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Abstract
Purpose To evaluate the classification performance of structured report features, radiomics, and machine learning (ML) 
models to differentiate between Coronavirus Disease 2019 (COVID-19) and other types of pneumonia using chest computed 
tomography (CT) scans.
Methods Sixty-four COVID-19 subjects and 64 subjects with non-COVID-19 pneumonia were selected. The data was split 
into two independent cohorts: one for the structured report, radiomic feature selection and model building (n = 73), and 
another for model validation (n = 55). Physicians performed readings with and without machine learning support. The model's 
sensitivity and specificity were calculated, and inter-rater reliability was assessed using Cohen’s Kappa agreement coefficient.
Results Physicians performed with mean sensitivity and specificity of 83.4 and 64.3%, respectively. When assisted with 
machine learning, the mean sensitivity and specificity increased to 87.1 and 91.1%, respectively. In addition, machine learning 
improved the inter-rater reliability from moderate to substantial.
Conclusion Integrating structured reports and radiomics promises assisted classification of COVID-19 in CT chest scans.
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1 Introduction

Computed tomography is a significant tool in the diagnosis 
and staging of pneumonia, providing important information 
for the management of the recent COVID-19 pandemic [1]. 
However, aspects relating to pulmonary lesions seen in CT 
are typical but not pathognomonic [2], suggesting that this 
method has its limitations [3].

Artificial intelligence (AI) is commonplace in medical 
imaging due to its ability to automate image segmentation, 
improve lesion detection, better perform quality assurance, 
and increase inter- and intra-rater reliability [4–7]. Moreo-
ver, structured reports are claimed to have enhanced radiol-
ogy reporting by enabling standardization, productivity, and 
improved information transmission [8, 9], leveraging their 
potential to support decision-making technologies using AI 
[8, 10, 11].

Recent studies have shown promising trends for radiom-
ics and AI in classifying pneumonia in CT studies [12, 13]. 
Even though AI has been widely used with different data 
types for COVID-19 diagnoses, such as radiomics and clini-
cal data, it has been little used in respect of imaging reports 
[14]. Huanhuan Liu et al. developed a clinical-radiomics 
model that included distribution features and clinical data, 
demonstrating the added value of lesion distribution report-
ing in their models [13]. In this scenario, the integration of 
minable data with artificial intelligence can provide tangible 
benefits for radiology practices and patient care.

In this work, we explored radiological features from 
multi-center, standardized web-based structured reports and 
radiomics. We also developed AI models and evaluated their 
classification performance to differentiate COVID-19 from 

other types of pneumonia, while evaluating their impact on 
intra-rater reliability.

2  Materials and Methods

2.1  Subjects

Cases were defined as subjects with COVID-19 confirmed 
using RT-PCR and referred for thorax CT between April, 
2020 and April, 2021 and sequentially selected from three 
Brazilian academic hospitals (Table  1). Controls were 
defined as subjects sequentially selected with pneumonia 
before the COVID-19 pandemic, having been referred for 
thorax CT between January, 2018 and October, 2019.

Exclusion criteria were (a) CT images with poor quality; 
(b) small or imperceptible lesions; (c) unavailability of RT-
PCT for the confirmed COVID-19 group; (d) images that 
were not compliant with the institutional protocol for lung 
imaging (e.g., matrix size, kernel); and (e) images that were 
no longer available on the Picture Archiving Communication 
System (PACS) during the retrieval process.

The study was approved by the ethics committee at each 
institution: Hospital Universitario Prof. Edgard Santos 
(UFBA) (4.494.511), Hospital Universitario Alcides Car-
neiro (UFCG) (4.569.389), and Hospital Universitario de 
Juiz de Fora (UFJF) (4.926.688).

