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Abstract
Purpose This study aimed to investigate the biomechanical characteristics of the external spinal fixation for treating lumbar 
fracture through finite element analysis (FEA) and provide a theoretical basis for its further application.
Methods Two different models of L3 fracture fixed with the external spinal fixation and the internal fixation system respec-
tively were constructed. The ROM, maximum stresses at L3, and the screws of the two models were measured under load 
control. Subsequently, the applied torque, the maximum stressed at L3, L1/2, L2/3, L3/4, L4/5 discs and the screws were 
analyzed under displacement control.
Results Under load control, the external fixation model reserved more ROM than the internal fixation model (40.4–48.0% 
vs 30.5–41.0%). Compared to the internal fixation model, the maximum stresses at L3 and screws in the external fixation 
model were increased. Under displacement control, the external fixation model required fewer moments (N·mm) than the 
internal fixation model (flexion: 7500 vs 12,294; extension: 7500 vs 9027). Further, the maximum stresses at L3 and the 
screws in the external fixation model were greater than those of the internal fixation model, while the maximum stresses at 
the upper and lower adjacent discs of fixed segments were less than the internal fixation model.
Conclusion Compared to the internal fixation system, the external fixation has a better stress distribution with the greater 
overall mobility. It theoretically reduces the stress concentration of the adjacent discs and the stress shielding of the fractured 
vertebral body.
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1 Introduction

Lumbar fractures are the most common clinical spinal frac-
tures [1, 2]. The mild fractures cause pain and restricted 
mobility in the lower back, while the severe burst frac-
tures may even protrude into the spinal canal, compress-
ing the spinal cord causing corresponding nerve paralysis. 

The posterior short-segment pedicle rod fixation is widely 
used in lumbar fractures and have achieved good clinical 
effects[3–6], however, a series of complications including 
adjacent segmental disc degeneration, loosening of the inter-
nal fixation and fracture non-union caused by stress shield-
ing may still occur [7–9]. Thus, there is a demand of fixation 
that can stabilize the fracture segments and diminish the 
complications to treat lumbar fractures.

Provoked by the first application of the external spine 
skeletal fixation (ESSF) [10] and the Chinese traditional 
medicine concept of “Emphasizing both fasciae and bone, 
combining dynamic and static,” we developed an external 
spinal fixation and performed preliminary biomechanical 
test on it. Due to the advantages of minimal invasive, good 
reduction results, rapid rehabilitation, ease-to-use and non-
destroy to spinal functional unit (FSU), it achieved a certain 
effect in clinic. The follow-up results of 50 patients who 
accepted the external spinal fixation were satisfied [11, 12]. 
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The finite element analysis (FEA) is an engineering technol-
ogy used in stress analysis and is widely used in orthopedics 
and other medical fields. Moreover FEA is increasingly used 
in building lumbar fracture models for conducting mechani-
cal analyses of various types of implants [13, 14].

This study investigated the biomechanical characteristics 
of the external spinal fixation in treating lumbar fractures 
compared to the pedicle screw rod internal fixation. The 
overall mobility, the maximum stresses at the screws and 
the fractured vertebral body, and the stress changes of the 
intervertebral disc in the fixed segment and its adjacent seg-
ments after fixation of a lumbar spine fracture were evalu-
ated using FEM. We aimed to provide a comprehensive 
biomechanical analysis for the further application of the 
external spinal fixation.

2  Material and Methods

2.1  Construction of a Normal Lumbar Spine in FE 
Model

The data for normal lumbar spine model construction was 
obtained from a healthy volunteer (male, 26 years old, 
weight: 71 kg, Height: 173 cm) using the 64 slice spiral 
computed tomography (CT) scan. The obtained DICOM 
format files were subjected to thresholding segmentation, 
dynamic growth, mask editing, and Boolean manipula-
tion using three dimensional (3D) reconstruction software 
Mimics 20.0 (Materialise, Belgium), and 3D contour mod-
els were extracted for each vertebra L1-L5. The 3D models 
were subsequently sliced one by one through Geomagic 12 
(Geomagic Inc., USA) and underwent a series of image pro-
cessing techniques, including smoothing, grinding, denois-
ing, surface construction, and solidification. The optimized 
3D model of the spine was further processed by SolidWorks 
2015 (Dassault, France) to reconstruct the intervertebral disc 
(matrix and nucleus pulposus) and articular surface of the 
articular process and to complete the modeling of the normal 
model.

