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Abstract Diabetes has been the fifth leading cause of death

in Taiwan since 1987, and the complications of this disease

are a burden to patients, their families, and society. Recent

studies have tried to build a classifier that can easily identify

diabetes mellitus by employing data mining approaches.

However, these studies have encountered a class imbalance

problem caused by skewed data, in which almost all of the

instances are labeled as one class (healthy) while only a few

instances are labeled as the other class (diabetic). When

learning from this type of data, machine learning algorithms

tend to produce predictive results with a high level of accu-

racy for the majority class, but poor predictive accuracy for

the minority class. This study proposes the neural-network-

based resampling method, which dramatically improves the

detection of diabetes. Real diabetes data from a regional

hospital in Taiwan and several biological data sets are used to

demonstrate the effectiveness of the proposed method.

Keywords Diabetes diagnosis � Resampling � Class

imbalance problem � Classification � Support vector

machines

1 Introduction

Diabetes mellitus, which can result in a variety of com-

plications, including heart disease, kidney disease, eye

disease, erectile dysfunction, and nerve damage, has

become a serious problem in society [1]. Diabetes is the

most common endocrine disease across all population and

age groups. This disease has become one of the leading

causes of death in developed countries [2]. According to a

report of the World Health Organization (WHO) in 2014,

the estimated global prevalence of diabetes was 9 %

among adults aged 18 years old and older. About 1.5

million deaths were directly caused by this disease in

2012. More than 80 % of diabetes deaths occur in low-

and middle-income countries. By 2030, diabetes will be

the 7th leading cause of death in the world [3]. Diabetes,

recently called an epidemic by the WHO, is having a huge

economic impact in African countries, India, and China.

Diabetes is a bigger killer than AIDS, and the cost of

supporting a person who has lost a foot due to diabetes

may drain three-quarters of the income of a poor family

[1, 3].

Researchers have used artificial intelligence and data

mining methods to build diagnostic classifiers [4] in order

to identify diseases quickly and economically, helping

medical experts diagnose patients in developing countries

that lack sufficient medical resources. For example, Su

et al. [5] utilized a data mining method to diagnose type 2

diabetes using three-dimensional body surface anthropo-

metrical scanning data. Yildirim et al. [6] presented a data

mining model that includes an adaptive-network-based

fuzzy inference system and rough set methods to predict

suitable dosage planning for diabetes patients. Meng et al.

[7] compared three methods, namely those based on

logistic regression, artificial neural networks, and decision

trees, to predict diabetes or pre-diabetes. Aljumah et al. [2]

employed an Oracle data miner to predict the modes of

treating diabetes. Kang et al. [8] proposed an ensemble of

support vector machines (SVMs) to predict anti-diabetic

drug failure.
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Data mining methods acquire knowledge from examples

of existing diagnosis examples and then apply the extracted

knowledge to diagnose an illness. However, the data

obtained from examples of diagnoses are often imbalanced

or skewed, with almost all the instances being labeled as

one class (normal), while few instances are labeled as the

other class, usually the important class (illness). When

building a classifier from such imbalanced/skewed diag-

nosis data, traditional data mining methods tend to produce

high accuracy for the majority class (healthy patients), but

poor predictive accuracy for the minority class (diabetic

patients) [9–11]. This situation, called the class imbalance

problem, poses challenges for typical classifiers that are

designed to optimize overall accuracy without taking into

account the relative distribution of each class [12, 13].

Many real-world applications involve learning from

imbalanced data, such as fraud detection [14], text classi-

fication telecommunications management [15], oil spill

detection [14, 15], medical diagnosis/monitoring [5, 15–

17], financial analysis of loan policy or bankruptcy [18],

and protein data [19].

To cope with imbalanced data sets, studies have pro-

posed resampling methods [11, 12, 14, 16, 20, 21], feature

selection [22, 23], adjusting the cost matrices [17], and

moving the decision thresholds [4, 15, 24]. Resampling

methods reduce the data imbalance by undersampling (re-

moving) instances from the majority class or oversampling

(duplicating) the examples from the minority class, or both.

Feature selection removes irrelevant attributes to build a

good classification model when the class distribution is too

skewed [22]. Adjusting the cost matrices (adjusting cost)

improves the prediction accuracy by adjusting the cost

(weight) for each class or by changing the strength of the

rules [17]. Approaches that move the decision thresholds

try to adapt the decision thresholds by imposing a bias on

the minority class. However, each method has both

advantages and disadvantages. Taking computational cost

into consideration, resampling methods are the most pop-

ular and easiest to use. However, they lack a rigorous and

systematic treatment of the imbalanced data [24].