2.2  Structured Report

The structured report was composed of ten questions 
concerning the radiological findings: five concerning lesion 

Table 1  Subject and center 
characteristics

M male, IQR interquartile range. Experience period of radiologist’s experience using CT. UFCG Universi-
dade Federal de Campina Grande, UFBA Universidade Federal da Bahia, UFJF Universidade Federal de 
Juiz de Fora

Characteristic UFCG UFBA UFJF

Scanner Brilliance 6 (Philips) Aquilion (Toshiba) Emotion 6 (Siemens)
COVID/ non-COVID 25/ 27 25/ 20 14/ 17
Lung involvement
Mild (< 25%) 18 26 11
Moderate (25–50%) 20 7 11
Severe (> 50%) 14 12 9
Male gender 25 18 12
Age (median – IQR) 54.5 (43.0–70.8) 55.5 (41.3–64.8) 57.0 (51.5–66.5)
Slice thickness 2.0 mm 2.0 mm 1.25 mm
Energy (kV) 120 120 130
Current (mA) 159–310 99–389 61–240
Kernel L FC86 B30s
Experience (years) 11 10 19
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analysis and five concerning lesion distribution, eliciting the 
following binary (yes/no) responses:

Analysis:

A1: Predominant ground-glass opacity with a rounded 
morphology.
A2: Ground-glass opacities with superimposed interlobu-
lar septal thickening and intralobular septal thickening 
(crazy-paving pattern).
A3: Ground-glass opacity and pulmonary consolidation.
A4: Pulmonary consolidation with air bronchograms.
A5: Reversed halo sign or cryptogenic organizing pneu-
monia (COP).

Distribution:

D1: Bilateral and multifocal.
D2: Peripheral distribution.
D3: Prevalent in lower lobes and dorsal region.
D4: Peribronchovascular opacities and peripheral distri-
bution.
D5: Diffuse opacities.

Experienced radiologists (one from each hospital) retrieved 
the corresponding CT images from the hospital PACS and 
selected the corresponding structured report findings. Only 
image series with axial slices of the lung were considered. 
This data was then included in the Nuclearis software (Sal-
vador, Brazil), a web-based radiology information system 
capable of personalizing standard structured reports. No 
other information, such as side notes, remarks, additional 
details, was analyzed.

2.2.1  Structured Report Model

An Extreme Gradient Boosting (XgBoost) algorithm was 
built into the training cohort (n = 73) and validated in the 
independent cohort (n = 55) using a structured report score 
of 0 or 1, with 0 representing non-COVID-19 and 1 repre-
senting COVID-19.

2.3  Radiomics

2.3.1  Automatic Segmentation

The process involved 37 COVID-19 individuals and a further 
36 individuals with pneumonia not associated with COVID-
19 (hereafter denominated feature selection cohort). CT 
images of these patients had been manually segmented using 
LIFEx, version 6.30 (www. lifex. org), to train a 2D convo-
lutional neural network [15] with a fivefold cross-validation 
scheme. A total of 12,780 CT slices were used, and data 

were augmented using 1 mm erosion in the LIFEx ROIs, 
as well as flip and rotation in the original images and ROIs, 
which resulted in a total of 51,120 images. Each training 
dataset used 60 subjects to segment the additional subjects 
automatically. The 2D output probability maps were filtered 
with a 3D Gaussian kernel before thresholding to obtain 
the final 3D lesion segmentation. Only the independently 
segmented lesions were included in the radiomic feature 
selection analysis. This process used the established image 
segmentation software, LIFEx, to delineate the ground 
truth of lung lesions with the aim of developing proprietary 
automatic segmentation software for the radiomic feature 
extraction.

2.3.2  Feature Extraction

Radiomic features were extracted using PyRadiomics [16]. 
The matrix grid was resampled to voxels of 1×1×2  mm3, and 
the discretization within each ROI was scaled to 128 gray-
scale levels. Radiomic feature classes and corresponding fea-
tures are presented in the supplementary material. A total of 
93 features were calculated, including 18 first order and 75 
textural features: 16 Gy level run length matrix (GLRLM), 
16 Gy level size zone matrix (GLSZM), five neighborhood 
gray-tone difference matrix (NGTDM), 14 Gy level depend-
ence matrix (GLDM), and 24 Gy level co-occurrence matrix 
(GLCM).