After reconstruction, vertebral body of the model was 
composed of cortical and cancellous bones and endplates. 
The intervertebral disc was composed of nucleus pulposus 
and annulus fibrosus (3:7), and the vertebral body was con-
nected to adjacent discs. The articular cartilage thickness 
was set at 0.3 mm, and the friction coefficient of the upper 
and lower articular cartilage frictional contact was 0.1. 
Bonding contact was applied for the model except facet joint 
which used frictional contact. Seven paraspinal ligaments, 
including the anterior longitudinal ligament, posterior longi-
tudinal ligament, ligamentum flavum, interspinous ligament, 
supraspinous ligament, capsular ligament, and transverse 
interspinous ligament, were simulated. The materials and 

characteristics of the above correlation models were chosen 
based on previous studies [15, 16], as shown in Table 1.

The normal model was meshed by the size of 3, 2, 1.5, 1 
and 0.5. The equivalent stress of vertebral cortical bone was 
taken as the reference. The change with 5% suggested that 
the mesh was converged. According to the results of mesh 
convergence as shown in Table 2, the mesh size of 1 mm was 
selected for the subsequent analyse in this study.

The overall model was meshed with hexahedrons for 
the intervertebral discs and facet joints and tetrahedrons 
for the other components, with a mesh size of 1 mm. The 
final L1-L5 model was completed by applying 693,194 ele-
ments and 1,030,241 nodes using the Ansys workbench 18.0 
(Ansys, USA). Then, the constructed L1-L5 full model was 
validated by comparing it with previous study data.

The internal fixation system’s pedicle screws and connec-
tion rods had commonly used diameter specifications, 6.5 

Table 1  Material properties of the finite element model

ALL anterior longitudinal ligament, PLL posterior longitudinal 
ligament, LF ligamentum flavum, ISL interspinous ligament, SSL 
supraspinal ligament, TL transverse ligament, CL capsular ligament

Component name Young’s 
modulus(MPa)

Poisson’s ratio Cross-
sectional 
area(mm2)

Cortical bone 12,000 0.3 –
Cancellous bone 100 0.3 –
Injured canellous 

bone
10 0.3 –

Cartilage 10 0.4 –
Bony endplate 1000 0.4
Nucleus pulposus 1 0.499
Annulus fibrosus 4.2 0.3 –
ALL 20 0.3 63.7
PLL 20 0.3 20
LF 19.5 0.3 40
ISL 11.6 0.3 40
SSL 15 0.3 30
TL 58.7 0.3 3.6
CL 32.9 0.3 60
Instruments 110,000 0.3 –

Table 2  Parameters for mesh convergence

Size of mesh 
(mm)

Element Node Stress on 
vertebra(MPa)

0.5 2,229,305 3,157,044 20.09
1 693,194 1,030,241 20.08
1.5 311,639 493,005 19.19
2 279,010 302,980 18.15
3 90,017 173,045 16.86
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and 6 mm, respectively, while those for the new spinal exter-
nal fixation pedicle screws and connection rods were 5.5 
and 5 mm, respectively. Models of the internal and external 
fixation systems were constructed using SolidWorks 2015 
(Dassault, France) (Fig. 1G and I).

Pedicle screws were placed parallel to the upper endplates 
in both fixation models, and the depth of screw placement 
into the vertebral body was 60%. The pedicle screw holders 
of the internal fixation system were partially adherent to the 
bone surface, and the connecting rods were fixed inside the 
screw holder U-groove. In contrast, connecting rods of the 
external fixation system were fixed within the prydial appa-
ratus secured at 65.0 and 70.0 mm from the talar surface of 
the L2 and L4 segments, respectively. A line parallel to the 
superior endplate was made from the anterior margin to the 
posterior margin of the L3 vertebral body at 15% from the 
superior margin, then an oblique line was made from the 
intersection of this line and the posterior margin of the verte-
bral body to the anterior margin of the vertebral body at 55% 
from the superior margin, which was in a triangular shape 
to cut the part of the vertebral body between the two lines 
to establish the fracture reduction model [17, 18]. Finally, 
the internal fixation model included 694,386 elements and 
1,058,953 nodes, while the external fixation model included 
739,105 elements and 1,121,711 nodes.

