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Abstract
Purpose  Three-dimensional (3D) ultrasound localization microscopy (ULM) using a 2-D matrix probe and microbubbles 
(MBs) has recently been proposed to visualize microvasculature in three spatial dimensions beyond the ultrasound diffraction 
limit. However, 3D ULM has several limitations, including: (1) high system complexity, (2) complex MB flow dynamics in 
3D, and (3) extremely long acquisition time that had to be addressed.
Method  To reduce the system complexity while maintaining high image quality, we used a sub-aperture process to reduce 
received channel counts. To address the second issue, a 3D bipartite graph-based method with Kalman filtering-based track-
ing was used in this study for MB tracking. An MB separation approach was incorporated to separate high concentration 
MB data into multiple, sparser MB datasets, allowing better MB localization and tracking for a limited acquisition time.
Results  The proposed method was first validated in a flow channel phantom, showing improved spatial resolutions compared 
with the contrasted enhanced power Doppler image. Then the proposed method was evaluated with an in vivo chicken embryo 
brain dataset. Results showed that the reconstructed 3D super-resolution image achieved a spatial resolution of around 52 μm 
(smaller than the wavelength of around 200 μm).
Conclusion  A lower system complexity of 3D ULM has been proposed. In addition, our proposed 3D ULM provided the 
capability of 3D motion compensation and MB tracking. Microvessels that cannot be resolved clearly using localization 
only, can be well identified with the proposed method.

Keywords  Ultrasound localization microscopy · Kalman filtering · Motion registration · Microbubble tracking

1  Introduction

Two-dimensional (2D) ultrasound localization microscopy 
(ULM) [1–6] has been proposed to achieve spatial resolu-
tion at the scale of micrometers while preserving the imag-
ing penetration of conventional ultrasound. The concept 
of the 2D ULM is analog to the optical super-resolution 
microscopy techniques such as photo-activation localization 
microscopy [7], where a super-resolution image is recon-
structed by localizing the centroids of spatially isolated 
microbubbles (MBs) and accumulating the MB centroids 
over thousands of ultrasound frames. In ULM, individual 
MB can be tracked over multiple ultrasound frames to pro-
vide the measurement of blood flow speed which is Dop-
pler angle independent. However, it is still challenging to 
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accurately track fast-moving MBs for the low frame rate 
imaging, thus, a Markov-Chain-Monte-Carlo-Data-Asso-
ciation method [4] has been proposed to refine the track-
ing accuracy of MB signals and remove noisy signals. This 
method was successfully applied to image in-human breast 
tumor microvasculature, providing reliable multiparametric 
quantification of tumors [8, 9]. We have also proposed a 
bipartite graph-based pairing approach [10] based on solving 
the partial assignment problem to robustly track the move-
ment of MBs. This method is preferable for high frame rate 
imaging or low MB concentration and the imaging perfor-
mance can be further improved with a Kalman filter-based 
tracking algorithm [11]. The feasibility of these methods has 
been previously demonstrated in in-human liver and kidney 
applications [12].

Despite the advantages of 2D ULM, low MB concentra-
tion was often used to ensure MBs were spatially isolated. 
This will lead to a long data acquisition time (up to several 
to ten minutes) to accumulate enough MBs to fully popu-
late the microvessel lumen, posing challenges for clinical 
applications. To mitigate this issue, we have previously 
proposed an MB separation method [13] which can sepa-
rate the higher MB concentration data into several subsets 
with sparser MB concentrations. Besides, other approaches 
have been proposed to achieve super-resolution ultrasound 
microvessel imaging with shorter acquisition times such as 
deconvolution [14, 15], inpainting [16] and sparsity-based 
ultrasound super-resolution hemodynamic imaging (SUSHI) 
[17]. Though these approaches allowed the reduction of the 
acquisition time (e.g. injection of high MB concentration 
or in-paint the ULM image); they suffer from the uncer-
tainty of the number of iterations, inaccurate estimated point 
spread function (PSF) and exhaustive parameter optimiza-
tion to achieve an optimal image quality. Additionally, 2D 
deep learning based ULM (deep-ULM) approaches [18–24] 
have been actively developed recently to improve this issue. 
Deep-ULMs used neural networks to extract features of the 
MB signal during the training process and then make predic-
tions to identify MB signals, resulting in fast recognition of 
MB signals and microvascular reconstruction even at high 
MB concentrations.

