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Abstract
Purpose Carpal tunnel syndrome is one of the common peripheral neuropathies. For magnetic resonance imaging, segmen-
tation of the carpal tunnel and its contents, including flexor tendons and the median nerve for magnetic resonance images is 
an important issue. In this study, a convolutional neural network (CNN) model, which was modified by the original Deep-
Labv3 + model to segment three primary structures of the carpal tunnel: the carpal tunnel, flexor tendon, and median nerve.
Methods To extract important feature maps for segmentation of the carpal tunnel, flexor tendon, and median nerve, the 
proposed CNN model termed modified DeepLabv3 + uses DenseNet-121 as a backbone and adds dilated convolution to 
the original spatial pyramid pooling module. A MaskTrack method was used to refine the segmented results generated by 
modified DeepLabv3 + , which have a small and blurred appearance. For evaluation of the segmentation results, the average 
Dice similarity coefficients (ADSC) were used as the performance index.
Results Sixteen MR images corresponding to different subjects were obtained from the National Cheng Kung University 
Hospital. Our proposed modified DeepLabv3 + generated the following ADSCs: 0.928 for carpal tunnel, 0.872 for flexor 
tendons and 0.785 for the median nerve. The ADSC value of 0.8053 generated the MaskTrack that 0.22 ADSC measure 
were improved for measuring the median nerve.
Conclusions The experimental results showed that the proposed modified DeepLabv3 + model can promote segmentations 
of the carpal tunnel and its contents. The results are superior to the results generated by original DeepLabv3 + . Additionally, 
MaskTrack can also effectively refine median nerve segmentations.

Keywords Magnetic resonance · Segmentation · Modified DeepLabv3 + · Carpal tunnel syndrome · Convolutional neural 
networks · MaskTrack

1 Introduction

The carpal tunnel is a passageway in the wrist formed by the 
carpal bone and the transverse carpal ligament. A diagram 
of the carpal tunnel (e.g. Fig. 1) is bounded by the transverse 

carpal ligament on the volar side and eight carpal bones 
on the dorsal side. The carpal tunnel contains nine flexor 
tendons and a median nerve that extends from the forearm 
into the hand. Carpal tunnel syndrome (CTS) is the most fre-
quently encountered type of peripheral compression neurop-
athy, which is CTS is characterized by median nerve entrap-
ment at the wrist, resulting in median nerve dysfunction. 
This phenomenon results in a thickened transverse carpal 
ligament, fibrotic changes of the subsynovial connective tis-
sue, and a narrowed space of the carpal tunnel. This causes 
compression or entrapment of the median nerve, which fur-
ther leads to variable hand pain and paralysis [1]. Medical 
information regarding soft-tissue interactions within the car-
pal tunnel can be obtained from magnetic resonance imag-
ing (MRI). Carpal tunnel segmentation from MRI images 
remained an important evaluation of CTS [2]. Presently, 
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manual segmentation is the most commonly used approach 
for sketching the structures of flexor tendons and the median 
nerve, through it is time-consuming and operator-dependent.

MRI had been widely used to diagnose CTS, which has 
made valuable contributions to accurate predictions of the 
location and types of regions of the carpal tunnel in clinical 
medicine [3]. However, the carpal tunnel is surrounded by 
several carpal bones and tightly enclose the median nerve 
and flexor tendons such that segmentation of the carpal tun-
nel and its contents is susceptible to artifacts e.g., ambigu-
ous boundaries of flexor tendons and the median nerve on 
MR images. Two different categories have been proposed 
for the segmentation of serial cross-section carpal MRI 
images: region [4] and model-based methods [5–7]. The 
region-based method only considers intensity characteristics, 
such as intensity homogeneity, of the target tissues in the 
segmentation processing, but always fail to differentiate tis-
sue with similar intensity of regions in carpal MRI images. 
Model-based methods can achieve more stable segmentation 
due to the constraints of priori knowledge, which usually 
require user-intervention to put the model in a good initial 
condition. Until now, no adequate solution exists for auto-
matically segmenting the flexor tendons and median nerve 
within the carpal tunnel.

Recently, convolutional neural networks have been used 
to develop medical image segmentation of multimodal medi-
cal images [8, 9], which have been a widely-used method for 
automatic tumor segmentations of brain [10, 11], liver [12], 
breast [13], lung [14], rectal [15] and peripheral nerves [16]. 
An interesting CNN model, called the DeepLabv3 + [17], 
uses atrous convolution to extract the feature map at an 

arbitrary resolution based on the encoder-decoder structure 
for semantic image segmentation of a single image. Fig-
ure 2 shows the structure of DeepLabv3 + . In general, the 
DeepLabv3 + augments the original spatial pyramid pool-
ing module that probes convolutional features at multiple 
scales by using the atrous convolution with different rates. 
ResNet-101[18] or Xception [19] were the backbones to 
extract dense feature maps by atrous convolution.

