Skip to main content

Advertisement

Log in

Comparative Analysis of the Biomechanical Behavior of Collar and Collarless Stems: Experimental Testing and Finite Element Modelling

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

During total hip replacement (THR), prosthesis material is stiffer than the bone tissue, decreasing load transmission to the host tissue around the prosthesis. After a THR, the aim is to achieve stress distribution along the femur close to normal physiological stress distribution for all loads transferred across the hip joint. In this study, we analyzed the advantages of using a collared stem over collarless one with the finite element method (FEM), strain gauges (SGs), and the digital image correlation (DIC) system.

Methods

In the biomechanical tests, we implanted composite femurs and loaded them with the stance configuration in a universal testing machine (Instron). We compared the predicted strains with the strains recorded experimentally in the same regions of the femur.

Results

The results revealed that for collarless stems, a high level of stress concentration is observed in the distal region of the implant but not in the proximal region. The collared case presents a strain distribution closer to that of a healthy bone proximal zone that was almost two times better than in case of the collarless stem, whereas stresses in the distal part of the femur corresponded to a healthy state. Finally, the numerical results for the bone adaptation around the implant provided clear evidence that the collar design strongly influences the proximal resorption because of better load transmission.

Conclusions

According to both the numerical and experimental results, a collar that connects to the bone cut may decrease the proximal stress shielding effect and distal cortical hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McLaughlin, J. R., & Lee, K. R. (2014). Uncemented total hip arthroplasty using a tapered femoral component in obese patients: An 18–27 year follow-up study. Journal of Arthroplasty, 29, 1365–1368. https://doi.org/10.1016/j.arth.2014.02.019

    Article  Google Scholar 

  2. Casper, D. S., Kim, G. K., Restrepo, C., Parvizi, J., & Rothman, R. H. (2011). Primary total hip arthroplasty with an uncemented femoral component. Five- to Nine-Year Results. J Arthroplasty, 26, 838–841. https://doi.org/10.1016/j.arth.2011.02.010

    Article  PubMed  Google Scholar 

  3. Kovac, S., Trebse, R., Milosev, I., Pavlovcic, V., & Pisot, V. (2006). Long-term survival of a cemented titanium-aluminium-vanadium alloy straight-stem femoral component. Journal of Bone and Joint Surgery. British Volume, 88, 1567–1573. https://doi.org/10.1302/0301-620X.88B12.17796

    Article  CAS  Google Scholar 

  4. Bucholz, R. W. (2014). Indications, techniques and results of total hip replacement in the united states. Rev Médica Clínica Las Condes., 25, 756–759. https://doi.org/10.1016/s0716-8640(14)70103-8

    Article  Google Scholar 

  5. Huiskes, R., Weinans, H., & Rietbergen, B. (1992). The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clinical Orthopaedics and Related Research, 274, 124–134. https://doi.org/10.1097/00003086-199201000-00014

    Article  Google Scholar 

  6. Doblare, M., & García, J. M. (2001). Application of an anisotropic bone- remodelling model based on a damage-repair theory to the analysis of the analysis of the proximal femur before and after total hip replacement. Journal of Biomechanics, 34, 1157–1170. https://doi.org/10.1016/s0021-9290(01)00069-0

    Article  CAS  PubMed  Google Scholar 

  7. Scannell, P. T., & Prendergast, P. J. (2009). Cortical and interfacial bone changes around a non-cemented hip implant: Simulations using a combined strain/damage remodelling algorithm. Medical Engineering & Physics, 31, 477–488. https://doi.org/10.1016/j.medengphy.2008.11.007

    Article  Google Scholar 

  8. Al-Dirini, R. M. A., Huff, D., Zhang, J., Besier, T., Clement, J. G., & Taylor, M. (2018). Influence of collars on the primary stability of cementless femoral stems: A finite element study using a diverse patient cohort. Journal of Orthopaedic Research, 36, 1185–1195. https://doi.org/10.1002/jor.23744

    Article  CAS  PubMed  Google Scholar 

  9. Weinans, H., Huiskes, R., & Grootenboer, H. J. (1990). Trends of mechanical consequences and modeling of a fibrous membrane around femoral hip prostheses. Journal of Biomechanics, 23, 991–1000. https://doi.org/10.1016/0021-9290(90)90314-S

    Article  CAS  PubMed  Google Scholar 

  10. Keaveny, T. M., & Bartel, D. L. (1993). Effects of porous coating, with and without collar support, on early relative motion for a cementless hip prosthesis. Journal of Biomechanics, 26, 1355–1368. https://doi.org/10.1016/0021-9290(93)90087-U