The present study proposes the neural-network-based

resampling (NNR) method that uses the back-propagation

neural network (BPNN) to filter samples and balance class

distribution. Then, SVMs are employed to build a model to

predict diabetes mellitus. Real diabetes data from a regio-

nal hospital in Taiwan and several biological data sets are

used to demonstrate the effectiveness of the proposed

method. In addition, the proposed NNR method is com-

pared to traditional methods, including those based on

oversampling, undersampling, and cost adjustment. The

results indicate that the proposed NNR method dramati-

cally improves the detection of diabetes.

2 Class Imbalance Problems

Many solutions have been proposed for class imbalance

problems. Some researchers focus on feature selection. For

example, Laradji et al. [23] integrated feature selection into

ensemble learning methods for improving the performance

of defect classification. Yang et al. [25] proposed the

comprehensive measure feature selection method for class

imbalance problems, and compared it with other feature

selection methods. Su and Hsiao [26] employed the

Mahalanobis-Taguchi system to improve the performance

of classifying imbalanced data.

In practice, when applying these solutions for classify-

ing imbalanced data, computational cost and complexity

should be considered. The most important concern is ease

of use. Therefore, this study focuses on resampling meth-

ods. There are three types of resampling method, namely

oversampling, undersampling, and hybrid approaches [27].

Although they are easy to use, resampling methods lack a

rigorous and systematic treatment of the imbalanced data

[24]. Therefore, lots of works propose different strategies

to improve resampling methods.

Oversampling aims to improve imbalance by dupli-

cating the minority examples, but it might introduce

some noise. Therefore, Sáez et al. [13] proposed the

minority oversampling technique iterative partitioning

filter, which overcomes the problems produced by noisy

and borderline examples in imbalanced datasets. Li et al.

[28] proposed the random walk oversampling approach

to deal with imbalanced data. Gao et al. [29] proposed

the probability-density-function-estimation-based over-

sampling approach for two-class imbalanced classifica-

tion problems.

Undersampling aims to remove the majority examples in

training sets to balance the skewed class distribution. Many

works have been presented. For instance, Wang et al. [21]

used the boundary region cutting (BRC) algorithm to

clarify the disorder boundary and proposed a method for

reducing the majority class samples in the dense boundary

region. In their work, they used SVM to classify text

sentiment data. Tahir et al. [30] presented the inverse

random undersampling method, which severely under-

samples the majority class, thus creating a large number of

distinct training sets. Galar et al. [31] presented an

ensemble construction algorithm that combines random

undersampling with the Boosting algorithm. Yu et al. [32]

developed a method based on ant colony optimization

(ACO) to handle imbalanced DNA microarray data. In

their method, a modified ACO algorithm is employed to

filter less informative majority samples.

Hybrid approaches combine oversampling and under-

sampling, or use a performance index to solve class
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imbalance problems. For example, Liu et al. [33] used

SVM and presented a sampling approach that combines

undersampling and oversampling. Their results showed

that their sampling model can effectively improve the

classification performance of SVM. Qian et al. [9] pre-

sented a resampling ensemble algorithm, in which the

minority class examples are oversampled and the

majority class examples are undersampled. Garcı́a et al.

[34] compared the performances of several sampling

methods such as those based on performance indicators

and resampling. Then, they proposed an evaluation index

called the index of balanced accuracy. Their experi-

mental results showed that this indicator can effectively

deal with class imbalance problems. Zhao et al. [35]

proposed a weighted maximum margin criterion to

optimize the data set, which made SVM accurately

determine the minority class. These resampling tech-

niques do not consider how the data are scattered in the

space. Thanathamathee and Lursinsap [27] proposed a

technique based on the fact that the location of a sepa-

rating function in between any two sub-clusters in dif-

ferent classes is defined only by the boundary data of

each sub-cluster. Despite lots of works having attempted

to determine the appropriate resampling proportion in

each class by using a trial-and-error method to build a

classier with imbalanced data, the optimal strategy for

each class may be infeasible when using such a method.