To our best knowledge, this paper represents the first 
attempt at fully-automatic segmentation of the flexor tendons 
and median nerve of the carpal tunnel from the serial cross-
sectioned MRI images using a CNN. The CNN, i.e., the 
modified DeepLabv3 + , inputs a pair of T1 and T2 images to 
separate the regions of the carpal tunnel, flexor tendons and 
median nerve. Detail of the modified DeepLabv3 + model is 
shown in Sect. “Materials and Methods” Sect. “Experimen-
tal Results and Discussion” contains experimental results 
and associated discussions. Finally, conclusions are pre-
sented in the Sect. “Conclusion”.

2  Materials and Methods

Nine flexor tendons and one median nerve pass through 
the carpal tunnel in the wrist. These tissues can provide 
important clinical information, such as e changes in size or 
intensity of tissues, for measuring the severity of CTS. In 
this paper, a fully automatic segmentation method based on 
the modified DeepLabv3 + model is proposed for separating 
the regions of the carpal tunnel, flexor tendon, and median 
nerve from MR cross-section images. A flow chart of the 

Fig. 1  Structure of the carpal 
tunnel containing nine flexion 
tendons and the median nerve 
[1]
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proposed method (e.g. Fig. 3) is shown that the proposed 
method is divided into pre-processing, segmentation of the 
DeepLabv3 + , and refinement by MaskTrack and post pro-
cessing. The ensemble model uses the MaskTrack method 
to refine the segmentation results of median nerve. In each 
MRI image, the segmented result of the median nerve is 
a complete connected component and satisfies reasonable 
conditions, which is selected as a reference mask, otherwise, 
the other results are denoted into dropped masks. Intensity 
of corresponding position in each dropped mask is generated 
by averaging the intensities of its nearest reference masks. 
Finally, all the results of the dropped and reference masks 
are integrated to establish the final segmentation results of 
median nerve of MRI images. Detail of ensemble model is 
described in Sect. 2.4.

2.1  Experimental Materials and MR mage 
Acquisition

The sixteen16 MR section images were obtained from the 
National Cheng Kung University Hospital. The instrument 
used was a Philips Ingenia 3.0 T MR system [20]. During 

imaging, subjects were asked to lie above the instrument’s 
platform and extend one hand forward, in the so-called 
superman position. Thirty-six T1 and corresponding T2 
cross-section MR images of each subject in the trans-
verse view were acquired such that the interval of adja-
cent slices was 2 mm in thickness. Among these slices, 
approximately 16 to 18 slice images contained the carpal 
tunnel. As shown in Fig. 4a and b, the T1 images were 
always sensitive to fat, such that the regions composed of 
fat are relatively bright; on the other hand, T2 images were 
sensitive to water, which serve as useful signals for iden-
tifying regions of edema. In total, 16 MR section images 
were captured from eight normal cases and eight patients 
with CTS. In the experiments, in order to efficiently train 
the modified DeepLabv3 + and to evaluate its performance, 
we indicated the start frame and the stop frame of each 
MR section image. The start frame is the one backward 
three from the distal carpal tunnel; the stop frame is the 
one backward three from the proximal carpal tunnel. The 
frames between the start and stop frames were annotated 
by a physician.

Fig. 2  Structure of Deep-
Labv3 + [17]

Fig. 3  Flow chart of tissue 
segmentation in magnetic reso-
nance sequence
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2.2  Data Preprocessing

Because of the different parameter settings of the acquired 
machine, the T1 and corresponding T2 images usually 
appear inconsistently in different sizes of pixel, intensity 
distribution, and the position of carpal tunnel. To overcome 
this inconsistency, several data preprocessing procedures 
were applied.

2.2.1  Data Normalization

Raw MR images have many of data inconsistency problems. 
A widely-used solution of these problems is data normaliza-
tion which usually gives the training of CNN models faster 
convergence. Obviously, the original T1 and T2 images (e.g. 
Fig. 5a and b) show the lack consistency in their intensity 
distributions. We used Eq. (1) to adjust the intensity of each 
MR cross-section image.

where Vnew denotes the normalized factor, the Vold and 
V99 denote the original intensity and the 99 percentile of 
intensity distribution, respectively. The normalized inten-
sity of each pixel is multiplied by Vnew . The normalized 
results (e.g. Fig. 5c and d) look more consistent in intensity 

(1)Vnew = min

{
Vold

V99

, 1

}

distributions. In order to normalize the pixel size, we first 
cropped a 100 × 100 mm region in the center of each MR 
image in DICOM format; then we used bilinear interpola-
tions to resize the cropped region into 512 × 512 pixels for 
lateral processing.

2.2.2  Image Registration

Generally, the different weighted MR images revealed slight 
differences, such as in intensity and contour features. Image 
registration is a commonly used method to overcome this 
problem. A flow chart of MRI image registration is shown 
in Fig. 6.