    Article  CAS  PubMed  Google Scholar 

  11. Mandell, J. A., Carter, D. R., Goodman, S. B., Schurman, D. J., & Beaupré, G. S. (2004). A conical-collared intramedullary stem can improve stress transfer and limit micromotion. Clinical Biomechanics, 19, 695–703. https://doi.org/10.1016/j.clinbiomech.2004.04.004

    Article  PubMed  Google Scholar 

  12. Parvizi, J., Keisu, K. S., Hozack, W. J., Sharkey, P. F., & Rothman, R. H. (2004). Primary total hip arthroplasty with an uncemented femoral component: a long-term study of the taperloc stem. Journal of Arthroplasty, 19, 151–156. https://doi.org/10.1016/j.arth.2003.10.003

    Article  Google Scholar 

  13. Jeon, I., Bae, J. Y., Park, J. H., Yoon, T. R., Todo, M., Mawatari, M., et al. (2011). The biomechanical effect of the collar of a femoral stem on total hip arthroplasty. Computer Methods in Biomechanics and Biomedical Engineering, 14, 103–112. https://doi.org/10.1080/10255842.2010.493513

    Article  PubMed  Google Scholar 

  14. Flecher, X., Blanc, G., Sainsous, B., Parratte, S., & Argenson, J. N. (2012). A customised collared polished stem may reduce the complication rate of impaction grafting in revision hip surgery. J Bone Jt Surg - Ser B., 94, 609–614. https://doi.org/10.1302/0301-620X.94B5.26828

    Article  CAS  Google Scholar 

  15. Demey, G., Fary, C., Lustig, S., Neyret, P., & Si Selmi, T. A. (2011). Does a collar improve the immediate stability of uncemented femoral hip stems in total hip arthroplasty? a bilateral comparative cadaver study. Journal of Arthroplasty, 26, 1549–1555. https://doi.org/10.1016/j.arth.2011.03.030

    Article  Google Scholar 

  16. Van Kleunen, J. P., Anbari, K. K., Vu, D., & Garino, J. P. (2006). Impaction allografting for massive femoral defects in revision hip arthroplasty using collared textured stems. Journal of Arthroplasty, 21, 362–371. https://doi.org/10.1016/j.arth.2005.04.041

    Article  Google Scholar 

  17. Al-Najjim, M., Khattak, U., Sim, J., & Chambers, I. (2016). Differences in subsidence rate between alternative designs of a commonly used uncemented femoral stem. Journal of Orthopaedics, 13, 322–326. https://doi.org/10.1016/j.jor.2016.06.026

    Article  PubMed  PubMed Central  Google Scholar 

  18. Apostu, D., Lucaciu, O., Berce, C., Lucaciu, D., & Cosma, D. (2018). Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: A review. Journal of International Medical Research, 46, 2104–2119. https://doi.org/10.1177/0300060517732697

    Article  CAS  Google Scholar 

  19. Levadnyi, I., Awrejcewicz, J., Gubaua, J. E., & Pereira, J. T. (2017). Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs. Clinical Biomechanics. https://doi.org/10.1016/j.clinbiomech.2017.10.015

    Article  PubMed  Google Scholar 

  20. Weber, E., Sundberg, M., & Flivik, G. (2014). Design modifications of the uncemented Furlong hip stem result in minor early subsidence but do not affect further stability: A randomized controlled RSA study with 5-year follow-up. Acta Orthopaedica, 85, 556–561. https://doi.org/10.3109/17453674.2014.958810

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bonin, N., Gedouin, J. E., Pibarot, V., Bejui-Hughues, J., Bothorel, H., Saffarini, M., et al. (2017). Proximal femoral anatomy and collared stems in hip arthroplasty: Is a single collar size sufficient? J Exp Orthop, 4, 6. https://doi.org/10.1186/s40634-017-0107-3

    Article  Google Scholar 

  22. Morgan, E. F., Salisbury Palomares, K. T., Gleason, R. E., Bellin, D. L., Chien, K. B., Unnikrishnan, G. U., et al. (2010). Correlations between local strains and tissue phenotypes in an experimental model of skeletal healing. Journal of Biomechanics, 43, 2418–2424. https://doi.org/10.1016/j.jbiomech.2010.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thompson, M. L., Backman, D., Branemark, R., & Mechefske, C. K. (2011). Evaluating the bending response of two osseointegrated transfemoral implant systems using 3D digital image correlation. Journal of Biomechanical Engineering, 133, 1–9. https://doi.org/10.1115/1.4003871