2.2  Loading and Boundary Conditions

2.2.1  Load Control

The upper edge of the L1 vertebral body was set as the load-
ing plane without accepting any restraint, and the lower edge 
of the L5 vertebral body had zero degrees of freedom. Then 
a 500 N preload was applied to the superior surface of the 
L1 vertebral body and an additional movement moment 
of 7.5 N·m. The maximum activities of the normal model, 
internal fixation, and external fixation models were meas-
ured by observing the activity of each motion segment under 
the six conditions, including the forward flexion, extension, 
left and right flexion, and left and right axial rotation. Then 
the maximum stress of the fractured vertebral body (L3 ver-
tebral body) and pedicle screw of internal and external fixa-
tion models were analyzed.

2.2.2  Displacement Control

Azusa Nishizawa et al. reported that the forward flexion 
and backward extension have the greatest influence on the 
intervertebral disc pressure when changing the body posi-
tion (forward flexion, extension, left and right lateral flex-
ion, and left and right rotation), and also the most frequent 

Fig. 1  Clinical application of the external fixation and model estab-
lishment A Components of the external fixation. B The overall dia-
gram of the external fixation. C–E X-Ray images of clinical appli-
cation of the external fixation. F Model of normal lumbar spine. G 

Model of traditional internal fixation. H Model of L3 fractured fixed 
with the internal fixation. I Model of external fixation. J Model of L3 
fractured fixed with the external fixation
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two directions involving activities of daily life [19]. Thus, 
we studied the forward flexion and extension movements 
considering their significance on disc pressure and daily 
life activities. The maximum ROM of the external fixation 
model during the forward flexion and backward extension 
was obtained using the previously described load control 
method and was taken as the target value. For the internal 
fixation model, a 500 N preload was imposed to the upper 
surface of the L1 vertebral body with a constraint of 0 
degrees of freedom to the lower surface of the L5 vertebral 
body. Further, it was allowed to reach the desired ROM tar-
get value under both forward flexion and backward extension 
by gradually increasing the additional movement moment. 
The additional movement moment that both models need 
to apply when reaching the same ROM was compared. The 
maximum stresses of L3, pedicle screws, discs of the fixed, 
and their adjacent segments were analyzed in both internal 
and external fixation models.

3  Results

3.1  Model Validation

In this study, the mobility of each segment of the 3D FE 
model of the lumbar spine was compared with previous 
study findings [20–24] and was within the range of reported 
literature (Fig. 2), confirming the validity of this model.

3.2  Load Control

3.2.1  Range of Motion (ROM)

The maximum ROM of the normal, external fixation, and 
internal fixation models, under the six operating conditions, 
are shown in Fig. 3. The ROM of the internal fixation model 
was less than those of the other two groups, reaching only 
30.5–41.0% of the normal model under each operating con-
dition. The external fixation model had a greater ROM than 
the internal fixation model and reached 40.4–48.0% of the 
normal model. ROM of the external fixation model under 
the six conditions were 12.02° (flexion), 8.31° (extension), 

Fig. 2  Validation of the lumbar spine model. A Comparison of flex-
ion/extension ROM between current study and previous literature. B 
Comparison of lateral bending ROM between current study and pre-

vious literature. C Comparison of axial rotation ROM between cur-
rent study and previous literature

Fig. 3  Restriction of two fixations on lumbar mobility under the six 
conditions



473Biomechanical Analysis of the External Fixation in a Lumbar Fracture Model: A Finite Element Study

1 3

9.72° (left bending), 10.73° (right bending), 3.67° (left rota-
tion) and 4.07° (right rotation). ROM of the internal fixation 
model under the six conditions were 8.56° (flexion), 6.24° 
(extension), 6.84° (left bending), 7.45° (right bending), 
3.43° (left rotation) and 3.58° (right rotation).

3.2.2  Von Mises Stress of the Fractured Vertebra

The maximum stresses of the fractured vertebral bodies of 
the external fixation and internal fixation models under the 
six operating conditions are shown in Fig. 4. The maximum 
stresses on the L3 body in the external fixation model were 
larger than those of the internal fixation model. In the exter-
nal fixation model, the maximum stresses on L3 under flex-
ion, extension, left bending, right bending, left rotation and 
right rotation were 1.34, 2.21, 1.71, 1.89, 2.88, 2.71 MPa 
respectively. In the internal fixation model, the maximum 
stresses on L3 under flexion, extension, left bending, right 
bending, left rotation and right rotation were 0.60, 0.49, 
0.65, 0.75, 1.19, 0.97 MPa respectively.