A possible reason for imaging differences between T1 
and T2 weighted images is that a patient’s wrists may move 
due to breathing as a result of the long time it often takes to 
obtain T2-weighted images relative to T1-weighted images. 
To precisely integrate the information from the T1 and T2 
images, alignment of the T2 images with the correspond-
ing T1 images was required. We registered the two differ-
ent weighted MR images by using the affine transformation, 
which maximizes the correlation between the T1 image and 
the transformed T2 image based on the gradient descent 
method.

Intensity of the flexor tendon is always much less than the 
surrounding tissue in both T1 and T2 images; thus, the flexor 
tendon region could be roughly extracted by a single thresh-
old. Based on experimental experience, we set the threshold 

Fig. 4  Transverse view of the wrist in MR image sequence
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to 0.125 for both T1 and T2 images. Our proposed method 
automatically selects a region of the flexor tendon rather 
than full image for establishing the correspondence.

The normalized cross correlation (NCC) is defined 
as the fitness function for the registration between the 
regions of T1 and T2 MR images. Equation (2) describes 

the normalized cross correlation, where S denotes the set 
of registered regions, x denotes a pixel in the T1 image, 
y denotes a pixel in the original T2 image, x denotes the 
mean intensity of sampled points in the T1 image and y 
denotes the mean intensity of sampled points in the T2 
image.

Fig. 5  MR images before and after data normalizations
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A stochastic gradient decent with momentum [21], as 
shown in Eqs. (3) and (4), is then used to update the param-
eters of affine transformation, where ⇀

aij denotes the updated 
direction. Based on experimental experience, t is the itera-
tive number, the learning rate lr is set to 1, the momentum 
m is set to 0.9, and the weighting w is set to {

0.01, if j ∈ {1, 2}

1, if j = 3
.

Equation (5) describes the affine transformation used. The 
aij (i = 1,2; j = 1,2,3) is a parameter vector and is initialized 

with aij =
{

1, ifi = j

0, otherwise
 , T =

⎡⎢⎢⎣

1 0 −256

0 1 −256

0 0 1

⎤⎥⎥⎦
 is used to trans-

form the position of origin, (x, y) is the position of the pixel 
in original T2 images and (x�, y�) is the position after the 
transform.

2.2.3  Region of Interest Selection

In order to reduce unnecessary areas, the input images are 
cropped to a 224 × 224 region. In the training phase, the 
center of the carpal tunnel can be found by the ground truth, 
it is also assigned as the center of the cropped region. Then, 
the cropped images perform data augmentation by rotation, 
horizontally flipping, and image- intensity scaling. In the 
inference phase, since the new data have no labeled ground 

(2)NCC =

∑
i∈S

�
xi − x

��
yi − y

�
�∑

i∈S

�
xi − x

�2�∑
i∈S

�
yi − y

�2

(3)at+1
ij

= at
ij
+ lr ×

⇀

aij

(4)
⇀

aij ← m ×
⇀

aij + (1 − m) ×
�NCC

�at
ij

× w

(5)T−1

⎡⎢⎢⎣

a11 a12 a13
a21 a22 a23
0 0 1

⎤⎥⎥⎦
T

⎡⎢⎢⎣

x

y

1

⎤⎥⎥⎦
=

⎡⎢⎢⎣

x�

y�

1

⎤⎥⎥⎦

truth, the center of gravity of wrist (CGW) is first used esti-
mate the center of carpal tunnel (CCT). A distribution map 
shown in Fig. 7 records the coordinate of the center of grav-
ity for all of the training data generated. This result approxi-
mately shows that the center’s position of the carpal tunnel 
is above the center of the wrist. However, this estimated 
region of interest (ROI) may not be precise enough to cover 
the entire carpal tunnel region. Therefore, we used Deep-
Labv3 + to segment the carpal tunnel in this ROI; we also 
computed the center of the segmented carpal tunnel, which 
was used to crop a precise ROI for the final segmentation 
of DeepLabv3 + . Further, the center of gravity of the seg-
mented median nerve from DeepLabv3 + was used to crop 
a ROI for MaskTrack.

2.3  Segmentation of Modified DeepLabv3 + Model

DeepLabv3 + is a powerful CNN model based on an 
encoder-decoder structure for semantic segmentation. 
DeepLabv3 + extended the structure of DeepLab v3 [22] 
by adding a simple decoder structure that merges the low 
and high-level features and up-samples the feature map by 
bilinear interpolation. An important technique performed 

Fig. 6  Fow chart of the registra-
tion process
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by DeepLabv3 + is the atrous convolution, which increases 
the interval between the elements in the kernel to extend 
the field of view in a single convolution without additional 
calculations. The different dilated rate of atrous convolu-
tions is shown in Fig. 8, 2 where the black squares denote 
the kernel of convolution.