To prompt ULM from 2 to 3D, recent studies [25–27] 
have been proposed using a mechanical micro-step motor 
with a 1D transducer to generate 2-D super-resolved images 
and then combine all the 2D images to achieve a 3-D super-
resolved image. However, one of the critical issues using a 
1D transducer is the out-of-plane MB movement (i.e., MB 
moves in and out of the 2D imaging plane), which will lead 
to bias in MB location and velocity estimation. Recently, 
with the use of a 2D matrix probe, volumetric ultrasound 
data can be collected to allow MB tracking in 3D, and thus, 
the out-of-plane motion issue in 2D imaging can potentially 
be compensated. However, 3D ULM remains challenging 

due to the high system complexity (e.g. four 256-channel 
systems may be used for a 1024-channel probe) and the 
demand for sophisticated MB localization and tracking to 
visualize the complex 3D flow dyanmics.

To achieve high-quality 3D ultrasound imaging with 
fewer channel counts to reduce the system complexity, 
various approaches have been investigated, such as the syn-
thetic aperture, sparse array [28–30], row-column-addressed 
matrix [31–33], and microbeamforming [34–36]. Recent 
studies showed that 3D ULMs can also be performed using 
a fully sampled array [37–40], a sparse array [41], and a row-
column-addressed matrix [42]. In this study, we adopted the 
synthetic aperture to reduce the system complexity, using 
a 256-channel system and a 1024-channel matrix probe to 
acquire ultrasound 3D ULM data.

There are numerous studies for the motion registration 
(motion correction and estimation), localization, and track-
ing of microbubbles for 2D ULMs; however, only a few 
studies have been presented for the 3D ULMs using a matrix 
probe. In this study, we demonstrated the required modifica-
tions based on the methods we proposed in 2D ULMs and 
extend them to suit 3D ULMs, especially for the 3D motion 
registration and Kalman-filter-based microbubble tracking. 
Our first step was to extend the subpixel-based image reg-
istration method [43] to suit the 3D motion estimation. In 
the same way as 2D motions (lateral and axial motions) that 
can be estimated independently using the 2D cross-power 
spectrum, 3D motions can also be estimated using the 3D 
cross-power spectrum. In this study, we demonstrated the 
required mathematical model and showed how to compute 
the 3D cross power spectrum. Additionally, we used our 
proposed MB separation method [13] to separate original 
MB data into multiple datasets, each with sparser MBs, 
according to the speed and direction of MB movements to 
reduce the acquisition time. For the localization process, a 
3D point spread function of the MB signal was first esti-
mated using MB signals acquired from a water tank [14]. 
The centroids of spatially isolated MBs were then localized 
using the estimated PSF. Individual localized MBs were then 
paired using a 3D bipartite graph-based pairing approach 
extended from our previous method [10]. To achieve better 
MB tracking, 3D Kalman-based tracking was adopted in this 
study by extending the state-space and measurement mod-
els mentioned in [11] from 2 to 3D, and the corresponding 
algorithm for the 3D Kalman-based tracking was presented.

The remainder of this paper is organized as follows: Sec-
tion 2 provides the methods and materials of the proposed 
method for 3D ULM. Section 3 presents the results of the 
proposed method on a flow channel phantom and a chicken 
embryo brain. Discussion is provided and conclusions are 
drawn in Sections 4 and 5.
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2 � Methods and Materials