3.2.3  Von Mises Stress of the Pedicle Screws

The stress cloud plots and maximum stress values of pedicle 
screws of the external and internal fixation models under the 
six operating conditions are shown in Fig. 5. The maximum 
stress values of pedicle screws of the external and internal 
fixation models appeared at the junction between the screw 
and the vertebral body. The maximum stress value of the 
screws of the external fixation model was larger than that 
of the internal fixation model under all six operating con-
ditions. It was prominent in the forward flexion, backward 
extension, and left and right side flexion. In the external 
fixation model, the maximum stresses on screws under flex-
ion, extension, left bending, right bending, left rotation and 
right rotation were 230.66, 273.21, 259.40, 266.98, 236.48, 
235.43 MPa respectively. In the internal fixation model, 

the maximum stresses on screws under flexion, extension, 
left bending, right bending, left rotation and right rotation 
were 129.41, 142.72, 127.42, 115.30, 212.38, 193.89 MPa 
respectively.

3.3  Displacement Control

3.3.1  Applied Moment of Motion

We set the maximum ROM (12.02° for forward flexion and 
8.31° for backward extension) obtained using the load con-
trol method as the target displacement. For 12.02° flexion, 
the external fixation model required 7500 N·mm and the 
internal fixation model required 12294 N·mm. For 8.31° 
extension, the external fixation model required 7500 N·mm 
and the internal fixation model required 9027 N·mm. The 
results show that the required motor moment of the inter-
nal fixation model was significantly greater than that of the 
external fixation model (Fig. 6A).

3.3.2  Von Mises Stress of the Pedicle Screws

The stress distribution of the pedicle screws of the two mod-
els under displacement control was consistent with that of 
the load control. In the external fixation model, the maxi-
mum stresses on screws under flexion and extension were 
230.66 and 273.21 MPa. In the internal fixation model, the 
maximum stresses on screws under flexion and extension 
were 179.20 and 199.51  MPa. Although the maximum 
stress value of the external fixation model pedicle screw 
was greater than that of the internal fixation model under 
both load and displacement control, the stress gap of the two 
fixations was significantly decreased under the displacement 
control. (Fig. 6B).

3.3.3  Von Mises Stress of the Fractured Vertebra

The maximum stresses on the fractured vertebral bodies 
of the external fixation and internal fixation models under 
displacement control are shown in Fig. 6C. In the external 
fixation model, the maximum stresses on L3 under flexion 
and extension were 1.34 and 2.21 MPa. In the internal fixa-
tion model, the maximum stresses on L3 under flexion and 
extension were 0.89 and 0.57 MPa. The maximum stress of 
the fractured vertebral body in the external fixation model 
was greater than that of the internal fixation model.

3.3.4  Von Mises Stress of the Intervertebral Disc

The maximum stresses on the intervertebral discs of the 
fixed segments (L2/L3 and L3/4) in both models were sig-
nificant decreased than discs of adjacent segments (L1/L2 
and L4/L5). In the external fixation model, the maximum 

Fig. 4  Maximum von mises stress on fractured vertebra body (L3) in 
the internal and external fixations under the six conditions
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stresses on L1/2 disc under flexion and extension were 
1.73 and 2.25 MPa; the maximum stresses on L4/5 disc 
under flexion and extension were 1.43 and 2.13 MPa. In 

the internal fixation model, the maximum stresses on L1/2 
disc under flexion and extension were 1.90 and 2.61 MPa; 
the maximum stresses on L4/5 disc under flexion and 
extension were 1.91 and 2.23 MPa.

Fig. 5  Cloud plots and his-
togram of the Maximum von 
mises stress on pedicle screws 
of the internal and external fixa-
tions under the six conditions
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Under displacement control, the maximum stress of the 
intervertebral discs in adjacent segments (L1/L2 and L4/
L5) of the external fixation model was less than that of the 
internal fixation model, whereas the maximum strass of the 
intervertebral discs in fixed segments (L2/L3 and L3/4) of 
the external fixation model was greater than that of the inter-
nal fixation model. The smaller difference between the fixed 
segments and the adjacent segments in the external fixation 
model indicates a better stress distribution from L1/2 to L4/5 
(Fig. 7B and C). The L1/L2 and L4/L5 segmental disc stress 
cloud diagrams of the two models are shown in Fig. 7A.

4  Discussion

Lumbar fracture is a common spinal trauma [1, 2]. The inter-
nal and external fixation were both appropriate therapeutic 
strategy for lumbar fracture [5, 6, 11]. However, the dif-
ferences of biomechanical characteristics between internal 
and external fixation were rarely reported. In this study, we 
established a finite model of L3 fracture and simulated the 
conditions under internal and external fixation to analyzed 
the ROM of lumbar spine, the maximum stress on fractured 
vertebra and screws. We found that the external fixation 
could reduce the stress shielding and improve the stress 
distribution on the premise of ROM restriction and fixa-
tion stability. This study aimed to analyze and validate the 
biomechanical mechanism underlying the phenomenon in 
clinical application of the external spinal fixation system via 
the 3D FE simulation and analysis. The findings provided 
more theoretical data for the future clinical application of 
the external fixation.