The input frame of the modified DeepLabv3 + con-
catenates the T1 and its registered T2 images; the output 
channels of the output layer are background, carpal tunnel, 
flexor tendon, and median nerve. Figure 9 shows the struc-
ture of the modified DeepLabv3 + . At the latent space of 
the model, four different dilated rates of atrous convolution 
and an adaptive average pooling are used to perform spatial 
pyramid pooling, which is called “atrous spatial pyramid 
pooling” (ASPP). ASPP provides a fusion of feature maps 
in different field of view without additional computation. In 
this ASPP, the dilated rates of atrous convolution in ASPP 
are 1, 2, 3, and 4.

The original backbone of the DeepLabv3 + is the 
ResNet-101 [18] and Xception [19], in which several 

convolutions are replaced by atrous convolution with dif-
ferent dilated rates. In the modified DeepLabv3 + method, 
DenseNet-121 [6] is used as the backbone of DeepLabv3 + . 
According to the original architecture, atrous convolutions 
with different dilated rates were used in several dense 
blocks. Details of the DenseNet-121 architecture are shown 
in Table 1. The average pooling layers in transition layer 2 
and 3 were removed to prevent information for small objects. 
Finally, following input of the stacked T1 and T2 images, the 
proposed model predicted the segmentation results, i.e., are 
carpal tunnel, flexor tendon, median nerve and background.

2.4  Ensemble Modeling

MaskTrack uses previously predicted results as training 
data for segmenting the next frame in the problem of video 
tracking. The current predicted results will be regarded 
as references in the next timestamp for segmentation. In 
this paper, the MaskTrack is used as a fine-tuned model to 
adjust the median nerve segmentation results generated by 

Fig. 8  Different dilated rate of 
atrous convolution

Fig. 9  Architecture of the modified DeepLabv3 + 
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DeepLabv3 + . More precisely, the proposed modified Dee-
pLabv + 3 is used as the main architecture; however, Mask-
Track is used to refine the prediction of the median nerve 
generated by DeepLabv3 + .

Deep supervision [23–25] supervises the hidden layers 
of the model and can speed up its convergence and over-
come the problem of vanishing gradients. DeepLabv3 + uses 
a large number of trainable parameters at ASPP in latent 
indoor space to train this model successfully. The deep 
supervision path was added after the 1 × 1 convolution 
behind ASPP, as shown in Fig. 9. The channel size of the 
high-level feature map was reduced to the output channel 
size and the resolution was up-sampled by bilinear inter-
polation to be the same as the input shape. Both the deep 
supervised output and final output were compared with the 
ground truth to obtain a loss; then the model was updated.

In order to further improve performance of the median 
nerve segmentation, a MaskTrack model was used to obtain 
more precise segmentation results by integrating the infor-
mation of adjacency frames. The input of the MaskTrack 
model is a three-channel image that contains the target T1 
image, corresponding T2 image, and reference mask of the 
median nerve.

The decision of the reference mask of each pair of T1 and 
registered T2 images is important in the use of MaskTrack. 
The decision is based on three stages as shown in Fig. 10. In 

Table 1  Structure of the modified DenseNet-121

Layers Output size Modified DenseNet-121

Convolution 112 × 112 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool, stride 2

Dense block 1 56 × 56
256 channels

[
1 × 1 conv

3 × 3 conv

]
× 6

Transition layer 1 28 × 28 1 × 1 conv

2 × 2 average pool, stride 2

Dense block 2 28 × 28
[
1 × 1 conv

3 × 3 conv

]
× 12

Transition layer 2 28 × 28 1 × 1 conv

Dense block 3 28 × 28
[

1 × 1 conv

3 × 3 conv, dilated rate 2

]

28 × 28
[
1 × 1 conv

3 × 3 conv

]
× 23

Transition layer 3 28 × 28 1 × 1 conv

Dense block 4 28 × 28
1024 channels

⎡⎢⎢⎢⎢⎢⎣

1 × 1conv

3 × 3conv, dilatedrate2

1 × 1conv

3 × 3conv, dilatedrate4

1 × 1conv

3 × 3conv, dilatedrate2

⎤⎥⎥⎥⎥⎥⎦
28 × 28

[
1 × 1 conv

3 × 3 conv

]
× 13

Fig. 10  Proposed ensemble 
model
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the first stage, all segmentation results of the median nerve 
in the MRI images are collected from the modified Deep-
Labv3 + as candidate masks; then the mask filter is used to 
select appropriate candidates that meet the following three 
criteria: uniqueness, existence, and continuity. In order to 
satisfy uniqueness, the possible masks of a median nerve, 
which have two or more connected components are dropped, 
and then the sizes of the median nerve are re-calculated 
based on our used dataset. In general, the minimum size 
of the median nerve and average size of the median nerve 
are approximately 130 and 189 pixels, respectively. Without 
loss of generality of existence, if the median nerve size is 
less than 100 pixels, then the corresponding possible mask 
is dropped in order to meet the existence criterion. In order 
to satisfy the criterion of continuity, if the average of inter-
section of unions (IOU) of the current possible mask and 
its adjacency possible masks is less than T  , then the current 
possible mask will also be dropped. However, the selec-
tion of the IOU threshold is critical. If the threshold is too 
large, many possible masks will be dropped; in contrast, the 
remaining masks are not sufficiently accurate. MaskTrack 
generates larger mistakes when these candidates are used as 
the reference masks.