2.1 � Data Acquisition and Pre‑processing

In this study, an 8 MHz 2D matrix probe (Vermon S.A., 
Tours, France) was used to acquire ultrasound RF data. 
This probe consists of 1024 channels, and the pitch size 
of each channel was around 300 µm. In the elevational 
direction, channel row numbers 9, 18, and 27 were miss-
ing for the purpose of wiring. With the 2D matrix probe 
connected to a Universal Transducer Adapter (UTA) 1024 
MUX, four elements can be connected, which permits 
transmission of four channels with the same delay simulta-
neously. A Verasonics 256-channel system (Kirkland, WA, 
USA) was also connected to the UTA 1024 MUX. Moreo-
ver, the UTA 1024 MUX supports switching sub-apertures 
(each sub-aperture consists of 256 elements) during data 
reception, so the 1024-channel volumetric ultrasound RF 
data can be collected sequentially during four transmis-
sions and receptions as shown in Fig. 1a and b. In addition, 
nine-angle coherent compounding plane-wave imaging 
along the lateral direction (lateral and elevation angles 
of (− 4°, 0°) to (4°, 0°) with (1°, 0°) interval) was per-
formed for data acquisition with a transmitted frequency 
of 7.8 MHz. To acquire one compounded RF volume, 36 
transmitted-received cycles (4 firings at each of 9 angles) 
were required, leading to a post-compounded volume rate 
of around 350 Hz.

The real-time B-mode imaging and data acquisition 
sequences were used to identify the two centered slices of 
the required location and to capture the required 3D ultra-
sound RF data. The software-based beamforming process 
was then performed using the pixel-based beamforming 
approach, which is based on the multi-core CPU architec-
ture [44]. After beamforming, IQ data reconstructed from 

different tilted angles were summed together to form a 
single post-compounded IQ data.

2.2 � Flow Channel Imaging

A 380 µm inner diameter customized flow channel phantom 
(Ismatec SC0415, Cole-Parmer Instrument Co., IL, USA) 
was used in this study. One side of the flow channel was 
connected to a syringe pump (Model NE-1010, New Era 
Pump Systems Inc., Farmingdale, NY, USA). Lumason MB 
suspension (Bracco Diagnostics Inc., Monroe Township, NJ, 
USA) with mean diameter range of 1.5–2.5 µm was diluted 
with saline to approximately 1/1000 times the original con-
centration (approximately 1.5 to 5.6 × 108 MBs/mL). Ultra-
sound RF data were acquired using a Verasonics Vantage 
ultrasound system (Verasonics Inc.,Kirkland, WA, USA) 
equipped with a 1024-channel 2D matrix probe (Vermon 
S.A., Tours, France), as described above. The transmit volt-
age was set as 15 V (one-side voltage). For the flow channel 
study, 2000 volumes of RF channel data were collected and 
transferred to the host computer for post-processing.

2.3 � Ultrasound Imaging of Chicken Embryo Brain

A 12th-day of embryonic development chicken embryo 
was used in this study. The chicken embryo brain was 
scanned through the intact skull bone with a field-of-
view (FOV) of 12.8 mm (lateral) by 12.8 mm (axial) by 
12.8 mm (elevational). To inject MB, an 18 G × 1.5-inch 
beveled needle tip was attached to 8 cm of Tygon R-3603 
laboratory tubing. A glass capillary needle was attached 
to the open end of the tubing. With the aid of a dissecting 
microscope, the glass capillary needle tip was manually 
cannulated into a high-order vein on the chicken embryo 
surface for contrast injection. A bolus of 70 μL Lumason 
MB (mean diameter range of 1.5–2.5 µm) at the original 
concentration (1.5 to 5.6 × 108 MBs/mL) was injected into 

Fig. 1   a Transmit ultrasound plane-wave using 1024 channels where 
black arrows represent the ultrasound signals were transmitted simul-
taneously for all sub-apertures (named Aperture 1–4), and b receive 
ultrasound signals (represents as pink, green, blue and orange arrow) 

for one sub-aperture at a time in which the sub-aperture consists of 
256 channels. The blue dot represents an object in a 3D volume. 
(Color figure online)
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the chicken embryo. Noted that MB signals’ s intensity 
varies over time, the timing to data acquisition is a crucial 
factor for the post-processing. Therefore, after injection, 
the rSVD-based filtering technique [45] was performed 
for a quick view of filtered MB signals for every 10 s 
until observing the moving MBs. Finally, 22 s of ultrafast 
plane wave data acquisition was collected and saved for 
offline post-processing. The transmit voltage was set as 
15 V (one-side voltage, with a mechanic index of around 
0.2). No IACUC approval was necessary to perform the 
chicken embryo experiments presented in this manuscript 
since avian embryos are not considered to be live verte-
brate animals according to the NIH public health service 
policy.