2.3.3  Feature Selection

The feature selection process is illustrated in Fig. 1. Lung 
lesions from the feature selection cohort were automatically 
segmented, and two additional segmentation datasets 
(artificial observers) were generated using erosion functions 
of 1 and 3 mm. Additional blur and sharp kernels were 
applied to the original image to simulate different scanner/
image reconstructions. Ninety-three radiomic features 
were computed for each of the three observers from the 
erosion and image quality groups. The intraclass correlation 
coefficient (ICC) was used to estimate reproducibility. 
Features which ICC > 0.90 were selected.

Fig. 1  Feature selection framework

http://www.lifex.org
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2.3.4  Radiomic Model

We used the same cohort of feature selection for model 
building (n = 73) and an independent cohort with 55 sub-
jects (27 COVID-19 and 28 non-COVID-19) for model 
validation. A random forest model was built at the lesion 
level (segmented lesions = 1060), and annotated according 
to subject status.  The algorithm classified lesions using a 
radiomic score that ranged from 0 to 1, with 0 representing 
non-COVID-19 and 1 representing COVID-19 lesion. The 
model (rf mean) was validated at the subject level by averag-
ing the scores of all lesions for the specific subject.

2.4  Physician’s Performance

Two experienced physicians, one radiologist, and one 
pneumologist scored the CT images in the validation group 
(n = 55) to classify the pneumonia as COVID-19 or non-
COVID-19. Both physicians were blinded in respect of RT-
PCR and clinical information. The radiologist was the same 
person that performed the structured report (Hospital B), and 
the pneumologist only participated in this validation step. 
They initially analyzed the CT images independently, with 
no support from the machine learning models. After 30 days 
they repeated the analysis with the support of both radiomic 
and structured report models using a binary classification 
for each model.

2.5  Statistical Analysis

The odds ratios of radiological findings were assessed as 
an indication of feature importance, using the entire data-
set (n = 128). The mean of Dice Coefficient (F1 Score) was 
computed using Python 3.9.2 software to assess the perfor-
mance of our automatic COVID-19 segmentation method. 
Machine learning analysis was performed using Orange 
software, version 3.29.3 [17]. The sensitivity and specific-
ity of the models were calculated according to category 
classification outputs from Orange, and the 95% confidence 
intervals were estimated using OpenEpi software [18]. 
The receiver operating characteristics (ROC) curves were 
assessed to estimate the area under the ROC curve (AUC) 
and the 95% confidence intervals (CI) using the continu-
ous scores from Orange and SPSS 18.0 for Windows. The 
mean ROC curve for physicians’ performance was simulated 
by iteratively misspecifying the true values with a random 
gaussian function to enable improved readability and inter-
pretation. The procedure was stopped when the simulated 
ROC curve yielded values corresponding to the real sen-
sitivity and specificity [19]. The inter-rater reliability was 
assessed with and without the support of machine learning 
models using Cohen’s Kappa coefficient (k), with the fol-
lowing classification: weak (k ≤ 0.20), fair (0.20 < k ≤ 0.40), 

moderate (0.40 < k ≤ 0.60), substantial (0.60 < k ≤ 0.80) or 
strong (k > 0.80) [20].

3  Results

3.1  Structured Reports

The XgBoost performed with 81.6% (66.6–90.8%) sensi-
tivity and 82.9% (67.3–91.9%) specificity in the training 
cohort (AUC = 0.91) and 77.3% (56.6–89.9%) sensitivity 
and 69.7% (52.7–82.7%) specificity in the validation cohort 
(AUC = 0.82) (Table 3).

The odds ratio (95% CI) revealed feature importance, as 
presented in Table 2. According to this analysis, features A1, 
A2, A4, D1, and D2 were the strongest predictors (p < 0.05), 
being present with greater frequency in the COVID-19 
group, except for A4, which appeared more frequently in 
the non-COVID-19 group.

