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Abstract
Purpose Electrocardiogram (ECG) signals collected from wearable devices are easily corrupted with surrounding noise and 
artefacts, where the signal-to-noise ratio (SNR) of wearable ECG signals is significantly lower than that from hospital ECG 
machines. To meet the requirements for monitoring heart disease via wearable devices, eliminating useless or poor-quality 
ECG signals (e.g., lead-falls and low SNRs) can be solved by signal quality assessment algorithms.
Methods To compensate for the deficiency of the existing ECG quality assessment system, a wearable ECG signal dataset 
from heart disease patients collected by Lenovo H3 devices was constructed. Then, this paper compares the performance 
of three machine learning algorithms, i.e., the traditional support vector machine (SVM), least-squares SVM (LS-SVM) 
and long short-term memory (LSTM) algorithms. Different non-morphological signal quality indices (i.e., the approximate 
entropy (ApEn), sample entropy (SaEn), fuzzy measure entropy (FMEn), Hurst exponent (HE), kurtosis (K) and power 
spectral density (PSD) features) extracted from the original ECG signals are fed into the three algorithms as input.
Results The true positive rate, true negative rate, sensitivity and accuracy are used to evaluate the performance of 
each method, and the LSTM algorithm achieves the best results on these metrics (97.14%, 86.8%, 97.46% and 95.47%, 
respectively).
Conclusions Among the three algorithms, the LSTM-based quality assessment method is the most suitable for the signals 
collected by the Lenovo H3 devices. The results also show that the combination of statistical features can effectively evalu-
ate the quality of ECG signals.

Keywords Electrocardiogram (ECG) signal quality assessment · Machine learning · Long short-term memory (LSTM) · 
Support vector machine (SVM) · Least-squares support vector machine (LS-SVM)

1 Introduction

According to [1], the total number of people with cardiovas-
cular disease (CVD) in China is approximately 290 million 
people, and it is the main cause of death. However, most 
cardiac arrhythmias cannot be confirmed because they are 
transient, paroxysmal, and sometimes asymptomatic. Hos-
pitals currently use ambulatory devices (e.g., Holter moni-
tors) to provide real-time dynamic monitoring of patients 
with suspected heart disease, typically over 24 h. Although 
they are accurate, these devices are expensive, uncomfort-
able to wear and affect patients’ daily physiological activi-
ties. Studies have shown that continuous electrocardiogram 
(ECG) monitoring for 4 weeks can improve the accuracy 
of detecting intermittent atrial fibrillation (AF) by more 
than 5 percentage points [2] compared to short-term detec-
tion. Over the past few years, a number of wearable devices 
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using textile electrodes have been invented for continuous 
non-invasive ECG monitoring. However, the ECG signals 
collected by wearable devices can be contaminated by envi-
ronmental and electrode displacement noise, leading to a low 
signal-to-noise ratio (SNR). Research also shows that when 
a patient is walking, only 46.7–50.7% of wearable ECG sig-
nals are of high quality, and it is difficult to distinguish the P 
waves, which are an important feature of AF detection, from 
the rest of the signals [2]. These low-quality wearable ECG 
signals may lead to medical misdiagnosis [3]. To address 
this problem, automatic estimation of ECG signal quality 
is required.

Applying machine learning algorithms to ECG qual-
ity assessment has been widely researched [3–11]. The 
improvement in ECG signal quality mainly relied on two 
aspects: classification algorithms and quality assessment 
indices, as indicated in [8–11]. Among these classification 
algorithms, the support vector machine (SVM) algorithm 
is widely applied in the context of ECG quality assessment 
[6–12] and has achieved optimal performance [11, 12]. As 
also mentioned in [8], SVM and neural network algorithms 
showed extremely similar results in ECG signal quality 
assessment. Later, Zhang and his team compared the per-
formance of four ECG quality assessment methods, includ-
ing the random forest (RF), kernel SVM, least-squares SVM 
(LS-SVM), and multi-surface proximal SVM-based oblique 
RF methods, on seven characteristics and their combinations 
[11]; the best performance was achieved by the LS-SVM 
classifier with an accuracy of 92.2%. The above-mentioned 
comparison focused on the ECG recordings from the 2011 
PhysioNet Computing in Cardiology Challenge (PCICC), 
which are routinely collected from wet electrodes. However, 
wearable devices use dry electrodes to collect ECG signals, 
which result in motion artifacts, especially when the subject 
is moving. Such noise will not occur in data recorded by wet 
electrodes. We compared the signal quality assessment per-
formance by using traditional SVM and LS-SVM models for 
wearable ECG signals. Long short-term memory (LSTM) 
networks have achieved excellent results in ECG signal clas-
sification due to the nature of the temporal characteristics 
[13]. However, to our knowledge, it has not been applied to 
the assessment of ECG signal quality. Therefore, an LSTM 
network was also tested in this paper, given its excellent 
performance on continuous temporal signals.