2.4 � Post‑processing for 3D ULM

2.4.1 � Motion Estimation and Correction

Long acquisitions are typically required to observe small 
vessels in ULM. As super-resolved images are recon-
structed from the superposition of many localizations 
collected over time, motions between volumes reduce the 
resolution of the output images. Therefore, a 3D motion 
registration method was used to estimate and correct 
the motions in this study. For the motion estimation, we 
extended the sub-pixel-based motion estimation method 
[43] based on the Fourier shift property. The motion in 
the spatial domain is transformed in the Fourier domain as 
linear phase differences. This can be described as follows:

Let f1 and f2 be two functions where f2(x,y,z) is the spa-
tial shift of f1(x,y,z)

The 3D discrete Fourier transform of (1) can be 
expressed as.

The normalized cross power spectrum is described as

After computing the inverse Fourier transform of the 
cross power spectrum, the 3D movement can be estimated 
using the correlation-based method as described in [43] for 
lateral, elevational, and axial directions, separately.

(1)f2(x, y, z) = f
1

(
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2.4.2 � Tissue Clutter Filtering and Microbubble Separation

The post-compounded and motion-corrected IQ volumetric 
data were then passed through an SVD-based clutter filter 
for tissue clutter rejection. A 3D spatiotemporal singular 
value decomposition-based clutter filter [46] was applied to 
the post-compounded IQ data to extract moving MB signals 
from background tissue signals and stationary MB signals. 
The cutoffs of tissue clutter subspace were automatically 
selected using the lower-order singular value thresholding 
method described in [45, 47]. Then, the filtered signals were 
passed through the noise equalization to mitigate the effect 
of spatial-dependent noise profile [48]. Subsequently, an MB 
separation method was applied to separate original MB data 
into multiple datasets, each with sparser MB concentration, 
according to the speed and direction of MB movements [13]. 
MB signals within the different speeds and motion directions 
have different Doppler frequenciesand can thus be extracted 
in different subsets. In this study, two subsets of MB signals 
separated from the high-dense were used.

2.4.3 � 3D Localization and Pairing

The MB signals in each subset were normalized by their 
amplitude and then interpolated to have a voxel size of 
around 24.7 μm × 24.7 μm × 24.7 μm using a 3D linear inter-
polation (interp3.m function in MATLAB). The envelope of 
interpolated MB signals was then thresholded by an intensity 
value to suppress noisy background. A system Gaussian-
fitting 3D point spread function [14] was derived and used to 
perform a 3D normalized cross-correlation with each frame 
of MB signals in each subset. The 3D cross-correlation coef-
ficient maps were then thresholded with a pre-defined value 
and then the regional peaks of 3D normalized cross-corre-
lation maps were identified as MB locations.

A bipartition graph-based pairing approach with a partial 
assignment algorithm was used for MB tracking [10]. This 
algorithm enforces that the distance between two MB signals 
in two consecutive frames should be mutually minimal. To 
extend the pairing algorithm from 2 to 3D, the 3D distances 
of MB signals between two consecutive volumes instead of 
2D distances were computed.Two MBs are paired together 
only if the distance of the mutual minimal between two con-
secutive frames. A detected MB was a reliable MB signal 
when it was paired in 10 consecutive volumes. Otherwise, 
the MB signal in the current volume will be discarded (See 
Fig. 2).