Therefore, Tong et al. [36] presented an analytical pro-

cedure for determining the optimal resampling strategy

based on design of experiments and response surface

methodologies. Chen et al. [37] presented a Mahalanobis

distance-support vector machines (MD-SVM) learning

scheme. In MD-SVM, MD is used to filter the majority

examples, and then SVM is employed to classify

imbalanced data. However, Błaszczyński and Ste-

fanowski [11] indicated that integrating bagging with

undersampling is more powerful than doing so with

oversampling. Therefore, the proposed NNR follows

undersampling strategies.

SVM is a popular classifier for dealing with class

imbalance problems. Moraes et al. [38] showed that SVM

can better handle imbalanced data compared to neural

networks considering the computational cost. Sun et al.

[39] found that the SVM classifier is the best method for

dealing with the imbalanced data from their experiments.

Yu et al. [32] used SVM to classify skewed DNA

microarray data. In addition, because SVM has a complete

theory of modules and is easy to use, it is suitable for

high-dimensional and nonlinear classification problems.

Therefore, the present study uses SVM as the basic clas-

sifier. In addition, this study employs three methods,

namely undersampling, oversampling, cost adjustment, as

benchmarks.

3 Methods

This section describes the proposed NNR approach. The

six major steps are shown in Fig. 1. The procedure is

described below.

Step 1 Data collection

We collected biological data from normal and abnormal

(diabetic patients/illness) examples. The experimental data

sets are from the health examination data of a regional

hospital in northern Taiwan and the knowledge extraction

based on evolutionary learning (KEEL) website.

Step 2 Data preparation

For the collected data, we deal with missing data and

noisy data. Since the data size is large, noisy data and

examples that contain missing values are removed. Then,

based on the diagnosis results of medical experts, the

collected data are labeled.

Step 3 NNR method implementation

The NNR method has two phases for balancing the data

distribution using resampling. In the first phase, a BPNN is

built. In the second phage, the constructed BPNN is used to

undersample data. The details are given bellow.

Phase 1: Back-propagation neural network

The back-propagation learning algorithm [40] is the best

known training algorithm for neural networks. This itera-

tive gradient algorithm contains a forward pass and a

backward pass. The purpose of the forward pass is to obtain

the activation value and the backward pass is used to adjust

weights and biases according to the difference between the

desired and actual network outputs. These two passes are

iterated until the network converges. The feed-forward

network training by the back-propagation algorithm can be

summarized as follows.

1. Collect diabetes 
data

2. Prepare data

3. Implement NNR method 4. Implement traditional 
methods

-Undersampling
-Oversampling
-Cost adjustment

5. Build SVM 
classifier

6. Make comparison 
and draw conclusion

Fig. 1 Implemention procedure of this study
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Step 3:1 Determine the architecture.

Step 3:2 Randomly initialize weights.

Step 3:3 Train neural networks.

While the error is too large.

For each training pattern (presented in random order).

Step 3:3:1 Select training pattern and feed it forward to

find the actual network output.

Step A Apply the inputs to the network.

Step B Calculate the output for every

neuron from the input layer,

through the hidden layer(s), to

the output layer.

The output from neuron j for

pattern p is Opj, where:

OpjðnetjÞ ¼
1

1 þ e�netj
ð1Þ

and

netj ¼ biasþ
X

k

OpkWjk ð2Þ

where k ranges over the input

indices and Wjk is the weight on

the connection from input k to

neuron j.

Step 3:3:2 Calculate errors and back-propagate error

signals.

Step A Calculate the error at the outputs.

The output neuron error signal

dpj is given by:

dpj ¼ ðTpj - OpjÞ � Opj

� ð1 - OpjÞ ð3Þ

where Tpj is the target value of

output neuron j for pattern p and

Opj is the actual output value of

output neuron j for pattern p.

Step B Use the output error to compute

error signals for pre-output lay-

ers.

The hidden neuron error signal

dpj is given by:

dpj ¼ Opjð1 � OpjÞ
X

k

dpkWkjÞ

ð4Þ

where dpk is the error signal of a

post-synaptic neuron k and Wkj is

the weight of the connection

from hidden neuron j to the post-

synaptic neuron k.

Step 3:3:3 Adjust weights.

Step A Use the error signals to compute

weight adjustments.

Compute weight adjustments DWji

at time t using:

DWji tð Þ ¼ g� dpj � Opi þ a
� DWji t - 1ð Þ ð5Þ

where g is the learning rate and a is

the momentum coefficient

(a 2 ½0; 1�).
Step B Apply the weight adjustments.