In experiments, the validation data are used to select 
the IOU threshold (Fig. 11). A comparison of the average 
Dice similarity coefficient (ADSC) (e.g. Fig. 11a) under 
different IOU thresholds of the resulting segmentation of 
the modified DeepLabv3 + is shown. The dropped rate 
(the ratio of dropped) under the different IOU thresholds 
(e.g. Fig. 11b) did not satisfy the afore-mentioned three 
criteria to the number of all possible masks. In Fig. 11, 
the ADSC is maximal as the IOU threshold is 0.3 and 
the corresponding dropped rate is approximately 0.2. It 
seems that the dropped rate violently increased when the 
IOU threshold was larger than 0.3. Therefore, we selected 
the IOU threshold to be 0.3 in order to filter out the worse 

candidate masks. In other words, the remaining candidates 
that meet the criteria of uniqueness, existence, and conti-
nuity are called “reference marks”, while, the other masks 
are called “dropped masks”.

The second stage is to refine the dropped frames of a 
median nerve by using the DeepLabv3 + with thr Mask-
Track model. Bi-directional refinement was applied, as 
shown in Fig. 10. The resulting gray frames were retained 
as the reference mask. The gray frames represent the final 
results of the ensemble mode. The dropped frame needs 
further decision, which is based on the following mecha-
nism. The reference mask and its T1 and registered T2 MR 
images are used as an input to generate the next predic-
tion of dropped frames. If the next mask is a gray frame, 
the prediction will become the next reference mask for 
the following prediction. These green boxes are filled up 
by using the nearest predictions in a bi-directional man-
ner. More precisely, one prediction is used to forwardly 
or backwardly fill up the predictions of green boxes until 
another gray box occurs. The final stage is to average the 
forward and backward predictions as the final results of 
the green frames in the ensemble model.

Training of the modified DeepLabv3 + and MaskTrack 
is independent. The Adam optimizer [24], which records 
the first derivative of gradient to smooth the training pro-
cess, is used in both models. The batch size, momentum 
and weight decay are assigned as 24, 0.9, and 1 ×  10–3, 
respectively. The models are trained for 300 epochs, at 
most. The weight of backbone that was pre-trained on Ima-
geNet [25] is fixed before 15 epochs. In the first 100 itera-
tions, the learning rate increased linearly from 1 ×  10–5 to 
1 ×  10–3 and then remained stable at 1 ×  10–3. At the 210th 
and the  270th epochs, the learning rate was divided by 10. 
Equation (6) describes the learning rate in the entire train-
ing time. The t is defined as the number of epochs:

Fig. 11  Metrics compared with 
the IOU threshold
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Equation  (7) describes the IOU loss function, where 
N denotes the batch size, C denotes the number of class, 
GTc ∈ {0,1} denotes the ground truth at class c , SRc ∈ [0,1] 
denotes the segmentation results at class c , and DSRc ∈ [0,1] 
denotes the deep supervised segmentation results at class c.

2.5  Post‑processing

The post-processing stage ensures the presence and continuity 
of the median nerve in the segmentation result. In all frames, 
each region of the segmented median nerve should be a con-
nected component; thus, the longest continuous segmentation 
result is considered to be the correct position of the median 
nerve. Extending these correct positions, the disconnected 
component that is not continuous with the correct position in 
adjacency frames is moved in order to obtain the clear median 
nerve regions.

3  Experimental Results and Discussion

To measure the accuracy of the segmentation of our proposed 
method, all segmented results were compared with the ground 
truth, as labeled by an expert. The experimental data consist 
of the data from several patients and normal subjects. Four 
metrics for measuring segmentation were used to evaluate 
the performance of the proposed method, which are average 
recall (AR), average precision (AP), average Dice similarity 
coefficients (ADSC) and average Hausdorff distance (AHD), 
which are shown in Eqs. (8), (9), (10), and (11), respectively.