2.4.4 � Smoother MB Trajectories with 3D Kalman 
Filtering‑Based Tracking

The state model of a moving MB in 3D can be expressed 
as follows:
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where x(k), y(k) and z(k) denote the MB locations (lateral, 
elevational and axial respectively) at time k; dx(k), dy(k) 
and dz(k) represent their corresponding displacement differ-
ence, respectively; w and dw are the random perturbations 
that influence MB locations and velocities, respectively. 
Thus, the MB state at time k can be predicted with its previ-
ous state at time k − 1. Since the imaging system and MB 
localization algorithm introduce noise to the observation, the 
observed location of the MB at time k [mx(k), my(k), mz(k)] is 
the real MB location [x(k), y(k), z(k)] plus noise n(k), where 
the observation model is

The state transition matrix F performs the prediction 
model, and H is the observation matrix, which maps the 
state vector space into the measurement vector space. The 
fourth to sixth columns of H are given the numerical value 
of zero since only MB location information were used. The 
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procedure of the Kalman filtering is shown as summarized 
as follows:

To further improve the velocity tracking performance, 
the acceleration constraint is used to discard MBs with 
unexpected motion acceleration due to false pairing or 
localization, and the adaptive interpolation were used to 
in-paint the gap between the MB trajectory as shown in 
Fig. 3. The acceleration of an MB can be computed as

where VR, vt+1, vt, are the volume rate, the velocity at the 
time point t + 1 and t. The acceleration threshold athr was 
set as

where v is the mean velocity for the given MB trajectory. 
The MB trajectory was discarded if large acceleration 
beyond athr was found. After the acceleration constraint, we 
performed an adaptive interpolation based on the local MB 
movement speed. An MB with high speed produces larger 
gaps between adjacent locations. Therefore, a larger interpo-
lation factor is needed to in-paint the gap in between the MB 
positions (Fig. 3). On the other hand, a slow-moving MB 
has smaller gaps in between the MB trajectory, requiring a 
smaller interpolation factor.

2.4.5 � Performance Evaluation

To compare the spatial resolutions, the vessel cross-sec-
tional profiles were interpolated with a pixel resolution 
10-times higher than the original cross-section vessel pro-
files in ULM. The full-width-half-maximums (FWHMs) 

(9)a =
|

|

vt+1 − vt
|

|

1∕VR
,

(10)athr = 0.5 × v,

Fig. 2   Ultrasound volumetric data were collected from a chicken 
embryo brain using a 2D matrix probe after microbubble injection
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were used to evaluate the interpolated cross-section profile 
of a single vessel for the super-resolved images.

To compare the contrast enhancement, the contrast ratio 
(CR) was used to evaluate the improvement with the pro-
posed method in 3D as.

where the Bmean is the mean intensity including blood ves-
sels’ signals and surrounding signals in the defined ROI. 
Nmean is the mean background intensity in the defined ROI.

3 � Results

3.1 � Flow Channel Phantom

3-D power Doppler and ULM images of the flow channel 
phantom are shown in Fig. 4a and b, respectively. As com-
pared with the power Doppler image (Fig. 4a), the thickness 
of the 3D flow channel phantom with the proposed ULM 

(11)CR = 10 × log10
Bmean

Nmean

,

was reduced due to the improvement of the spatial resolu-
tion. To quantitatively investigate the improvement of spa-
tial resolution, the elevational-axial slices and corresponding 
cross-sectional profiles are explored as shown in Fig. 5a–d. 
The white dashed lines and green dashed lines shown in 
Fig. 5a and b indicated the locations where the elevational 
and axial cross-sectional profiles are extracted to evaluate 
the FWHMs. As shown in Fig. 5c and d, the cross-sectional 
profiles indicate an axial and elevational FWHMs of 660 µm 
and 510 µm for the power Doppler image, while the coun-
terparts of the proposed ULM (3D localization, pairing, 
Kalman-based tracking and adaptive interpolation) were 
around 310 µm and 280 µm.