Earlier studies failed to find effective indices for ECG 
signal quality assessment. For example, the overfitting prob-
lem occurred in [7], where the classification accuracy for the 
test set was only 83.6%. Regarding the ECG signal, qual-
ity assessment indices can be divided into morphology and 
non-morphological indices. However, the QRS and P waves 
collected in different environments or patients have vary-
ing morphologies [13], and the classification algorithm has 
a lack of generalizability. Therefore, this study focused on 

non-morphological indices to assess the quality of wearable 
ECG signals (acceptable signals were labelled ‘1’, and unac-
ceptable signals were labelled ‘0’) by considering the signal 
complexity, correlation, Gaussian and power spectral den-
sity (PSD) characteristics, and entropy features (approximate 
entropy (ApEn), sample entropy (SaEn), and fuzzy measure 
entropy (FMEn)), which have been used in quality assess-
ment for a long time to describe the complexity of signals 
[14, 15]. The Hurst exponent (HE) indicates the duration of 
extreme values in the sample, describing the strength of the 
abnormality and the correlation of ECG signals [16]. The 
kurtosis (K) is a measure of a signal’s Gaussianity, defining 
the randomness of the signal [17]. In [8–12], PSD features 
were shown to be effective in evaluating the quality of ECG 
signals. Therefore, PSD features were also included the best 
feature group for the final comparison of the three classifiers 
(i.e., the SVM, LS-SVM and LSTM algorithms).

Recently, studies have focused on wearable ECG signals 
for quality assessment [12, 18]. However, most wearable 
ECG signals are recorded in patients without heart disease 
[18] or in healthy adults [12]. Note that although the authors 
of [12] tested a dataset with five categories (e.g., clear QRS 
complexes (level A), clarity of the majority of QRS com-
plexes (level B), challenges with identifying the QRS com-
plexes in 2–3-s time windows (level C), at least one 4–5-s 
signal episode for identifying QRS complexes (level D) and 
a lower signal quality than level D (level E); for more details, 
see [12]) and then their further classify the five categories 
into acceptable (levels A–D) and unacceptable (level E) cat-
egories. However, if the dataset lacks abnormal ECGs from 
heart disease patients, the system may classify a patient’s 
heart condition as unacceptable during the test. Therefore, 
unlike the above-mentioned studies, this paper focused on 
wearable ECG signals recorded by Lenovo H3 devices from 
patients with heart disease.

In this study, to compensate for the lack of ECG qual-
ity assessment research, a special dataset, WECG-HD, 
was established. Three machine learning algorithms were 
compared to build a better ECG quality assessment system. 
Section 2 describes the data, feature extraction and classi-
fiers we used in the signal quality assessment task. Section 3 
discusses the experimental results. Finally, the conclusions 
are summarized in Sect. 4.

2  Materials and Methods

The quality assessment procedure is displayed in Fig. 1. The 
procedure is divided into three steps: lead-fall detection, fea-
ture and training parameter preparation, and comparison.

To reduce the complexity of the training parameters, 
the wearable ECG signals are normalized, and lead-fall 
detection is performed. According to Hayn’s research [19], 
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if the ECG amplitude remains constant for a pre-set time 
(80%), then lead-fall (i.e., some electrodes are not in con-
tact with the skin or the contact is poor [20]) is assumed 
to have occurred.

To select the optimal statistical features, five statistical 
features (i.e., the ApEn, SaEn, FMEn, HE, and K) calcu-
lated from the normalized signals are divided into eight 
groups considering the Gaussian characteristics, complex-
ity, and correlation to compare the classification perfor-
mance of the three classifiers (i.e., the SVM, LS-SVM, and 
LSTM classifiers). Then, tenfold cross-validation and grid 
search (GS)-based parameter optimization are used to find 
the training parameters of the SVM and LS-SVM classi-
fiers for each of the eight groups. Note that the number of 
hidden layers (HLs) of the LSTM network is also explored.

