 19, 18, 16, 12% higher than that obtained in Ruiz 
et al. [8], Lebedev et al. [33], Lee et al. [36], and Zhang et al. 
[34], respectively, but 3% lower than that obtained in Thappa 
et al. [9], where all are sMRI-based methods.

For the pair CN vs AD, compared with only sMRI-
based methods, the 93% achieved in the present work is 
14, 10, 7 and 7% higher than that obtained in Lebedev et 
al. [33], Qiu et al. [14], Zhang et al. [34] and Ruiz et al. 
[8], respectively, but 6% lower than that obtained in Thappa 
et al. [9]. Regarding the multi-class classification All vs 
All, the proposed method stands out for achieving the 
highest accuracy, outperforming the methods developed in 
Lebedev et al. [33], Zhang et al. [34] and Lee et al. [36] by 
34, 23 and 4%, respectively.

Compared with diagnosing methods through images 
techniques other than sMRI, the proposed method 
outperformed the methods developed in Liu et  al. [35] 
and Cheng et al. [37] by 2 and 1%, respectively, but it is 
surpassed by 4% by the fMRI-based method’s developed 
in Amini et  al. [11]. Although the above performance 
comparisons are evidence of the proposed method’s ability 
to discriminate the different stages of AD, they should be 
carefully analyzed since different works may use different 
amounts of subjects, or the same amount but different 
subjects, even if the database is the same.

In addition to the ADNI database, the sMRI-based 
method developed in Qiu et al. [14] was also originally 
evaluated using other image databases and these results are 
summarized in Table 7. It is observed that, for the pair CN 
vs AD, the classification accuracy achieved by applying the 
proposed method to the ADNI database also outscores those 
obtained by applying the method developed in [14] to the 
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Table 6  Comparison with previous works with ADNI database

Study Database Exam Type Features extracted Best Classifier Feature Selection Accuracy

 [8] ADNI sMRI Voxels of ROIs VAF-FS, Random Forest, 
XGBoost

ROIs CN vs AD - 86%
CN vs MCI - 72%
MCI vs AD - 69%

 [9] ADNI sMRI MMSE, hippocampus left 
and right volume

SVM Filter-based CN vs AD - 99%
CN vs MCI - 79%
MCI vs AD - 91%

[14] ADNI sMRI Disease probability maps CNN Not applied CN vs AD - 83%
[11] ADNI fMRI Average, standard deviation 

of cortical thickness, 
volume of cortical 
parceling, white matter, and 
surface area

CNN PCA CN vs AD - 97%

[16] ADNI sMRI Spacial features CNNs ensemble model ROIs CN vs AD - 90%
CN vs MCI 72%
MCI vs AD 77%

[37] ADNI PET Voxel-wise intensity CNN Not applied CN vs AD - 92%
[17] ADNI sMRI MRI Slices CNN Not applied CN vs AD - 92%
[35] ADNI FDG-PET Latent and generic features CNN - BGRU Not applied CN vs AD - 91%

CN vs MCI - 79%
[34] ADNI sMRI ROI Volume of gray matter 

tissue
SVM t-test CN vs AD - 86%

CN vs MCI - 72%
MCI vs AD - 76%
All vs All - 52%

[33] ADNI sMRI Cortical thickness, Sulcal 
depth, Jacobian, tissue 
volumes

Random Forest ensembles Recursive feature 
elimination - Gini-
criterion

CN vs AD - 79%
CN vs MCI - 69%
MCI vs AD - 70%
All vs All - 41%

[36] ADNI sMRI Complex nonlinear 
relationships among voxels

CNNs ensemble model Not applied CN vs AD - 93%
CN vs MCI - 89%
MCI vs AD - 82%
All vs All - 71%

Present work ADNI sMRI Statistical and textural 
features

BagT F-score CN vs AD - 93%
FGSVM CN vs MCI - 88%
QSVM MCI vs AD - 88%
SubKNN All vs All - 75%

Table 7  Comparison with previous imaging works with different databases

Study Database Exam Type Features extracted Best Classifier Feature Selection Accuracy

 [14] AIBL sMRI Disease probability maps CNN Not applied CN vs AD - 87%
 [14] FHS sMRI Disease probability maps CNN Not applied CN vs AD - 77%
 [14] NACC sMRI Disease probability maps CNN Not applied CN vs AD - 82%
Present work ADNI sMRI   Statistical and textural features BagT F-score CN vs AD - 93%

FGSVM CN vs MCI - 88%
QSVM MCI vs AD - 88%
SubKNN All vs All - 75%
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AIBL, FHS, and NACC databases. Besides the different fea-
tures computed from the images, a factor that may be con-
tributing to the better general performance of the proposed 
method is the feature selection, a procedure not performed 
in [14]. Although enriching, these comparisons need to be 
carefully analyzed because different image databases were 
employed in the studies.