3.2 � 3‑D super‑Resolved Image of Chicken Embryo 
Brain

3-D super-resolution images reconstructed by localization 
and the proposed method (localization, pairing, Kalman 
filtering and adaptive interpolation) are shown in Fig. 6a 
and b, respectively. As can be seen, a sharper 3D image can 
be achieved with the proposed method, which is expected 

Fig. 3   Illustrations of Kalman filtering, acceleration constraints and adaptive interpolation

Fig. 4   a 3-D power Doppler 
image. b 3-D super-resolved 
image (density map). The num-
bers 5000 and 10,000 in (a) and 
(b) indicate 5 mm and 10 mm 
away from (x0, y0, z0), respec-
tively. The white lines in (a) and 
(b) indicated the scale bar along 
the axial direction, which are 
1 mm. (Color figure online)
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because of the rejection of noises and the false MB signals 
using the proposed method.

To further investigate the resolution (FWHM) and the 
contrast enhancement (CR) with the proposed method, the 
lateral-axial projection images are performed where each 
projection image is the maximum intensity projection along 
the elevational direction. The super-resolution microvessel 
projection images without (localization only) and with the 
proposed method are shown in Fig. 7a and b. To highlight 
the resolution of the microvasculature image, a small region 
of the super-resolved image without the proposed method 

was magnified and shown in Fig. 7c and compared with the 
magnified super-resolution image with the proposed method 
in Fig. 7d. The FWHM of a microvessel obtained with the 
proposed method indicated by the blue arrows in Fig. 7e was 
about 52 µm while it cannot be identified using localization 
only.

The elevational-axial projection images are performed 
where each projection image is the maximum intensity 
projection along the lateral direction. The super-resolution 
microvessel projection images without (localization only) 
and with the proposed method are shown in Fig. 8a and b. 

Fig. 5   a Elevational-axial slice 
of the power Doppler image at a 
lateral position around 5.2 mm, 
b Elevational-axial slice of the 
super-resolved image at a lateral 
position around 5.2 mm, the 
white and green dashed lines 
indicate the locations where 
the cross-sectional profiles 
are extracted to evaluate the 
FWHMs, c the axial cross-
sectional profiles of the power 
Doppler image and 3D ULM d 
the elevational cross-sectional 
profiles of the power Doppler 
image and 3D ULM

Fig. 6   3D density map of super-
resolution images reconstructed 
by (a) localization only (b) the 
proposed method (localization, 
pairing, Kalman-based tracking 
and adaptive interpolation)
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To highlight the resolution of the microvasculature image, 
a small region of the super-resolved image without the pro-
posed method was magnified and shown in Fig. 8c and com-
pared with the magnified super-resolution image with the 
proposed method in Fig. 8d. The FWHM of a microvessel 
obtained with the proposed method indicated by the blue 
arrows in Fig. 8e was about 74 µm.

Three ROIs were used as shown in the white (Region 1), 
green (Region 2), and yellow (Region 3) solid and dashed 
boxes to evaluate the CRs as shown in Fig. 9a and b. The 
corresponding CRs are listed in Table 1. The CRs obtained 
with the proposed method showed a gain of about 6.93 dB, 
1.90 dB, and 6.22 dB for the region 1, 2, 3 as compared with 
those without the proposed method.

In Fig. 10a, b, and c, super-resolution microvessel pro-
jection images are shown with localization only (Fig. 10a, 
localization and pairing (Fig. 10b, and localization, pairing, 
Kalman-based tracking and adaptive interpolation (Fig. 10c. 
The 3D motion correction was applied to all these three 
images. Compared to the projection image with localization 
only (Fig. 10a), the unreliable MB signals can be discarded 
with the 3D pairing method (Fig. 10b), and MB trajectory 
can be further improved with the 3D Kalman-filtering-based 
tracking (Fig. 10 c).

Figure 10d shows the super-resolution microvessel pro-
jection image with localization, pairing, Kalman-based 
tracking, and adaptive interpolation, but without the 3D 
motion correction. As compared with Fig. 10c, the resolu-
tion without the motion correction is slightly degraded.