The test dataset is used to evaluate the performance of 
the eight groups.

2.1  Data Recording and Labelling

The dataset used in this study included 24-h dynamic ECG 
signals collected from 200 heart disease patients (includ-
ing patients with premature beats, AF, arrhythmia, etc.) 
using a Lenovo H3 wearable ECG device (designed by our 
laboratory and Lenovo) with two dry electrodes and two 
wet electrodes at a sampling rate of 400 Hz and a resolu-
tion of 12 bits. The Lenovo H3 device can simultaneously 
collect three-lead ECG signals, although this article used 
only one of the leads for the quality assessment study. The 
Lenovo H3 hardware integrates a simple filter, including 
the suppression of the power frequency and myoelectric 
and breathing interference, etc. The filtering range is from 
0.05 to 40 Hz. The device records ECG signals for 90 h 
and stores them in the data storage module. The ECG data 
will be uploaded to the mobile app once the ECG recorder 

Fig. 1  The quality assessment procedure
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is paired with a smart phone via low-power Bluetooth. The 
waveform, heart rate and other physiological information 
can be displayed in real time by an algorithm embedded 
in a mobile phone.

In total, 9000 single-channel wearable ECG segments 
(10-s each) were randomly selected and labelled by two 
individuals (clinical cardiologists) as acceptable or unac-
ceptable (Table 1). A third clinical heart specialist exam-
ined the results, identified disagreements and made the 
final classification annotation. Typical unacceptable (a–c) 
and acceptable (d, e) signals are shown in Fig. 2. 

2.2  Feature Description

Effective features for ECG signal quality assessment are 
essential for classification. Hence, in this study, five statis-
tical features (selected after the experiment) and the PSD 
features were extracted.

To investigate the performance of the five statistical 
characteristics in quantifying the quality of wearable ECG 

signals by the machine learning algorithms, eight groups 
are created (Table 3). Note that groups 1 and 2 represent the 
Gaussianity and correlation of the wearable ECG signals, 
respectively. Group 3 is the combination of the Gaussianity 
and the correlation. Inspired by [11], the ApEn may reduce 
the accuracy of the final classification, and the other two 
entropies (e.g., the SaEn and FMEn) with and without the 
ApEn are represented by groups 4 and 5, respectively. We 
include the three entropies together with all the possible 
two-feature (K and HE) combinations for groups 6–8.

After the comparison, the PSD features are added to 
the feature group, achieving the best performance for each 
classifier.

2.2.1  Approximate Entropy (ApEn)

The ApEn is a non-linear dynamic parameter for quantifying 
the regularity and unpredictability of time-series fluctuations 
[21]. A positive ApEn value represents the complexity (i.e., 
a regular signal is indicated by a small ApEn value, and 
vice versa) and the possibility of new information in the 
time series.

2.2.2  Sample Entropy (SaEn)

The SaEn is widely used to express the degree of signal reg-
ularity/irregularity [22]. The SaEn is simpler than the ApEn 
and more independent of the recording length. Moreover, 

Table 1  Details of the wearable ECG dataset

Dataset Recordings Time 
length 
(s)

Sampling rate

Acceptable Unacceptable Total

Training 3995 1005 5000 10 400 Hz
Test 3356 644 4000 10 400 Hz

Fig. 2  Typical 10-s signal-
channel wearable ECG signals 
collected by the Lenovo H3 
wearable ECG device: a ‘lead-
fall’, b ‘unacceptable (high 
surrounding noise)’, c ‘unaccep-
table (electrode displacement)’, 
d and e ‘acceptable’
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it exhibits relative consistency under a variety of circum-
stances and eliminates autocorrelation [23].

2.2.3  Fuzzy measure entropy (FMEn)

The SaEn is based on the Heaviside step function with a 
rigid boundary, which may have poor stability [24]. To 
address this problem, the FMEn is utilized to combine both 
local and global similarities in the entropy calculation, giv-
ing a better discrimination ability for time-series data [16].

2.2.4  Hurst Exponent (HE)

The HE is often used to characterize the long-term memory 
of time-series data. A large HE indicates a highly correlated 
sequence. Inspired by [25], in this paper, the HE is calcu-
lated by fitting function (log(R(n)/S(n)), log(n)), where S(n) 
is the standard deviation of the original time series within n 
points and R(n) is defined as follows:

where Wn = (x(1) + x(2) +⋯ + x(n)) − n × � (n = 1, 2, …, 
N), x(n) is the ECG signal of the n-th sample and μ is the 
mean of the original time series across the n points.