(6)learning rate =

⎧
⎪⎪⎨⎪⎪⎩

t+1

100
× 10−3, if t < 100

10−4, if 210 < t ≤ 270

10−5, if 270 < t ≤ 300

10−3, otherwise

(7)

loss
IOU

=
1

N

N∑
n=0

C∑
c=0

[
GT

c
× SR

c(
GT

c
+ SR

c

)
−
(
GT

c
× SR

c

)

+
GT

c
× DSR

c(
GT

c
+ DSR

c

)
−
(
GT

c
× DSR

c

)
]

(8)AR =
1

N

N∑
i=1

TPi

TPi + FNi

(9)AP =
1

N

N∑
i=1

TPi

TPi + FPi

The Hausdorff distance is described in Eq.  (12). N 
denotes the number of slice images of each patient, TP 
denotes the truth positive, FN  denotes the false negative, 
FP denotes false positive, BGT  denotes the boundary points 
of ground truth, and BSR denotes the boundary points of 
segmentation results. The AR, AP, and ADSC evaluate the 
similarity between the segmentation results and the ground 
truth, where a higher value indicates better segmentation. 
The AHD is used to evaluate the distance between the 
boundary, where a lower value indicates better results.

To obtain a fair comparison, a four-fold cross validation 
was used in each experiment. The four-fold cross validation 
divides all training MRI images into four folds in which 
three folds are used as training data and the remaining one is 
used to test the model and record the results. Repeat testing 
was conducted four times, which generated the test results 
of all the materials. In addition, we picked one-third of the 
training set as the validation set to select the parameters of 
the modified DeepLabv3 + model.

3.1  Ablation Experiment for Preprocessing

In order to confirm the necessity of preprocessing, differ-
ent kinds of data were used as input to the model and the 
resulting performances were compared. The preprocessing 
steps include normalization and registration. For normaliza-
tion, the model training and testing done with the T1 images 
DICOM files were compared with the model training and 
testing performed on the normalized T1 images. For reg-
istration, input stacked T1 and T2 images with or without 
alignment were compared. In addition, for multi-modality, 
simply input T1 images or the registered T2 images were 
also compared. Table 2 shows the four-fold cross-valida-
tion results of these experiments expressed as the mean 
and standard deviation of each metrics. DT1 denotes the 
DICOM format T1 images and, RT2 denotes the registered 
T2 images. All experiments were performed by modified 
DeepLabv3 + with output stride 16 and deep supervision.

The results in Table 2 show that the choice of T1 and its 
corresponding registered T2 image can effectively improve 
segmentation performance. More precisely, the ADSC 

(10)ADSC =
1

N

N∑
i=1

2 × TPi

2 × TPi + FPi + FNi

(11)AHD =
1

N

N∑
i=1

HD
(
BGTi,BSRi

)

(12)

HD(GT , SR) = max

{
sup

x∈BGT

inf
y∈BSR

x − y, sup
x∈BGT

inf
y∈BSR

x − y

}
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measures of this choice were 0.930 (for carpal tunnel), 
0.873 (for flexor tendon), and 0.767 (for median nerve). 
Apparently, the use of T1 and the registered T2 images 
is the best among the four possible choices, thus, the two 
weighted images were concatenated as inputs in the follow-
ing experiment.

3.2  Classification Comparison by Using Different 
Backbones

Different backbones are implemented in order 
to determine the best choice of our proposed 

modified DeepLabv3 + model. The first method is the origi-
nal U-Net; the second architecture is the Dense U-Net with 
DenseNet-121 as the backbone. The third architecture is 
DeepLabv3 + with ResNet-101 as the backbone. The final 
one is our proposed CNN model which is the modified 
DeepLabv3 + using modified DenseNet-121 as the back-
bone. Comparisons of the three target tissues are shown in 
Tables 3–5. Finally, we also compared the performances 
when the modified DeepLabv3 + is constructed with and 
without deep supervision. The results are shown in Table 6. 
In these tables, OS denotes the output stride of the backbone 
and DS denotes deep supervision.

Table 2  The ablation 
experiment with different kinds 
of input: “○” represents used 
and “╳”is represents used

Target DT1 T1 T2 RT2 AR AP ADSC AHD

Carpal tunnel ○ ╳ ╳ ╳ 0.919 ± 0.024 0.934 ± 0.015 0.924 ± 0.012 1.501 ± 0.369
╳ ○ ╳ ╳ 0.919 ± 0.026 0.936 ± 0.015 0.926 ± 0.011 1.487 ± 0.323
╳ ○ ○ ╳ 0.919 ± 0.025 0.941 ± 0.017 0.928 ± 0.011 1.509 ± 0.368
╳ ○ ╳ ○ 0.930 ± 0.018 0.933 ± 0.014 0.930 ± 0.010 1.663 ± 0.763
╳ ╳ ╳ ○ 0.913 ± 0.033 0.933 ± 0.020 0.920 ± 0.016 1.584 ± 0.447