4 � Discussion

In this study, we demonstrated the feasibility of the pro-
posed 3D ULM on a 256-channel ultrasound system with 
a 32 × 32 matrix probe. With the proposed method, better 
3D super-resolution images can be achieved as compared 
with those using localization only and power Doppler image. 
The improvement is the rejection of unreliable MB signals 
by the 3D bi-partition pairing approach, and the smoothen-
ing of the MB trajectories by the 3D Kalman filtering. The 
validation of the proposed method was conducted with a 
flow channel phantom. From the results of the flow channel 
phantom study, the proposed method can image the axial 
and elevational cross-sectional FWHM profiles to nearly 
310 µm and 280 µm, which is better than that of the power 
Doppler image (660 µm and 510 µm). The sub-wavelength 
resolution can also be observed in the projection images of 

Fig. 7   Lateral-axial projection 
image using (a) localization 
only, (b) localization, pairing, 
Kalman-based tracking and 
adaptive interpolation. Lateral-
axial projection image using (c) 
localization only, (d) localiza-
tion, pairing, Kalman-based 
tracking and adaptive interpola-
tion, and (e) The cross-sectional 
profile with and without the 
proposed method are plotted in 
(e), where a full width at half 
maximums (FWHM) of 52 µm 
can be achieved



775Three-Dimensional Ultrasound Localization Microscopy with Bipartite Graph-Based Microbubble Pairing…

1 3

the chicken embryo brain, allowing a micrometric resolution 
in three directions.

In this study, the voxel size of the super-resolved microves-
sel images was around 24.7 μm × 24.7 μm × 24.7 μm (axial/
lateral/elevational). This spatial resolution can be further 

improved by using a smaller voxel size down to about 1/10 
of the acoustic wavelength (that is, 19 μm for a 7.8 MHz 
center frequency). However, longer acquisition times will 
be required to fully populate the microvasculature [49, 50]. 
Additionally, it should be noted that there is a physiological 

Fig. 8   Elevational-axial projec-
tion image using (a) localization 
only, (b) localization, pairing, 
Kalman-based tracking and 
adaptive interpolation. Eleva-
tional -axial projection image 
using (c) localization only, (d) 
localization, pairing, Kalman-
based tracking and adaptive 
interpolation, and (e) The cross-
sectional profile with and with-
out the proposed method are 
plotted in (e), where a full width 
at half maximums (FWHM) of 
74 µm can be achieved with the 
proposed method

Fig. 9   Lateral-axial projection image using (a) localization only, (b) localization, pairing, Kalman-based tracking and adaptive interpolation. 
The white, green, and yellow solid and dashed boxes in (a–d) indicate regions of interest to compute contrast ratio



776	 U.-W. Lok et al.

1 3

limitation to image small microvessels, it might not be pos-
sible to image the whole capillary networks at the level of 
micrometers in around 22 s (used in this study) even the 
microbubble separation method was used.

This study used rSVD-based filtering to measure the 
intensity of MB signals every 10 s until the MB signals are 
observed, and around 22 s of MB data were acquired. A 
future study can compute the MB time intensity in a specific 
region over time to evaluate the best time (or time slot) to 
acquire data.

There are several drawbacks in our proposed 3D ULM. 
First, high computational power is required to handle enor-
mous ultrasound data to reconstruct a 3D super-resolved 
image. The computational complexity will be increased as 
the number of subsets in the MB separation method. How-
ever, the increase of computational power will mitigate this 
drawback and increase the interest in this technique. The 
second drawback is the spatial resolution along the eleva-
tional direction. For the current system, we can only transmit 
a steered plane wave along the lateral direction using all 
1024 channels. The spatial resolution along the elevational 
direction is limited since only 0-degree plane waves were 
transmitted along the elevational direction. One possible 
approach to increase the spatial resolution is to increase the 
number of transmitted (compounding) angles along with 
the elevational resolution. To transmit a steered plane wave 
along the elevational direction for all 1024 channels, each 
sub-aperture (32 × 8 channels) should transmit and receive 
the steered plane wave signals separately, and a total of 16 

Table 1   CRs for different approaches for the chicken embryo brain 
dataset

CR (Fig. 9a) CR (Fig. 9b)

a. Region (1) 9.12 dB 16.05 dB
b. Region (2) 5.59 dB 7.49 dB
c. Region (3) 6.82 dB 13.04 dB