    Article  Google Scholar 

  24. Ghosh, R., Gupta, S., Dickinson, A., & Browne, M. (2012). Experimental validation of finite element models of intact and implanted composite hemipelvises using digital image correlation. Journal of Biomechanical Engineering, 134, 1–9. https://doi.org/10.1115/1.4007173

    Article  Google Scholar 

  25. Sallam, H. E. M., Badawy, A. A. M., Saba, A. M., & Mikhail, F. A. (2010). Flexural behavior of strengthened steel–concrete composite beams by various plating methods. Journal of Constructional Steel Research, 66, 1081–1087. https://doi.org/10.1016/j.jcsr.2010.03.005

    Article  Google Scholar 

  26. Pettersen, S. H., Wik, T. S., & Skallerud, B. (2009). Subject specific finite element analysis of stress shielding around a cementless femoral stem. Clinical Biomechanics, 24, 196–202. https://doi.org/10.1016/j.clinbiomech.2008.11.003

    Article  PubMed  Google Scholar 

  27. Ozcivici, E., Luu, Y. K., Adler, B., Qin, Y. X., Rubin, J., Judex, S., et al. (2010). Mechanical signals as anabolic agents in bone. Nature Reviews Rheumatology, 6, 50–59. https://doi.org/10.1038/nrrheum.2009.239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bashiri, A., Sallam, H. E. M., & Abd-Elhady, A. A. (2020). Progressive failure analysis of a hip joint based on extended finite element method. Engineering Failure Analysis, 117, 104829. https://doi.org/10.1016/j.engfailanal.2020.104829

    Article  Google Scholar 

  29. Bergmann, G., Bergmann, G., Deuretzabacher, G., Deuretzabacher, G., Heller, M., Heller, M., et al. (2001). Hip forces and gait patterns from rountine activities. Journal of Biomechanics, 34, 859–871. https://doi.org/10.1016/S0021-9290(01)00040-9

    Article  CAS  PubMed  Google Scholar 

  30. Jacobs, C. R., Levenston, M. E., Beaupré, G. S., Simo, J. C., & Carter, D. R. (1995). Numerical instabilities in bone remodeling simulations: The advantages of a node-based finite element approach. Journal of Biomechanics, 28, 449–459. https://doi.org/10.1016/0021-9290(94)00087-k

    Article  CAS  PubMed  Google Scholar 

  31. Heller, M. O., Bergmann, G., Kassi, J. P., Claes, L., Haas, N. P., & Duda, G. N. (2005). Determination of muscle loading at the hip joint for use in pre-clinical testing. Journal of Biomechanics, 38, 1155–1163. https://doi.org/10.1016/j.jbiomech.2004.05.022

    Article  CAS  PubMed  Google Scholar 

  32. Huiskes, R., Weinans, H., Grootenboer, H., Dalstra, M., Fudala, B., & Slooff, T. (1987). Adaptive bone remodeling theory applied to prosthetic-design analysis. Journal of Biomechanics, 20, 1135–1150.

    Article  CAS  Google Scholar 

  33. Sumner, D. R. (2015). Long-term implant fixation and stress-shielding in total hip replacement. Journal of Biomechanics, 48, 797–800. https://doi.org/10.1016/j.jbiomech.2014.12.021

    Article  CAS  PubMed  Google Scholar 

  34. Oshkour, A. A., Osman, N. A. A., Bayat, M., Afshar, R., & Berto, F. (2014). Three-dimensional finite element analyses of functionally graded femoral prostheses with different geometrical configurations. Materials and Design, 56, 998–1008. https://doi.org/10.1016/j.matdes.2013.12.054

    Article  CAS  Google Scholar 

  35. Manley, P. A., Vanderby, R., Kohles, M. S., Markel, M. D., & Heiner, J. P. (1995). Alterations in femoral strain, micromotion, cortical geometry, cortical porosity, and bony ingrowth in uncemented collared and collarless prostheses in the dog. Journal of Arthroplasty. https://doi.org/10.1016/s0883-5403(05)80102-0

    Article  Google Scholar 

  36. Frost, H. M. (1990). Skeletal structural adaptations to mechanical usage ( SATMU ): 1. Redefining Wolff ’ s Law : The Bone Modeling Problem., 413, 403–413.