Finite element analysis is one of the most popular 
methods for predicting the biomechanical properties of 

orthopedic implants. We constructed a lumbar finite model 
with 693,194 elements and 1,030,241 nodes. The finite 
model of L3 fracture was constructed according to the previ-
ous reports [17, 18]. Validation results showed that the ROM 
of the presenting finite model was not obvious different from 
the reported models [20–24]. Therefore, we simulated the 
internal and external fixation on the presenting L3 fracture 
model. There were 694,386 elements and 1,058,953 nodes 
in the internal fixation model and 739,105 elements and 
1,121,711 nodes in the external fixation model.

The core concept of the external spinal fixation is that the 
vertebral body is fixed extracorporeally using the Schanz 
screws, and the screws can be distracted, pulled, and pryed 
using the extracorporeal prydial kit as a fulcrum to correct, 
reduce, and fix the fractured vertebral body. Because the 
Schanz screw with the external prydial kit is longer than 
the force arm of the conventional internal fixation pedicle 
screws, the overall system acts like a micro-dynamic elastic 
fixation. Results showed that the external fixation restricted 
the ROM of lumbar spine to 40.4–48.0% and the internal 
fixation restricted the ROM of lumbar spine to 30.5–41.0%, 
which indicated that the external fixation preserved more 
ROM of lumbar spine. The mechanism of the external spinal 
fixation is compatible with the Chinese traditional medicine 
concept “Emphasizing both fasciae and bone, combining 
dynamic and static.” “Emphasizing both fasciae and bone” is 
mainly manifested in that the installation of the external fixa-
tion is based on the percutaneous pedicle screw technique 
which avoids open operation and extensive dissection of 
paravertebral muscle and minimizes the damage to soft tis-
sue. More importantly, the external fixation can be removed 
at outpatient after fracture healed without removal operation. 
“Combining dynamic and static” is mainly manifested in that 
the effects of elastic fixation can be achieved through the 

Fig. 6  Comparison of the 
internal and external fixations 
under the displacement control. 
A Required torque for the two 
fixations to reach the ROM of 
flexion 12.02° and extension 
8.31°. B Maximum von mises 
stress on fractured vertebra 
body (L3) in the internal 
and external fixations under 
the displacement control. C 
Maximum von mises stress on 
pedicle screws of the internal 
and external fixations under the 
displacement control
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deformation of screws in a static screw rod fixation system, 
allowing local micro-movement to stimulate callus forma-
tion of the fractured body [25, 26].

There is a consensus that appropriate stress stimulation 
is vital for fracture healing and stress shielding may lead to 
delay in fracture healing or even nonunion [25–28]. We ana-
lyzed the maximum stress of the fractured vertebral body in 
these two fixation models under both load and displacement 
control. Under load control, the maximum stresses of L3 
in the internal fixation were 0.60 MPa (flexion), 0.49 MPa 
(extension), 0.65 MPa (left bending), 0.75 MPa (right bend-
ing), 1.19 MPa (left rotation), 0.97 MPa (right rotation) and 
the maximum stresses of L3 in the external fixation were 
1.34 MPa (flexion), 2.21 MPa (extension), 1.71 MPa (left 
bending), 1.89 MPa (right bending), 2.88 MPa (left rota-
tion), 2.71 MPa (right rotation). Under displacement control, 
the maximum stresses of L3 in the internal fixation were 
0.89 MPa (flexion) and 0.57 MPa (extension), and the maxi-
mum stresses of L3 in the external fixation were 1.34 MPa 
(flexion) and 2.21 MPa (extension). The maximum stress 
on the fractured vertebral body of the external fixation was 
greater than that of the internal fixation under all the condi-
tions. Accordingly, we deduced that the increased stress of 
the fractured vertebral body in the external spinal fixation 

might promote fracture healing (some cases such as severe 
osteoporosis should be excluded). In contrast, given the 
characteristic of rigid fixation, the internal spinal fixation 
system can cause the stress shielding of the fractured verte-
bral body, further it can induce the bone defect, unstructured 
bone trabecular and delayed healing in the fractured segment 
[9]. These findings partly revealed the mechanism underly-
ing the clinical phenomenon that patients with lumbar frac-
ture can achieve clinical healing within three months via 
treatment of the external spinal fixation system [11].