Fig. 10   Lateral-axial projection image using (a) motion correction 
and localization only, (b) motion correction, localization and pairing, 
(c) motion correction, localization, pairing, Kalman-based tracking 

and adaptive interpolation, and (d) localization, pairing, Kalman-
based tracking and adaptive interpolation without motion correction
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acquisitions are required to acquire a volume dataset for a 
particular transmitted angle. This implies that there will be 
a fourfold reduction of the post-compounded volume rate 
when a steered plane wave is transmitted along the eleva-
tional direction for the current probe and system design. 
Additionally, the lateral resolution using our 2D matrix 
probe is poorer than that of conventional 1D ultrasound 
probes due to the small aperture size (nearly 1 cm × 1 cm). 
The localization precision may thus degrade due to the poor 
spatial resolution compared to 1D probes in the lateral and 
axial directions. Another important issue is the signal-to-
noise ratio (SNR) of the 2D matrix probe, which is lower 
than that of 1D probes. The low SNR may be one of the 
issues that we cannot visualize smaller microvessels in this 
study. One possible approach to enhance SNR is to increase 
the number of transmitted (compounding) angles at the cost 
of lower volume rate. In addition, the SNR will be slightly 
increased with longer pulse cycle with the cost of the deg-
radation of the axial resolution. Furthermore, noise reduc-
tion approaches, such as non-local mean denoising [51] or 
debiased noise-suppression method [52] can be applied 
to suppress the noise effect at the expense of computa-
tional cost. Furthermore, the field-of-view and the trans-
mitted plane-wave angle were limited due to the grating 
lobe of this matrix probe. The pitch size of each channel 
of the 2D matrix probe was around 300 µm (wavelength 
around 200 µm); thus, a grating lobe occurs around 40° as 
a 0° plane-wave is transmitted. Higher grating lobes will 
occur in the elevational direction than in the lateral direc-
tion because of the three missing channels (numbers 9, 18, 
and 27 along the elevational direction). Grating lobes will 
result in localizing false-positive MB signals, degrading the 
image quality of the super-resolved image. To avoid grating 
lobes, the FOVs were set to around 12.8 mm by 12.8 mm by 
12.8 mm, and small steered transmitted angles (− 4° to 4°) 
were used in this study. Furthermore, the inner diameter of 
the flow channel phantom was around 380 µm (wavelength 
around 200 µm), which is the smallest flow phantom that we 
have for the demonstration of the resolution improvement 
between the power Doppler image and the proposed ULM. 
To better investigate the resolution of the proposed method, 
a smaller inner diameter flow channel phantom could be 
used in future study. Additionally, the current study only 
demonstrated the feasibility of the 3D motion estimation 
based on the extension of the sub-pixel-based image regis-
tration method using the 3D power spectrum, further inves-
tigation (e.g. simulation of tissue motions in 3D) should be 
performed to evaluate the performance of such method in 
the future study. Finally, our results (e.g. vessel size and 
distribution) did not compared with those obtained with 
other imaging modalities. Contrast-enhanced microCT using 
Microfil contrast agent [53] would have been one method of 
imaging brains in 3D. The comparison between 3D ULM 

and Contrast-enhanced microCT would be intriguing in the 
future study.

5 � Conclusion

In this study, we demonstrated the proposed method could 
improve the image quality of 3D ULM as compared with 
that of 3D ULM using localization only and the 3D con-
trasted enhanced power Doppler image. The proposed 3D 
ULM provides a feasible motion compensation to mitigate 
the out-of-plane motion limitations in 2D ULM related to 
the absence of elevational information. The performance 
of the proposed 3D ULM was evaluated using flow chan-
nel phantoms and in vivo chicken embryo brain datasets. 
Microvessels could hardly be distinguished using localiza-
tion only were better identified using our 3D pairing and 
Kalman-filtering-based tracking algorithms. To sum up, 
the feasibility of 3D super-resolution imaging was demon-
strated, showing potential in clinical applications.
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