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Abstract Electroencephalography (EEG) is a non-invasive

way of recording brain activities, making it useful for

diagnosing various neurological disorders. However, arti-

fact signals associated with eye blinks or the heart spread

across the scalp, contaminating EEG recordings and mak-

ing EEG data analysis difficult. To solve this problem, we

implement a common methodology to suppress both car-

diac and ocular artifact signal, by correlating the measured

contaminated EEG signals with the clean reference electro-

oculography (EOG) and electrocardiography (EKG) data

and subtracting the scaled EOG and EKG from the con-

taminated EEG recording. In the proposed methodology,

the clean EOG and EKG signals are extracted by subjecting

the raw reference time-series data to ensemble empirical

mode decomposition to obtain the intrinsic mode functions.

Then, an unsupervised technique is used to capture the

artifact components. We compare the distortion introduced

into the brain signal after artifact suppression using the

proposed method with those obtained using conventional

regression alone and with a wavelet-based approach. The

results show that the proposed method outperforms the

other techniques, with an additional advantage of being a

common methodology for the suppression of two types of

artifact.
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1 Introduction

Electroencephalography (EEG) is an electrophysiological

monitoring method for recording the electrical activity of

the brain, giving insight into the brain and its abnormali-

ties. EEG signals are recorded from the scalp either with

electrodes in the standard 10–20 arrangement or an

extended 10–20 system (64 electrodes), following a stan-

dard devised by the International Federation of Societies of

EEG [1]. EEG signals are often contaminated by potentials

of non-cerebral origin, such as the heart and eyeblinks;

these signals pose a serious problem in analyzing the

recorded EEG activity [2, 3]. A number of techniques, such

as principal component analysis (PCA) [4], independent

component analysis (ICA) [5, 6], wavelet transform [7–10],

and regression [11] have been suggested for eliminating the

relatively common ocular artifacts and somewhat rare

artifacts due to activity [12]. Artifact suppression tech-

niques based on statistical methods such as ICA have been

used for artifact rejection [13, 14]. The main and

inevitable problem of ICA methodology is that the inde-

pendent components attributed to the artifacts may also

contain neural activity of interest. In this sense, the omis-

sion of particular components corresponding to the arti-

facts, followed by a signal reconstruction from the

remaining components, may lead to distortions of the

underlying cerebral activity [15]. Wavelet-based approa-

ches are a relatively easier technique for artifact suppres-

sion and can also be used for single-channel EEG data.

However, it is well known that wavelet-based methods
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require a set of pre-defined basis functions to decompose

the signal and that the selection of a particular basis

function is governed by morphological features of the

signal to be decomposed. Hence, a common basis function

may not be optimal for the suppression of artifacts asso-

ciated with different sources (eyeblinks and the heart)

using a wavelet-based approach.

Recently, some researchers [16–18] have used data-

driven techniques such as empirical mode decomposition

(EMD) and ensemble empirical mode decomposition

(EEMD) for ocular artifact suppression; however, these

works did not address the development of a single or

common methodology for the suppression of artifacts

associated with both ocular and cardiac activities.

Regression-based methodology is one of the simplest

techniques for removing ocular artifacts, where the mea-

sured EOG signal is projected onto the EEG channels.

However, this method might produce unexpected distortion

in the clean EEG data due to bidirectional contamination

[2]. To overcome the bidirectional contamination problem

inherent in the regression approach, we propose performing

EEMD with an unsupervised technique on the raw refer-

ence data to obtain the clean reference data. Here, we

propose a common methodology for the suppression of two

kinds of biological artifact (EOG and EKG) from the

contaminated EEG by using a regression technique

between the measured contaminated EEG and the clean

EKG and EOG reference data.

The rest of this paper is organized as follows. Section 2

presents a brief introduction to regression and EEMD.

Section 3 introduces the experimental protocol as well as

an overview of existing approaches for artifact suppression

and their comparative evaluation, followed by artifact

suppression using the proposed technique. Section 4 pre-

sents the results and the metrics used to evaluate and

compare the performance of the proposed methodology

with other techniques. Finally, a discussion and the con-

clusion are presented in Sect. 5.