2.2.5  Kurtosis (K)

The K value is used to quantify the Gaussian characteristic 
of the signals [16] and is given as follows:

In general, the K value of a signal is equal to 3 for a Gauss-
ian distribution; note that the K value of electromyogra-
phy interference is approximately 5, and therefore, the K 
value for a high-quality normal sinus ECG signal should be 
slightly larger than 5 [26]. The K values for baseline drift 
and 50-Hz power line interference are both < 5 [27].

2.2.6  Power Spectral Density (PSD)

PSD features are widely used for assessing ECG quality 
[8–12]. According to [11], the frequency band of a normal 
ECG signal ranges from 0.05 to 100 Hz. The frequency 
bands of low- and high-frequency noise in the ECG signal 
are 0–1 Hz and 10–1000 Hz, respectively, which means that 
the high-frequency noise can cover the band of a normal ECG 
signal. Here, five PSD features (i.e.,  PSDl: the power of low-
frequency signals between 0 and 1 Hz;  PSDn: the power of the 
sinus signals between 0.05 and 100 Hz;  PSDh: the power of 
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high-frequency signals between 10 and 1000 Hz;  PSDh/n: the 
ratio of  PSDh to  PSDn; and  PSDl/n: the ratio of  PSDl to  PSDn) 
are employed to reflect the energy distribution and the ratio 
of different frequency bands in the original wearable ECG 
signals.

2.3  Assessment Algorithm

In this section, the three classifiers used in this paper are 
introduced.

2.3.1  Support Vector Machine (SVM) Classifier

Linear SVMs are widely used in simple classification prob-
lems. To address the non-linear classification problem of the 
quality of wearable ECG signals, a kernel function is utilized 
by mapping the features to a high-dimensional space, where 
the non-linear problem can be transformed into a constrained 
quadratic optimization problem without a significant increase 
in the computational complexity. Such an optimization prob-
lem is defined as follows [28]:

 where xn is the n-th support vector, w and b are the param-
eters to be calculated, yn is the known label for the training 
vector, and c and k are the penalty parameter and kernel 
function, respectively. Then, the decision function f(x) is 
given as:

 where x is the sample in the test dataset and SV denotes the 
support vectors.

Here, three traditional kernel functions (i.e., the linear 
kernel, polynomial kernel and radial basis function kernel) 
are tested in our study. The best performance is achieved by 
the radial basis function kernel, k (xn, x), which is defined 
as follows:

where σ is the scale parameter [10].

2.3.2  Least‑Squares Support Vector Machine (LS‑SVM) 
Classifier

According to [11], the LS-SVM classifier had a better ability 
to assess the quality of ECG signals in the PCICC dataset 
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than the SVM. The optimization problem of the LS-SVM 
is given as:

where en is the training error of the n-th sample and the other 
parameters are the same as those defined for the SVM. The 
decision function of the LS-SVM is consistent with that of 
the SVM (Eq. (4)).

2.3.3  Long Short‑Term Memory (LSTM) Classifier

LSTM is an algorithm developed on the basis of a recurrent 
neural network, which is mainly composed of three gates: a 
forget (F) gate, an input (I) gate, and an output (O) gate [13]. 
The LSTM formula is given as follows:

where Ft, It and Ot are intermediate vectors at time t, N is 
the length of x, Nh (1 ≤ i ≤ Nh) is the number of HLs and 
sig denotes the sigmoid function. The weight (w, u) and 
bias parameters (b) are updated upon the completion of the 
program. The output vector (ht) of the LSTM classifier at 
time t is:

where ct is the intermediate vector at time t, mt is the activa-
tion function formed by the tanh activation function, and mt 
is defined as follows:

2.4  Classifier Parameter Determination

The performance of the SVM and LS-SVM algorithms is sen-
sitive to the scale parameter σ and the penalty parameter c, as 
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mentioned in [10]. To address this problem, the GS method 
is used to search the (c, σ) combinations in a specified 2D 
parameter space to find the highest classification accuracy. 
The search range for each parameter is from  2–8 to  28. Once 
the obtained optimal parameter is equal to the boundary, the 
range is expanded from  2–10 to  216, and the algorithm is opti-
mized again. To avoid overfitting in the training set due to the 
obtained (c, σ) combination, the search step is set to 1. More 
details can be found in Sect. 3.2.