Adjacent Segment Degeneration (ASD) following lumbar 
fusion is due to the compensatory enlarged ROM and over-
loaded stress in the discs and articular process joints of adja-
cent segments because the rigid fixation limits the motion of 
the fixed segment and alters the motional mode of the lumbar 
spine [29, 30]. We found that the maximum stresses on the 
adjacent discs of the external fixation were smaller than those 
of the internal fixation (L1/2: 1.73 vs 1.90 MPa in flexion, 2.25 
vs 2.61 MPa in extension; L4/5: 1.43 vs 1.91 MPa in flexion, 
2.13 vs 2.23 MPa in extension). Further, the maximum stress 
gap between the discs within fixed segments and adjacent 
segments was decreased in external fixation. In the external 
fixation, the stresses were relatively and evenly distributed to 
the whole lumbar spine. Additionally, the fixation time of the 

Fig. 7  Stress distribution of 
lumbar discs in two fixations 
under the displacement control. 
A Cloud plots of adjacent discs 
(L1/2 and L4/5) in the internal 
and external fixations. B Maxi-
mum von mises stress of lumbar 
discs (L1/2–L4/5) under the 
flexion condition. C Maximum 
von mises stress of lumbar discs 
(L1/2–L4/5) under the extension 
condition
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spinal external fixation system is seldom beyond three months 
generally. Therefore, the better stress distribution and the 
shorter fixation time make the external fixation has the capac-
ity to reduce the risk for developing ASD postoperatively.

Screw breakage is a severe complication of spinal fixa-
tion surgery [31]. It is closely related to the maximum stress 
on the screws or rods. In this study, we analyzed the maxi-
mum stress of the two models and found that the maximum 
stresses were both concentrated on the pedicle screws. 
Under load control, the maximum stresses of screw in the 
internal fixation were 129.41 MPa (flexion), 142.72 MPa 
(extension), 127.42 MPa (left bending), 115.30 MPa (right 
bending), 212.38 MPa (left rotation), 193.89 MPa (right 
rotation) and the maximum stresses of screw in the external 
fixation were 230.66 MPa (flexion), 273.21 MPa (exten-
sion), 259.40 MPa (left bending), 266.98 MPa (right bend-
ing), 236.48 MPa (left rotation), 235.43 MPa (right rota-
tion). Under displacement control, the maximum stresses 
of screw in the internal fixation were 179.20 MPa (flexion) 
and 199.51 MPa (extension), and the maximum stresses of 
screw in the external fixation were 230.66 MPa (flexion) 
and 273.21 MPa (extension).The maximum stress of exter-
nal fixation system is larger than that of internal fixation 
system, which might be caused by the longer force arm of 
the external fixation pedicle screws. Although the stress of 
the external fixation screw is larger, the existing maximum 
stress is much lower than the threshold of static fracture of 
the material (924 MPa) [18]. In addition, the shorter fixa-
tion period of external fixation (3–4 months) also contrib-
utes to decreasing the risk of screw breakage. Intriguingly, 
the internal fixation required a greater torque (12294 N·mm 
for flexion, 9027 N·mm for extension) to achieve the same 
ROM(12.02° flexion and 8.31° extension) than the external 
spinal fixation (7500 N·mm for flexion and extension) under 
the displacement control, which suggested that patients who 
adopt the internal fixation may need a larger force produced 
by lumbar-back muscles than those who adopt the external 
fixation to complete a same action, adversely affecting post-
operative recovery.

There are some limitations in our study. First, the finite 
element model of the lumbar spine cannot fully reflect the 
real situation of patients. Animal experiment should be con-
sidered to better understand the effectiveness the external 
fixation. Second, because of the percutaneous surgical pro-
cedure, the external fixation are inapplicable for some situ-
ation where the open surgery is necessary.

5  Conclusion

In conclusion, we find that the external spinal fixation 
shows the better biomechanical characteristics in ROM 
preservation and stress distribution, which is beneficial to 

postoperative rehabilitation. Although the maximum stress 
of the external fixation is greater than that of internal fixa-
tion, it is much lower than the breaking threshold of the 
screw. Results also indicate that the external spinal fixa-
tion can theoretically prevent ASD through decreasing the 
stresses of the adjacent discs. Therefore, the external spinal 
fixation might be a better alternative for lumbar fracture.
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