2 Regression and EEMD

In the conventional regression technique, ocular and car-

diac artifacts are suppressed by projecting the measured

raw reference signals related to EOG and EKG onto the

EEG data. However, the regression technique does not take

into account bidirectional contamination, i.e., the EOG

recording is also corrupted by cerebral activity, and thus

this cerebral activity will also be eliminated from the EEG

recordings after ocular artifact suppression using the con-

ventional regression-based technique. Low-pass filtering

has been suggested for reducing the suppression of high-

frequency cerebral components from EEG data [19];

however, the criterion for the selection of the cut-off fre-

quency was not discussed.

The EMD technique adaptively decomposes non-sta-

tionary signals into a set of intrinsic oscillatory modes

termed as intrinsic mode functions (IMFs) [20]. These

IMFs represent signal components with progressively

decreasing frequency content. The EMD algorithm applied

to a given data x(t)for deriving the IMFs is defined in the

following way.

The EMD technique adaptively decomposes non-sta-

tionary signals into a set of intrinsic oscillatory modes,

called intrinsic mode functions (IMFs) [20]. These IMFs

represent signal components with progressively decreasing

frequency content. The EMD algorithm applied to a given

data x(t) for deriving IMFs is defined as follows:

1. All the extrema in the data are identified and connected

by a cubic spline to form upper and lower envelopes.

2. The mean of the upper and lower envelopes m1(t) is

obtained and the mean from the original series is

subtracted to get h1(t) as:

h1 tð Þ ¼ x tð Þ � m1 tð Þ ð1Þ

3. If the difference h1(t) does not satisfy the IMF

conditions, steps (1) and (2) are repeated until the

envelopes are symmetric with respect to zero under

standard stopping criteria, described elsewhere

[20, 21].

4. When the desired stopping criterion is achieved, the

first IMF, c1(t), is obtained and the residue is calculated

as:

r1 tð Þ ¼ x tð Þ � c1 tð Þ ð2Þ

5. Now, residue r1 (t) is treated as the signal to be further

decomposed and the above steps are repeated to obtain

r2(t), r3(t),…,rm(t).

The original signal can be represented as,

x tð Þ ¼
Xm�1

i¼0

ci tð Þ þ rm tð Þ

where ci(t) is the ith order IMF and rm(t) is the residue or

the last IMF.

Although the adaptive EMD method is useful for non-

linear and non-stationary signals, it has the disadvantage of

a mode mixing effect, which arises due to the inter-mit-

tency present in the signal. To overcome this, an EEMD

method was suggested to prevent mode mixing in IMFs

[22]. To avoid this mode mixing, a finite amplitude of

identically distributed white noise is added to the input

signal before the EMD is performed, and the ensemble

average of IMFs is taken over a number of trials to avoid

the mode mixing effect. The noise added in each trial tends

to cancel when the ensemble average is taken as there is no
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correlation between the noise introduced in different trials.

In our case, the noise amplitude added to EEMD is 0.3

times the standard deviation and the number of ensemble

averages is fixed at 100.

3 Method

3.1 Data Acquisition

A total of four male subjects (28–45 years old) took part

in the EEG experiments. Written informed consent for

participation was obtained from all the subjects. A

64-channel EEG system (Compumedics Neuroscan

Synamps 64 Channel EEG System, Australia) was used

for acquiring EEG signals from the brain. The system is

equipped with a data acquisition card with 24-bit resolu-

tion. EEG recordings were carried out with a sampling

rate of 1 kHz and the allowable bandwidth set from 0 to

200 Hz. The EEG data were recorded for 2 min per

subject. Separate electrodes (EOG and EKG) were also

used to acquire eye blinks and heart activity simultane-

ously with the EEG. EOG artifacts were observed in most

of the EEG recordings during the pattern reversal

checkerboard EEG experiments, but EKG artifacts were

observed for only one male subject. For data analysis, five

EEG data segments of 2.5 s contaminated by eyeblinks

were taken from every subject and five EEG data seg-

ments of 1 s contaminated by cardiac activity were

selected from a male subject.