Once the parameter space is established, k-fold cross-val-
idation is performed. As indicated in [10], a large value for k 
leads to a high computational complexity, and a small value for 
k can make the results insufficiently robust. Therefore, accord-
ing to [29], a usual choice for k is 10.

The performance of the LSTM classifier is affected by the 
number of HLs, as mentioned in [13]. We also performed a 
GS for the number of HLs in the LSTM network in the range 
of 10–200.

2.5  Evaluation Metrics

Four metrics, namely, the true positive rate (PR), true nega-
tive rate (NR), sensitivity (Se) and accuracy (Acc), are used to 
evaluate the performance of each situation and algorithm. In 
addition, Acc-CV (the average Acc across the 10 folds from the 
tenfold cross-validation step) is used in the parameter optimi-
zation process to evaluate the (c, σ) parameter combination. 
The definitions of PR, NR, Se, and Acc are given as follows:

where Ti ({i: i = 1, ‘acceptable’; i = 0, ‘unacceptable’}) 
indicates the number of correctly predicted signals and Fi 
represents the number of incorrectly predicted signals for 
label i.

3  Results and Discussions

The results of this paper are presented in four parts: lead-fall 
detection, parameter optimization, statistical characteristic 
comparison and classifier comparison.

(12)PR =
T1

T1 + F1

× 100%

(13)NR =
T0

T0 + F0

× 100%

(14)Se =
T1

T1 + F0

× 100%

(15)Acc =
T1 + T0

T1 + T0 + F1 + F0

× 100%
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3.1  Lead‑Fall Detection

We report the lead-fall detection results in Table 2. PR and 
NR are calculated for lead-fall detection in the training set 
and the test set. From this table, we can see that a total of 
464 and 179 10-s lead-fall signals are detected in the train-
ing set and the test set, respectively. Note that PR is equal 
to 100% in the training and test sets, while NR is 46.17% 
and 27.8% in the training and test sets, respectively. The 
results can be explained by the fact that poor signal quality 
contains lead-falls, electrode motion noise, motion artefacts 
and muscle artefacts [30].

3.2  Optimized Parameters

In this part, tenfold cross-validation and GS are utilized to 
search for optimal (c, σ) pairs for the SVM and LS-SVM 
classifiers for each of the eight feature groups, where the 
optimal (c, σ) pairs are given in Table 3. It can be seen 
from the parameter optimization results in Table 3 that 
the training parameters (c, σ) corresponding to each fea-
ture group are different since the large differences in the 
feature space are mapped by different inputs for different 
groups. For the same feature group, there is a large dif-
ference between the model trained with and without the 
best parameters because the training parameters (c, σ) can 
affect the solution of the optimal classification hyper-
plane. For example, the 3D view of parameter optimiza-
tion for group 8 (shown in Fig. 3) shows the performance 
change, where Acc-CV is the criterion for evaluating the 
parameter combination. Note that the smallest Acc-CV 

value is approximately 88%, as shown in Fig. 3, because 
of the imbalanced dataset between the composition of the 
‘acceptable’ parts (3356 10-s segments) and the ‘unac-
ceptable’ parts (644 10-s segments) in the test dataset 
(see Table 1).

For the LSTM classifier, we found that a relatively good 
result can be obtained when the number of HLs is equal to 
80.

3.3  Comparison of the Statistical Characteristics

To investigate the effectiveness of the classifiers on quality 
assessment in the WECG-HD dataset, the three algorithms 
(SVM, LS-SVM and LSTM) are trained on the 8th statisti-
cal group with optimal parameters. The details of the qual-
ity assessment on the test set are summarized in Table 4. 
According to this table, all the feature groups except group 
2 succeeded in identifying the ‘unacceptable’ signals, which 
means that a single HE may not be appropriate in this situa-
tion. In groups 1, 2 and 3, we note that these feature groups 
tend to classify signals as ‘acceptable’ since the PR value 
is higher than that of the other groups. According to the 
results of the three classifiers in groups 4 and 5, Acc is 
significantly increased when entropy is used to evaluate the 
ECG signal quality. This finding indicates that entropy is 
an important index for ECG quality assessment. As also 
shown in Table 4, the difference between groups 3 and 4 
indicates that adding the ApEn feature can slightly improve 
the classification accuracy of the SVM classifier (from 95 
to 95.03%) in the quality assessment method used in this 
paper.