Flexor tendon ○ ╳ ╳ ╳ 0.843 ± 0.035 0.845 ± 0.041 0.841 ± 0.017 1.654 ± 0.335
╳ ○ ╳ ╳ 0.847 ± 0.037 0.845 ± 0.041 0.843 ± 0.020 1.657 ± 0.393
╳ ○ ○ ╳ 0.850 ± 0.046 0.860 ± 0.040 0.852 ± 0.032 1.626 ± 0.362
╳ ○ ╳ ○ 0.882 ± 0.034 0.869 ± 0.037 0.873 ± 0.020 1.669 ± 0.702
╳ ╳ ╳ ○ 0.851 ± 0.036 0.876 ± 0.037 0.860 ± 0.026 1.671 ± 0.397

Median nerve ○ ╳ ╳ ╳ 0.736 ± 0.107 0.783 ± 0.084 0.735 ± 0.055 1.712 ± 0.886
╳ ○ ╳ ╳ 0.744 ± 0.116 0.785 ± 0.068 0.740 ± 0.065 1.685 ± 1.239
╳ ○ ○ ╳ 0.729 ± 0.107 0.825 ± 0.084 0.749 ± 0.086 2.286 ± 2.759
╳ ○ ╳ ○ 0.757 ± 0.097 0.823 ± 0.071 0.767 ± 0.088 2.795 ± 3.133
╳ ╳ ╳ ○ 0.714 ± 0.116 0.783 ± 0.076 0.725 ± 0.103 4.202 ± 5.211

Table 3  Comparison of carpal tunnel segmentation by different models

Model Backbone OS AR AP ADSC AHD

U-Net – 16 0.887 ± 0.048 0.947 ± 0.017 0.913 ± 0.026 2.404 ± 0.824
Dense U-Net DenseNet-121 8 0.922 ± 0.027 0.936 ± 0.022 0.927 ± 0.010 1.843 ± 0.560
DeepLabv3 + ResNet-101 16 0.934 ± 0.018 0.919 ± 0.017 0.925 ± 0.012 3.052 ± 3.039

8 0.928 ± 0.020 0.928 ± 0.016 0.926 ± 0.012 1.830 ± 0.695
Modified DeepLabv3 + Modified DenseNet-121 16 0.918 ± 0.031 0.938 ± 0.016 0.925 ± 0.019 2.014 ± 0.907

8 0.923 ± 0.025 0.937 ± 0.017 0.928 ± 0.011 1.583 ± 0.634

Table 4  Comparison of flexor tendon segmentation by different models

Model Backbone OS AR AP ADSC AHD

U-Net – 16 0.869 ± 0.039 0.880 ± 0.040 0.871 ± 0.024 2.192 ± 0.796
Dense U-Net DenseNet-121 8 0.881 ± 0.026 0.869 ± 0.038 0.872 ± 0.020 1.887 ± 0.591
DeepLabv3 + ResNet-101 16 0.877 ± 0.036 0.870 ± 0.043 0.870 ± 0.020 2.873 ± 3.150

8 0.865 ± 0.037 0.878 ± 0.039 0.868 ± 0.020 1.885 ± 0.831
Modified DeepLabv3 + Modified DenseNet-121 16 0.865 ± 0.034 0.884 ± 0.036 0.875 ± 0.020 1.916 ± 1.033

8 0.855 ± 0.033 0.889 ± 0.040 0.882 ± 0.019 1.598 ± 0.549
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Based on the results shown in Tables 3, 4, 5 the per-
formance of the modified DeepLabv3 + is the best. It is 
superior to the original DeepLabv3 +  + with the backbone 
of ResNet-101. The results show that out modification may 
provide some benefits, especially in the segmentation of the 
median nerve. However, the Dense U-Net did not generate 
better results, but it was only slightly worse as compared 
with DeepLabv3 + ; that is to say, the difference is not sig-
nificant. In Table 6, additional deep supervision of the modi-
fied DeepLabv3 + can further improve performance. Based 
on these comparison, our proposed architecture surpassed 
many existing architectures in the task of tissue segmenta-
tion in the wrist MR images.

3.3  Classification of Ensemble Model

Table 6, reveals that the ADSC of the median nerve by 
using our proposed modified DeeoLabv3 +  + is only 
0.797. In order to improve the median nerve, the modified 

MaskTrack is further used to correct the segmentation of 
the median nerve from modified DeepLabv3 + . We used 
the ground truth of the first slice as the input reference 
mask and forwardly predicted the next slice. Each time, the 
segmentation results are passed to the next timestamp as 
the new reference mask. Table 7 shows the performances 
of the MaskTrack.

The MaskTrack with an additional reference mask was 
also used to show competitive performance of the addi-
tional reference mask. In order to easily distinguish the 
original MaskTrack method, the change is called the modi-
fied MaskTrack. In order to verify the performance of the 
modified MaskTrack method correction, the results from 
the modified DeepLabv3 + are compared with the refine-
ment results by using the modified MaskTrack. Table 8 
shows the metrics of our proposed ensemble model, in 
which the ADSC measurement of the median nerve seg-
mentation exceeds 0.8053.