3.2  Radiomics

The mean F1 score of the auto-segmentation algorithm was 
0.72. Figure 2 shows the axial view of an infected COVID-
19 individual (Fig. 2a), the auto-segmentation (Fig. 2b), ROI 
erosion functions at 1 mm (Fig. 2c) and 3 mm (Fig. 2d), as 
well as image enhancements of blurred (Fig. 2e) and sharp 
(Fig. 2f) kernels.

The intersection between erosion and image quality 
groups resulted in three features showing excellent repro-
ducibility: GLDM Gray Level Non-Uniformity, First Order 
Energy, and First Order Total Energy.

The rf mean model with these selected features pro-
duced AUC = 1.0 in the training cohort and AUC = 0.84 
(0.73–0.95) in the validation cohort, both at the subject 
level. Sensitivity and specificity in the validation cohort 
were 70.4% (51.5–84.2%) and 89.3 (72.3–96.3%), respec-
tively (Table 3).

3.3  Physicians

In respect of the physicians’ assessment, the pneumologist 
performed with sensitivity and specificity of 81.5% 

Table 2  Feature importance for structured reports

Analysis Distribution

A1: 2.7 (1.3–5.6) D1: 2.7 (1.4–5.4)
A2: 2.6 (1.3–5.3) D2: 5.0 (2.2–11.2)
A3: 1.4 (0.7–2.8) D3: 0.6 (0.3–1.3)
A4: 0.3 (0.1–0.8) D4: 1.8 (0.9–3.7)
A5: 1.0 (0.1–15.9) D5: 1.5 (0.5–4.0)
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(63.3–91.8%) and 67.9% (49.3–82.1%), respectively; while 
the radiologist performed with sensitivity and specificity 
of 85.2% (67.5–94.1%) and 60.7% (42.4–76.43%), 
respectively. When physicians were assisted with artificial 
intelligence models, their performance for sensitivity 
and specificity were, respectively, 85.2% (67.5–94.1%) 
and 85.7 (68.5–94.3) for the pneumologist, and 88.9% 
(71.9–96.2%) and 96.4% (82.3–99.4%) for the radiologist. 
The Cohen’s Kappa coefficient for both physicians was 
k = 0.66 (0.46–0.86) without the support of machine 
learning, which rose to 0.78 (0.61–0.94) with the use of 
machine learning. Therefore, the readings that involved 
assistance by artificial intelligence improved the lower 
limit, which increased from moderate to substantial. 
Figure 3 depicts the overall readers’ performance based 
on the AUC, while Fig. 4 depicts the readers’ reliability.

Even though we only found a significant difference in 
specificities for the radiologist reader with and without AI 
(p < 0.05), our results suggest that standardized and semi-
automatic measures based on questionnaires and radiomics 
may assist physicians in respect of classification.

Fig. 2  Auto-segmentation and 
observer augmentation

Table 3  Model performance on 
the validation dataset

Model Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI)

Structured report 77.3 (56.7–89.9) 69.7 (52.7–82.6) 0.82 (0.69–0.93)
Radiomic 70.4 (51.5–84.2) 89.3 (72.3–96.3) 0.84 (0.73–0.95)
Pneumologist 81.5 (63.3–91.8) 67.9 (49.3–82.1) 0.84 (0.72–0.95)
Radiologist 85.2 (67.5–94.1) 60.7 (42.4–76.43) 0.78 (0.66–0.90)
Pneumologist with AI 85.2 (67.5–94.1) 85.7 (68.5–94.3) 0.92 (0.84–0.99)
Radiologist with AI 88.9 (71.9–96.2) 96.4 (82.3–99.4) 0.97 (0.92–1.00)

Fig. 3  Physicians and artificial intelligence performance

Fig. 4  Reader’s reliability. Physician’s agreement WITHOUT 
artificial intelligence (A) and WITH artificial intelligence (B)
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4  Discussion

This study shows that structured reports, radiomics, and 
machine learning algorithms provide a reliable classifica-
tion of CT scans when identifying COVID-19 individuals 
and better assist physicians in their decisions. Our study 
characterized CT pneumonia examinations using radiom-
ics and a typically structured report questionnaire for lung 
CT pneumonia and AI models. Furthermore, we conducted 
a careful methodological and statistical design to avoid 
pitfalls in the modeling workflow and analysis, thus pro-
moting the results' reliability and repeatability [21, 22].