Apply weight adjustments accord-

ing to:

Wji t þ 1ð Þ ¼ Wji tð Þ þ DWji tð Þ
ð6Þ

.

Step 3:4 Evaluate performance using the test data set.

Phase II: Resampling

Step 3:5 Separate normal and abnormal examples.

In this step, we separate all training examples into

normal and abnormal (illness) groups. The minority dia-

betes examples are kept intact and the majority (healthy)

examples are undersampled.

Step 3:6 Rank collected healthy examples.

In this step, we rank all majority (healthy) examples

using Opj, which is the actual output value of output neuron

j for normal example p.

Step 3:7 Undersample majority examples.

We attempt to sample ‘‘different’’ or ‘‘discriminate’’

majority examples from minority examples. According to

the rank list obtained from Step 3.6, we implement the

following two undersampling strategies.

Strategy #1: we select examples with small Opj values

(remove examples with large Opj values) until the number

of minority (diabetes) examples is equal to the number of

majority examples. This is also known as the max - min

strategy. In this strategy, we remove majority examples

that have the highest possibility of belonging to healthy

patients.
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Strategy #2: we select examples with large Opj values

(remove examples with small Opj values) until the number

of minority (diabetes) examples is equal to the number of

majority examples. This means that majority examples that

have the highest possibility of belonging to healthy patients

are kept.

Step 4: Undersampling, oversampling, and cost adjust-

ment method implementations

Step 4:1 Implement undersampling.

The majority (healthy) examples are randomly removed

until the number of minority (diabetes) examples is equal

to the number of majority examples.

Step 4:2 Implement oversampling.

The minority (diabetes) examples are duplicated until

the number of minority (diabetes) examples is equal to the

number of majority (healthy) examples.

Step 4:3 Implement cost adjustment.

This method improves classification performance by

increasing the misclassification cost for minority class.

Traditional performance indices consider the misclassifi-

cation costs of majority and minority instances to be equal.

Under the assumption of maximizing the overall classifi-

cation accuracy, the minority examples are neglected. If we

give a penalty (cost) to the minority class, the class

imbalance problem will be improved. In this method, dif-

ferent misclassification costs can be incorporated into

classes, which avoids direct artificial manipulation of the

training set.

We adjust the misclassification cost until the classifi-

cation performance is improved. For example, if the cost

of misclassifying the majority examples (healthy patients)

into minority examples (diabetic patients) is equal to 1,

we can set the cost of misclassifying the minority

examples (diabetic patients) into majority examples

(healthy patients) to be larger than 1 until the classifi-

cation performance is improved. This forces the classifier

to tend to increase the ability of identifying diabetic

patients.

Step 5: SVM classifier construction

Step 5:1 Construct training and test sets.

The resampled training sets are joined to the

test set for learning.

Step 5:2 Select a kernel function and find optimal

settings of parameters. In this work, we use

the radial basis function kernel function:

Kðx; x0Þ ¼ exp cjjx - x0jj2
� �

ð7Þ

where x and x0 represent samples in the input

vector, c is equal to -1/2r2 (where r is a free

parameter), and ||x-x0|| is the Euclidean

distance.

Step 5:3 Train SVM.

Step 6: Comparison and conclusions

In this work, we used the geometric mean (GM) of

positive accuracy (the ability to identify normal patients)

and negative accuracy (the ability to detect the minority

diabetic patients) to evaluate the classification perfor-

mance. We also make comparisons between the proposed

NNR method and traditional methods, namely those based

on undersampling, oversampling, and cost adjustment. A

discussion is then given and conclusions are drawn based

on the experimental results.

4 Results and Discussion

4.1 Performance Indices

This section introduces the employed performance mea-

surements. Generally speaking, the easiest way to evaluate

the performance of classifiers is based on the confusion

matrix, as shown in Table 1.

Traditionally, the performance of a classifier is evalu-

ated by considering the overall accuracy against test cases.

However, when learning from imbalanced data sets, this

measure is often not sufficient. For example, it is

straightforward to create a classifier with an accuracy of

98 % in a domain where the majority class proportion

corresponds to 98 % of the examples by simply forecasting

every new example as belonging to the majority class.