    Google Scholar 

  37. Simpson, D. J., Kendrick, B. J. L., Hughes, M., & Rushforth, G. F. (2010). The migration patterns of two versions of the Furlong cementless femoral stem. Radiostereometric Analysis., 92, 1356–1362. https://doi.org/10.1302/0301-620X.92B10.24399

    Article  CAS  Google Scholar 

  38. Camine, V. M., Rüdiger, H. A., Pioletti, D. P., & Terrier, A. (2018). Effect of a collar on subsidence and local micromotion of cementless femoral stems : in vitro comparative study based on micro-computerised tomography. International orthopaedics. https://doi.org/10.1007/s00264-017-3524-0

    Article  Google Scholar 

  39. Perelgut, M. E., Polus, J. S., Lanting, B. A., & Teeter, M. G. (2020). The effect of femoral stem collar on implant migration and clinical outcomes following direct anterior approach total hip arthroplasty. Bone Jt J., 102, 1654–1661. https://doi.org/10.1302/0301-620X.102B12.BJJ-2019-1428.R1

    Article  Google Scholar 

  40. Meding, J. B., Ritter, M. A., Keating, E., & Faris, P. M. (1997). Comparison of collared and collarless femoral components in primary uncemented total hip arthroplasty. Journal of Arthroplasty, 12, 273–280. https://doi.org/10.1016/s0883-5403(97)90023-1

    Article  CAS  Google Scholar 

  41. Yamauchi, Y., Jinno, T., Koga, D., Asou, Y., Morita, S., & Okawa, A. (2012). Comparison of different distal designs of femoral components and their effects on bone remodeling in 1-stage bilateral total hip arthroplasty. Journal of Arthroplasty, 27, 1538–1543. https://doi.org/10.1016/j.arth.2012.01.031

    Article  Google Scholar 

  42. Pawlikowski, M., Skalski, K., & Haraburda, M. (2003). Process of hip joint prosthesis design including bone remodeling phenomenon. Computers & Structures, 81, 887–893. https://doi.org/10.1016/S0045-7949(02)00428-5

    Article  Google Scholar 

  43. Van Rietbergen, B., Huiskes, R., Weinans, H., Sumner, D. R., Turner, T. M., & Galante, J. O. (1993). The mechanism of bone remodeling and resorption around press-fitted THA stems. Journal of Biomechanics, 26, 369–382. https://doi.org/10.1016/0021-9290(93)90001-U

    Article  PubMed  Google Scholar 

  44. Turner, A. W. L., Gillies, R. M., Sekel, R., Morris, P., Bruce, W., & Walsh, W. R. (2005). Computational bone remodelling simulations and comparisons with DEXA results. Journal of Orthopaedic Research, 23, 705–712. https://doi.org/10.1016/j.orthres.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  45. Mehboob, H., Kim, J., Mehboob, A., & Chang, S. H. (2017). How post-operative rehabilitation exercises influence the healing process of radial bone shaft fractures fixed by a composite bone plate. Composite Structures, 159, 307–315. https://doi.org/10.1016/j.compstruct.2016.09.081

    Article  Google Scholar 

  46. Fill, P. A., & Orth, M. (1998). Bone remodelling. British Journal of Orthodontics, 25, 101–107. https://doi.org/10.1016/j.medengphy.2011.12.001

    Article  Google Scholar 

  47. Herrera, A., Panisello, J. J., Ibarz, E., Cegoñino, J., Puértolas, J. A., & Gracia, L. (2008). Densitometric and finite-element analysis of bone remodeling further to implantation of an uncemented anatomical femoral stem. Rev Española Cirugía Ortopédica y Traumatol, 52, 269–282. https://doi.org/10.1016/S1988-8856(08)70109-3

    Article  Google Scholar 

  48. Weinans, H., Sumner, D. R., Igloria, R., & Natarajan, R. N. (2000). Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models. Journal of Biomechanics, 33, 809–817. https://doi.org/10.1016/S0021-9290(00)00036-1

    Article  CAS  PubMed  Google Scholar 

  49. Fischer, K. J., Carter, D. R., & Maloney, W. J. (1992). In vitro study of initial stability of a conical collared femoral component. J Arthroplast., 7, 389–395. https://doi.org/10.1016/S0883-5403(07)80029-5

    Article  Google Scholar 

Download references

Acknowledgements

The work has been supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) – Finance Code 001; and K.C. Wang Magna Fund in Ningbo University (2019).

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ievgen Levadnyi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Ningbo university.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levadnyi, I., Gubaua, J.E., Dicati, G.W.O. et al. Comparative Analysis of the Biomechanical Behavior of Collar and Collarless Stems: Experimental Testing and Finite Element Modelling. J. Med. Biol. Eng. 41, 844–855 (2021). https://doi.org/10.1007/s40846-021-00652-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-021-00652-w

Keywords

Navigation