Syeda et al. [14] published a systematic review on the 
role of machine learning in tackling coronavirus disease. 
However, of the forty studies that have evaluated the diag-
nosis of COVID-19, none used imaging features extracted 
from standardized structured reports. Although several 
authors reported the application of AI for diagnoses of 
COVID-19 using CT, their works were based on image 
processing techniques and/or clinical data.

We were not able to demonstrate that the model’s per-
formance was statistically higher than that achieved by 
the physicians, but the observed trends provide cause for 
optimism. More importantly, the physicians improved their 
reporting when assisted by these models. Interestingly, 
the results from our radiomic model are similar to Guiot 
J et al. [12], who achieved a sensitivity of 69.5% and a 
specificity of 91.6%. Liu H et al. [13] developed both clin-
ical-radiological and clinical-radiomic models, reporting 
sensitivity and specificity of 63 and 84%, respectively, for 
their clinical-radiological model, which included the fea-
tures of age, gender, neutrophil ratio, lymphocyte count, 
location, distribution, reticulation, and lung involvement. 
The overall performance of AUC = 0.83 (0.75–0.90) is 
also equivalent to our structured report model, while their 
clinical-radiomic model achieved AUC = 0.93 (0.85–1.00) 
with a sensitivity and specificity of 85 and 90%. Although 
clinical data may provide additional predictive informa-
tion, such data are not available in many clinical settings, 
while our models require only simple scoring and auto-
mated image quantification.

Our work also confirmed the higher prevalence of typi-
cal features previously reported in COVID-19 cases (A1, 
A2, D1, D2) [1, 23], demonstrating the added contribution 
of these patterns and their dependence on artificial intel-
ligence models. The performance of these models moti-
vates a more extensive clinical evaluation based on a larger 
cohort designed to evaluate gains in accuracy and inter/
intra-rater reliability by radiologists with different levels 
of experience using our algorithm.

Our study has certain limitations. Firstly, the limited 
sample size imposes a relatively large confidence interval 

for our results. Sensitivity and specificity ratios are not 
affected by the sample size, but the confidence interval in 
larger samples is smaller. Our results are presented with 
95% confidence interval and 98% statistical power [18]. 
Secondly, our radiomic model could be generalized only 
using the feature selection and extraction parameters used 
in this work. In addition, our algorithm shows two scores 
(radiomic and structured reports) therefore limiting the 
capacity of the decisions taken by physicians when both 
scores are ambiguous (n = 18/55). Finally, our models are 
disease specific. The AI models were trained/validated 
using subjects affected by pneumonia, meaning that our 
results are not necessarily valid for cancer or other inflam-
matory lesions. Our method only informs the likelihood of 
the lesions’ etiology being due to COVID-19.

The management of COVID-19 patients is multifaceted. 
The CT aspects of COVID-19 lesions are usually presented 
with ground-glass opacity, rounded or polygonal, and its 
distribution is mostly peripheral and bilateral, without pul-
monary consolidation (Table 2). Since inflammatory lesions 
in the lungs are not pathognomonic, the etiology of some 
pneumonia cases is difficult to differentiate using simply 
CT without complementary technologies. Thus, decision-
making technologies to handle coronavirus disease in real-
time are valuable tools to both avoid its transmission and 
also rationalize resources. The proposed approach intends 
to improve standardization, automate and identify infected 
patients as well as discard cases of pneumonia that are 
unlikely to involve COVID-19. Our efforts are aligned with 
the global demand to make minable data and artificial intel-
ligence feasible and translational to clinical practice, given 
that radiomics, reporting standardization, and statistical 
tools are increasingly deployed [24].

5  Conclusion

Radiomics, structured reports, and machine learning algo-
rithms enable good classification of CT scans to identify 
COVID-19 individuals. In addition, this approach assisted 
physicians in standardizing better the classification and 
reporting of COVID-19 in computed tomography.
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