3.2 Artifact Removal Evaluation

The aim of the artifact suppression algorithm is to selec-

tively suppress artifacts without much affecting the signal

from the brain. To compare the performance of the artifact

suppression technique, we calculated the change in power

spectral density (DPSD) before and after performing arti-

fact suppression [23]. PSD is a measure of signal power in

the selected frequency domain. In our case, we calculated

the change in signal power (DPSD) over a contaminated

EEG data segment before and after artifact suppression

using the Welch’s method across the frequency bands

corresponding to different brain rhythms, i.e., delta

(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta

(13–30 Hz); the respective changes in PSD are denoted as

DPSDd, DPSDh, DPSDa, and DPSDb. These metrics were

used for the quantitative evaluation of the distortion

introduced in the EEG signals after artifact suppression.

Lower values of DPSD correspond to lower distortion

introduced in the underlying cerebral activity by the

algorithm used for artifact suppression.

3.3 Data Analysis

EOG interference was dominant in the frontal lobe elec-

trodes FP2, FP1, and FZ, whereas EKG interference was

dominant in the central lobe electrodes CP2, CP1, C1, and

C2. Samples belonging to EOG and EKG recordings and

the corresponding contaminated part of EEG from the

frontal FP2 electrode and the central CP2 electrode were

taken off from the raw EEG recording for analysis, as

shown in Figs. 1 and 2. EEG data sets were converted from

the continuous format (.cnt) to ASCII format (.dat) to make

use of Python for further analysis [24–26]. The applied

methodology is summarized in the following steps:

1. EEMD was performed on the raw EOG reference

electrode data, as shown in Figs. 3 and 4, to get the

IMFs. Similarly, the raw EKG data were also subjected

to EEMD to get the IMFs, as shown in Figs. 5 and 6.

Then, an unsupervised technique called PCA was used

to capture the principal components for extracting

eyeblinks and cardiac activity.

2. The number of principal components retained for the

reconstruction of the clean EOG and EKG reference

data is based on the threshold value driven from the

scree plot [27]. Figures 7 and 8 show the clean EOG

Fig. 1 Top panel shows section of contaminated FP2 and bottom

panel shows corresponding section of raw reference EOG recording
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and EKG reference data, respectively, after applying

the above approach on the raw reference data.

3. After extracting the clean reference data, correlations

were calculated between contaminated EEG and the

clean reference data (EOG and EKG), and then the

scaled EOG and EKG data were subtracted from the

corresponding contaminated EEG recording in order to

suppress ocular and cardiac artifacts.

As with eyeblinks, heart and brain activities have

physiologically distinct sources. The measured EEG is thus

a superposition of the true EEG signal and a scaled part of

the clean EOG or EKG signal. The contaminated recorded

EEG data can be represented as:

EEG1mes ¼ EEG1true þ kEOG � EOGclean ð3Þ
EEG2mes ¼ EEG2true þ kEKG � EKGclean ð4Þ

where EEG1mes = measured contaminated EEG at frontal

lobe(FP2), EEG2mes = measured contaminated EEG at

central lobe(CP2), EEG1true and EEG2true = EEG due to

cortical (brain) activity alone at measurement electrode,

kEOG�EOGcleaned = propagated EOG artifact from eye to

recording site, kEKG�EKGcleaned = propagated EKG arti-

fact from heart to recording site.