For the SVM classifier, the classification performance 
generally improves as the number of features increases. For 
the LSTM classifier, the addition of entropy leads to a sharp 
increase in the classification accuracy, as seen in the com-
parison of the first three groups and the last five groups. 
This finding further illustrates the importance of entropy. 
Among the three classification algorithms, the classifica-
tion accuracies of 90.33%, 90.22%, 92.67%, 91.5%, 91.77%, 
91.25% and 92.65% for feature groups 1 and 3–8 obtained 

Table 2  Lead-fall detection results

Dataset Classification results

Detected lead-fall 
numbers

PR NR

Training 464 100% 46.17%
Test 179 100% 27.8%

Table 3  Parameters for SVM 
and LS-SVM

Group Feature(s) SVM LS-SVM

c σ c σ

1 K 512 0.125 32 2
2 HE 16,384 8 2048 0.00390625
3 K + HE 2 16 2048 4
4 SaEn + FMEn 32,768 0.25 2048 0.015625
5 SaEn + FMEn + ApEn 65,536 0.125 16,384 0.00390625
6 SaEn + FMEn + ApEn + K 65,536 0.03125 32,768 0.125
7 SaEn + FMEn + ApEn + HE 16,384 0.25 4096 0.0078125
8 SaEn + FMEn + ApEn + K + HE 32,768 0.03125 32,768 1
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by the LS-SVM classifier are the lowest. The reason is that 
the LS-SVM classifier cannot obtain the optimal classifica-
tion hyperplane to achieve a faster solution speed than the 
SVM classifier. The SVM and LSTM classifiers show simi-
lar accuracies (differences < 1%) for all the groups, while the 
LSTM classifier achieves the best classification accuracy of 
95.8% (group 8).

3.4  Comparison of the Classifiers

In this section, the PSD features are also added to the 
feature groups to further investigate the performance of 
the classifiers. As shown in Table 5, the LSTM classifier 
achieves the best evaluation results, while the LS-SVM 
classifier achieves the worst evaluation results, which 
is consistent with the findings from Table 4. We note 
that the LSTM classifier has the highest retention rate 
(PR = 98.66%) for ‘acceptable’ signals based on the high-
est classification accuracy. It is obvious that the applica-
tion of PSD features can improve the performance of the 
SVM and LSTM classifiers (the Acc values for the LSTM 
and SVM classifiers increased from 95.8 to 96.73% and 
from 95.63 to 96.1%, respectively) but not that of the LS-
SVM classifier (the Acc value for the LS-SVM classifier 
decreased from 92.67 to 91.83%).

4  Conclusion

In this paper, a wearable ECG signal dataset is established 
for the study of ECG quality assessment for practical appli-
cations. To find the most suitable classifier for evaluating 
the quality of wearable ECG signals, three machine learning 
algorithms (including the newly tested LSTM algorithm) 
are compared with the statistical features and PSD charac-
teristics derived from the original dataset. As shown in the 
results, even though the best classification accuracy of the 
SVM algorithm is 96.1%, it is slightly lower than that of 
the LSTM algorithm (96.73%). The LS-SVM uses a faster 
optimization method, but its performance on the wearable 
ECG database is not satisfactory. The LSTM classifier, 
which many researchers have ignored, is the best evalua-
tor (i.e., it achieves the highest classification accuracy of 
96.73%) among the three classifiers compared in this paper. 
In addition, a combination of statistical features is utilized 
to evaluate the quality of ECG signals. It is noteworthy that 
such statistical features perform well in ECG signal quality 
assessment, and the best classification result for 10-s ECG 
segments can reach 95.8% via the LSTM algorithm. To fur-
ther improve the quality assessment accuracy, PSD features 
are added with an improvement of 0.93 percentage points 
(i.e., from 95.8 to 96.73%) by the LSTM algorithm.

Fig. 3  3D view of the tenfold 
cross-validation results using 
the GS method in Group 8



239Comparison of Machine Learning Algorithms for the Quality Assessment of Wearable ECG Signals Via Lenovo H3 Devices

1 3

It should be mentioned that in contrast to many recently 
proposed studies [12, 18] that used ECG signals from non-
cardiac patients, our study uses dynamic wearable ECG data 
from 200 patients with heart disease, making a small step 
towards application in basic clinical environments.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40846- 020- 00588-7.
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