A comparison between the classification results obtained 
in the present work and those found in the literature using 
signal and biomarkers techniques is summarized in Table 8.

It is observed that the proposed sMRI-based method did 
not present the best performance in any of the analyzed 
study group pairs. For the pair CN vs MCI, it outperformed 
the method developed in [38] by 11% but it is surpassed by 
the method introduced in [39] by 10%.

In the MCI vs AD case, the proposed method outscored 
the methods developed in [40, 41], and [38] by 10, 9, and 5%, 
respectively, but is outperformed by the method elaborated 
in [39] by 6%. For CN vs AD, the proposed method 
outperformed both the methods developed in [40] and [41] 
by 10%, but is outscored by the method produced in [38] by 
2%. In the multi-class All vs All case, the proposed method 
did not outperform the EEG-based methods developed in 
[38] and [39], being surpassed by 21% by the latter.

5  Conclusion

Alzheimer’s disease is one of the neurodegenerative diseases 
with the highest prevalence, affecting millions of people 
worldwide. This work aimed to detect AD on the stages CN, 
MCI, and AD itself using sMRI. A set of co-occurrence 
matrix and texture statistical measures (contrast, 
correlation, energy, homogeneity, entropy, variance, and 
standard deviation) were extracted from a two-level DWT 
decomposition of sMRI images. The discriminant capacity 
of the measures was analyzed and the most discriminant 
ones were selected to be used as features for feeding classical 
machine learning algorithms and a CNN. The classical 
algorithms achieved the following classification accuracies: 
93.3% for AD vs CN, 87.7% for AD vs MCI, 88.2% for CN 
vs MCI, and 75.3% for All vs All. The CNN achieved the 
following classification accuracies: 82.2% for AD vs CN, 
75.4% for AD vs MCI, 83.8% for CN vs MCI, and 64% 
for All vs All. For the All vs All comparison, the proposed 
method outperformed by 4% the highest classification 
accuracy of the state-of-art sMRI-based methods.

The accuracies achieved for AD vs CN, AD vs MCI, 
and CN vs MCI indicate that the evaluated measures have 
a great ability to distinguish within these binary groups. 
However, despite surpassing the state-of-the-art, additional 
research should be conducted to improve the accuracy of the 
challenging multi-class classification All vs All. Despite the 
promising results, the database size was a limitation for the 

Table 8  Comparison with non-imaging works

Study Database Exam Type Features extracted Best Classifier Feature Selection Accuracy

[39] University Hospital 
Center of São João

EEG Cepstral and Lacstral 
Distances

ANN KW test CN vs ADM - 96%
CN vs MCI - 98%
MCI vs ADM-ADA 

- 94%
All vs All - 96%

[38] University Hospital 
Center of São João

EEG Relative Power, 
Spectral Ratios, 
Maxima, Minima 
and Zero Crossing

ANN KW test CN vs AD - 95%
CN vs MCI - 77%
MCI vs AD - 83%
All vs All - 90%

[41] IRCCS EEG Wavelet Coefficients Decision Tree Not applied CN vs AD - 83%
CN vs MCI - 92%
MCI VS AD - 79%

[42] Centre for Biomedical 
Technology

MEG Measures of 
synchronization

Randomized 2D CNN Not applied CN vs MCI - 91%

[40] University Institute of 
Psychiatry

Biomarkers A�1−42/P-tau concen-
trations

ML Not applied CN vs AD - 83%

MCI vs AD - 78%
Present work ADNI sMRI Statistical and textural 

features
BagT F-score CN vs AD - 93%
FGSVM CN vs MCI - 88%
QSVM MCI vs AD - 88%
SubKNN All vs All - 75%
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present study because all study participants needed to be 
used for wavelet and feature selection tasks. In future, the 
work should be updated with a larger sMRI database that can 
be divided into training and testing subsets.
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