EEG1true and EEG2true signals were estimated from

EEG1mes and EEG2mes by efficiently removing the kEOG
�EOGclean and kEKG�EKGclean while retaining the EEG1true
and EEG2true signal integrity. It is necessary to determine

the coefficients kEOG and kEKG for extracting the EEG1true
and EEG2true signals. To determine kEOG and kEKG, the

covariance between EEG1mes and EOGclean and between

EEG2mes and EKGclean, and the variance for EOGclean and

EKGclean were calculated.

covarianceEOG ¼ cov EEG1mes;EOGcleanð Þ ð5Þ
covarianceEKG ¼ cov EEG2mes;EKGcleanð Þ ð6Þ
varianceEOG ¼ var EOGcleanð Þ ð7Þ
varianceEKG ¼ var EKGcleanð Þ ð8Þ

The scale factors kEOG and kEKGwere respectively esti-

mated as:

kEOG ¼ covarianceEOG=varianceEOG ð9Þ
kEKG ¼ covarianceEKG=varianceEKG ð10Þ

Finally, EEG1true and EEG2true signals were estimated

using the coefficients kEOG and kEKG in Eqs. (3) and (4).

Fig. 2 Top panel shows section of contaminated CP2 and bottom

panel shows corresponding section of raw reference EKG recording Fig. 3 Empirical mode decomposition of raw reference EOG (IMFs

1–6)
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4 Results

Figures 9 and 10 show the clean and contaminated EEG

data obtained using the proposed technique. From their

visual appearance, it is evident that the proposed

methodology worked well for the effective suppression of

EOG and EKG artifacts. In order to compare the perfor-

mance of the proposed method with a conventional

wavelet-based technique, we extracted the signal corre-

sponding to eyeblinks and cardiac activity from the con-

taminated EEG data segment using Biorthogonal 3.3 [28]

and Symlet (sym8) [29] wavelets, respectively. In our

case, since the measurement bandwidth allowed is

0–200 Hz, decomposition up to the fourth level was

selected as the range of frequency for ocular artifacts is

0-10 Hz [30].For cardiac artifact suppression, decompo-

sition up to the second level was performed. To compare

the results obtained using the wavelet-based approach for

the suppression of artifacts, we reconstructed clean EEG

data from the contaminated EEG data by setting the noisy

coefficients of the wavelet-decomposed data to zero.

Tables 1 and 2 indicate that significantly lower distortion

in the brain signal results when the proposed technique is

Fig. 4 Empirical mode decomposition of raw reference EOG (IMFs

7–11) with original raw reference EOG at bottom based on subject1
data

Fig. 5 Empirical mode decomposition of raw reference EKG (IMFs

1–6)

Fig. 6 Empirical mode decomposition of raw reference EKG (IMFs

7–9) with original raw reference EKG at bottom based on subject4
data
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used for artifact suppression compared to those obtained

with the conventional regression alone and the wavelet-

based approach.

Fig. 7 Raw reference EOG recording (top), residual (middle), and

clean EOG reference extracted from raw reference EOG (bottom)

Fig. 8 Raw reference EKG recording (top), residual (middle), and

clean EKG reference extracted from raw reference EKG (bottom)

Fig. 9 Comparison of contaminated FP2 (top) with clean FP2

(bottom)

Fig. 10 Comparison of contaminated CP2 (top) with clean CP2

(bottom)
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5 Conclusion

We proposed a common methodology for the suppression of

artifacts associated with heart activity and eyeblinks from

measuredEEGdata by calculating and subtracting the relative

changes in the EEG data with respect to the clean reference

EKG and EOG data. The results show that the proposed

methodology is able to eliminate EOGandEKGartifacts from

the EEG data while causing little distortion in the underlying

cerebral activity. Compared to other artifact suppression

techniques, the proposed method has several advantages. It

can be used for the suppression of artifacts associated with

different sources (eyeblinks and the heart) using single-

channel contaminated EEG data along with measured refer-

ence electrode EOG/EKG data, whereas PCA and ICA

methods require multi-channel EEG data. The proposed

method overcomes the problem of bidirectional contamina-

tion between EEG and an EOG channel that is difficult to

properly resolve using the conventional regression-based

approach. The significance of the proposed method lies in the

fact that it is simple and easy to implement, unlike wavelet-

and ICA-based artifact suppression approaches,which require

careful selection of optimal mother wavelet function and

noisy components, respectively.
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