Another fact is that the metric considers different classifi-

cation errors to be equally important. However, a highly

imbalanced class problem has nonequal error costs that

favor the minority class, which is often the class of primary

interest. Therefore, following other studies [16, 19, 20, 41,

42], we use overall accuracy (OA), GM, and F1 score to

evaluate the performance of the models. GM is defined as:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Positive accuracy � Negative accuracy

p
ð8Þ

where Positive accuracy (PA) and Negative accuracy (NA)

are calculated as TP/(FN ? TP) and TN/(TN ? FP),

respectively (where TP true positive, TN true negative, FP

false positive, FN false negative. This measure is used to

maximize the accuracy for each of the two classes while

keeping these accuracies balanced. Another performance

index is F1 score, which is defined as:
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ð2 � Recall � PrecisionÞ=ðRecall þ PrecisionÞ ð9Þ

where Precision and Recall are calculated as TP/

(TP ? FP) and TP/(TP ? FN), respectively.

F1 incorporates the recall and precision into a single

number. Therefore, F1 is high when both the recall and

precision are high. F1 thus measures the ‘‘goodness’’ of a

learning algorithm in the current class of interest.

4.2 Data Collection

Real diabetes data were used. The employed diabetes data

are from the health examination database of a regional

hospital in northern Taiwan. We obtained 2000 raw data.

After 63 examples that contained missing values and noisy

data were removed, 1937 objects remained for further

analysis. Among them, there were 1729 positive instances

(healthy patients) and 208 negative instances (diabetic

patients). These examples were divided into training and

test objects. A five-fold cross validation experiment was

employed. The data sizes of the training and test sets are

given in Table 2.

Table 3 shows 23 attributes of these data. They are

biochemical or physical test items and their values are

continuous except for the first one (i.e., ‘‘Gender’’).

Although there are different types of diabetes (type 1,

type 2, and gestational diabetes), they are combined and

considered as diabetes. Therefore, we have 2 classes,

namely positive (healthy patients) and negative (diabetic

patients).

4.3 Experimental Results

Results for this diabetes data set, as shown in Table 4, were

averaged over five-fold cross validation experiments, in

which the data set was partitioned into five equal-sized

sets. Each set was then used in turn as the test set. In this

table, PA and NA represent the abilities of detecting

healthy and diabetic patients, respectively. G-mean and F1

are integrated indices that balance PA and NA. From this

table, the oversampling and cost adjustment (cost = 2)

techniques have no significant improvement in detecting

diabetic patients, since their NAs are equal to 0 %.

The undersampling method increases the ability of

identifying diabetic patients (NA = 100 %), but the

ability of detecting healthy patients decreases to 5.66 %,

which is unacceptable. For the proposed method, strategy

#1 is significantly better than strategy #2 in terms of GM,

OA, and F1. However, strategy #2 has the highest ability

of detecting minority examples (NA: 91.84 %) among all

methods, even strategy #2 loses classification ability of

identifying majority examples (PA: 73.56 %). Therefore,

NNR with strategy #1 is a better method than strategy

#2. Compared to conventional methods, NNR with

strategy #1 has the best performances in terms of OA,

GM, and F1. Moreover, the proposed method (NNR with

strategy #1) has the lowest standard deviation, indicating

stable classification.

Figure 2 shows comparisons between the proposed

method and traditional methods. The oversampling and

cost adjustment techniques outperform the undersampling

method. Generally speaking, among these techniques,

NNR with strategy #1 significantly improves the detection

of diabetic patients and has stable performance.

4.4 Validation Using Other Biological Data Sets

In order to validate the effectiveness of the proposed

methods, we utilized three biological data sets from KEEL.

They can be accessed at http://sci2s.ugr.es/keel/studies.

php?cat=imb. These imbalanced data are related to ‘‘thy-

roid’’ and ‘‘yeast’’. Table 5 shows their basic information.

Table 6 summarizes the results of these imbalanced data

sets. The proposed NNR method with strategy #1 outper-

forms NNR with strategy #2, undersampling, oversam-

pling, and cost adjustment in ‘‘new-thyroid1’’ and ‘‘yeast-

2_vs_4’’ in terms of GM and F1. However, for the

‘‘yeast3’’ data set, the NNR method with strategy #1 is

ranked second and third in terms of GM and OA, respec-

tively. To sum up, the proposed NNR method with strategy

#1 has the best performance for two of the three biological

imbalanced data sets. The proposed method is thus effec-

tive for data over than diabetic data.