Table 5  Comparison of median nerve segmentation by different models

Model Backbone OS AR AP ADSC AHD

U-Net – 16 0.648 ± 0.191 0.823 ± 0.127 0.690 ± 0.171 5.673 ± 7.189
Dense U-Net DenseNet-121 8 0.706 ± 0.127 0.817 ± 0.087 0.730 ± 0.112 4.249 ± 4.102
DeepLabv3 + ResNet-101 16 0.746 ± 0.087 0.854 ± 0.058 0.773 ± 0.066 2.300 ± 1.715

8 0.722 ± 0.121 0.846 ± 0.067 0.747 ± 0.098 2.367 ± 2.564
Modified DeepLabv3 + Modified DenseNet-121 16 0.740 ± 0.119 0.841 ± 0.065 0.765 ± 0.091 2.319 ± 2.950

8 0.784 ± 0.097 0.824 ± 0.070 0.785 ± 0.074 2.320 ± 2.745

Table 6  Deep supervision 
comparison

Target DS AR AP ADSC AHD

Carpal tunnel ╳ 0.923 ± 0.025 0.937 ± 0.017 0.928 ± 0.011 1.583 ± 0.634
○ 0.936 ± 0.020 0.931 ± 0.017 0.932 ± 0.012 1.456 ± 0.491

Flexor tendon ╳ 0.855 ± 0.033 0.889 ± 0.040 0.869 ± 0.019 1.598 ± 0.549
○ 0.868 ± 0.028 0.872 ± 0.034 0.868 ± 0.019 1.532 ± 0.428

Median nerve ╳ 0.784 ± 0.097 0.824 ± 0.070 0.785 ± 0.074 2.320 ± 2.745
○ 0.805 ± 0.090 0.826 ± 0.084 0.797 ± 0.057 1.663 ± 1.071

Table 7  The accuracy of the 
MaskTrack with the ground 
truth of first slice as the mask

Model AR AP ADSC AHD

MaskTrack 0.8445 ± 0.0777 0.7929 ± 0.0910 0.8051 ± 0.0645 1.4018 ± 1.0422

Table 8  Comparison of 
ensemble model of median 
nerve

AR AP ADSC AHD

DeepLabv3 + 0.8059 ± 0.0907 0.8261 ± 0.0848 0.7972 ± 0.0579 1.6638 ± 1.0715
DeepLabv3 +  + MaskTrack 0.8144 ± 0.0801 0.8168 ± 0.0898 0.8020 ± 0.0621 1.3056 ± 0.9244
DeepLabv3 +  + Mask-

Track + Post processing
0.8144 ± 0.0801 0.8222 ± 0.0868 0.8053 ± 0.0598 1.1789 ± 0.8365
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Model Slices of case 9

U-Net

Dense U-Net

DeepLabv3+

(ResNet)

Modified

DeepLabv3+

Model Slices of case 10

U-Net

Dense U-Net

DeepLabv3+

(ResNet-101)

Modified

DeepLabv3+

(a)

(b)

Fig. 12  a The segmentation results for carpal tunnel generated by different models. b The segmentation results for flexor tendons generated by 
different models. c The segmentation results for median nerve generated by different models
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Model Slices of case 7

U-Net

Dense U-Net

DeepLabv3+

(ResNet-101)

Modified

DeepLabv3+

(c)

Fig. 12  (continued)

Case Slices

8

11

14

Fig. 13  Segmentation results of proposed ensemble model
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3.4  Qualitative Results

The segmentation results of several models are shown in 
Fig. 12a–c. The blue contours denote the ground truth; the 
red ones denote the segmentation results. The slices from 
distal to proximal in the labeled section with four slice 
intervals are listed from left to right. It can be observed 
that the segmentation results of U-Net and Dense U-Net 
exist in broken areas and missing slices. In the modified 
DeepLabv3 + , the broken situation is greatly improved. 
Some segmented results of the median nerve by using 
the modified DeepLabv3 + with the ensemble model are 
shown in Fig. 13, apparently, the predicts of median nerve 
conform with theground truth.

4  Conclusion

In this study, we proposed the modified Deep-
Labv3 + model to segment different tissue regions of car-
pal tunnel MR images, which include carpal tunnel, flexor 
tendon, and median nerve from the original DICOM files. 
By using the registered T2 images with the corresponding 
T1 images, the features in both images were integrated 
effectively into the proposed CNN model of the carpal 
tunnel, flexor tendons and median nerve. The resulting 
ADSCs were 0.928 for carpal tunnel, 0.872 for flexor 
tendons and 0.785 for median nerve. Finally, MaskTrack 
technology was applied to improve DeepLabv3 + with 
the backbone of a modified DenseNet-121. Segmentation 
of the median nerve achieved 0.805 for the measure of 
ADSC. In summary, the experimental results indicate that 
the modified DeepLabv3 + is effective for the different tis-
sue segmentations of carpal tunnel MR images.
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