Table 1 Confusion matrix
Predicted positive (normal) Predicted negative (diabetic)

Actual positives (normal) TP (number of true positives) FN (number of false negatives)

Actual negatives (diabetic) FP (number of false positives) TN (number of true negatives)

Table 2 Data sizes of training and test sets

Experiment Training (Pos:Neg) Test (Pos:Neg)

Fold #1 1383:166 346:42

Fold #2 1383:166 346:42

Fold #3 1383:166 346:42

Fold #4 1383:167 346:41

Fold #5 1384:167 345:41

Pos positive examples (healthy patients), Neg negative examples

(diabetic patients)
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5 Conclusion

This study proposed a neural-network-based resampling

method to improve the ability of SVM classifiers to detect

diabetic patients. The proposed NNR has two phases. In

the first phase, a BPNN filters the majority examples by

implementing two resampling strategies. The results

indicate that an effective strategy is to keep examples that

have low probabilities of belonging to the majority class,

and to remove examples that have high probabilities of

belonging to the majority class. In the second phase, the

resampled training set is used to build SVM classifiers.

The max–min concept is applied in the proposed method.

Real-world data and three biological data sets from the

KEEL database were employed to evaluate the effec-

tiveness of the proposed method and three traditional

methods, namely oversampling, undersampling, and cost

adjustment. The experimental results show that the pro-

posed method is superior in terms of identifying diabetic

patients.

The proposed NNR method was shown to be superior to

traditional solutions for classifying imbalanced medical/

biological data. It is useful for detecting some rare diseases

such as Middle East Respiratory Syndrome and Severe

Table 3 Attributes employed for detecting diabetes

#1 Gender #5 FEV1 (forced

expiratory volume

in one second)

#9 SGOT (serum

glutamic

oxaloacetic

transaminase)

#13 BUN

(Blood

urea

nitrogen)

#17 Thyroxine #21 HDL (high-density

lipoprotein)

#2 Age #6 PFR (peak filpng

rate)

#10 SGPT (serum

glutamic-pyruvic

transaminase)

#14 Creatinine #18 Uric acid #22 ELDL (elevated

low density lipid

cholesterol)

#3 Vital

capacity

#7 Albumin #11 ALP (alkaline

phosphatase)

#15 Glucose

AC (ante

cibum)

#19 Cholesterol #23 LDL (low-density

lipoprotein)

#4 Predicted

VC (vital

capacity)

#8 Total protein #12 Total bilirubin #16 Glucose

PC (post

cibum)

#20 Triglyceride

Table 4 Summary of experimental results (DM)

Method

Index

NNR strategy #1 (%) NNR strategy #2 (%) Oversampling (%) Undersampling (%) Cost adjustment (cost = 2) (%)

Mean SD Mean SD Mean SD Mean SD Mean SD

PA 98.38 1.38 73.56 12.27 100 0.00 5.66 10.92 100 0.00

NA 76.45 5.14 91.84 3.96 0.00 0.00 100 0.00 0.00 0.00

GM 86.68 3.09 81.86 5.34 0.00 0.00 16.30 19.39 0.00 0.00

OA 96.03 1.44 75.52 10.62 89.26 0.12 15.80 9.69 89.26 0.12

F1 97.78 0.82 83.84 7.69 94.33 0.07 9.29 17.36 94.33 0.07

SD standard deviation

0
10
20
30
40
50
60
70
80
90

100

NNR
(strategy #1)

NNR
(strategy #2) Oversampling Undersampling Cost 

adjustment

GM
OA
F1

Fig. 2 Comparisons between proposed method and traditional

methods

Table 5 Employed biological

data sets
Data set name Data size No. of attributes IR Data source

New-thyroid 1 215 5 5.14 http://sci2 s.ugr.es/keel/imbalanced.php#subA

Yeast 3 1484 8 8.1

Yeast-2_vs_4 514 8 9.08
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Acute Respiratory Syndrome. In the beginning of the

infectious period of these rare diseases, the number of

positive examples will be much fewer than the number of

normal patients.

In the future, we hope to build an automatic diagnosis

system that can identify diabetic patients. Such a system

will be helpful in developing countries that lack sufficient

medical resources. Moreover, in this study, we use 20

biological data which still needs complex equipment to get

experiment data, future works can utilize other kind of

input variables that can be got easily. Feature selection

methods can also be introduced to select the important

input variables. This might shorten the computational time

required for building predictive models and reduce the cost

of collecting data. Moreover, the ability to predict pre-

diabetes will give medical experts more time to cure

diabetes.
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