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Abstract This paper presents a quantitative representa-

tion method for the upper-limb elbow joint angle using

only electromyography (EMG) signals for continuous el-

bow joint voluntary flexion and extension in the sagittal

plane. The dynamics relation between the musculotendon

force exerted by the biceps brachii muscle and the elbow

joint angle is developed for a modified musculoskeletal

model. Based on the dynamics model, a quadratic-like

quantitative relationship between EMG signals and the

elbow joint angle is built using a Hill-type-based muscular

model. Furthermore, a state switching model is designed to

stabilize the transition of EMG signals between different

muscle contraction motions during the whole movement.

To evaluate the efficiency of the method, ten subjects

performed continuous experiments during a 4-day period

and five of them performed a subsequent consecutive

stepping test. The results were calculated in real-time and

used as control reference to drive an exoskeleton device

bilaterally. The experimental results indicate that the pro-

posed method can provide suitable prediction results with

root-mean-square (RMS) errors of below 10� in continuous

motion and RMS errors of below 10� in stepping motion

with 20� and 30� increments. It is also easier to calibrate

and implement.

Keywords Upper limb elbow joint � Electromyography

(EMG) � Hill-type model � State switching � Continuous
representation

1 Introduction

Electromyography (EMG) has been applied to various

fields. Fukuda et al. [1] used EMG signals to control a

manipulator. They adopted a statistical neural network,

named the log-linearized Gaussian mixture network, to

achieve robust discrimination against differences among

individuals, electrodes locations, and time variations

caused by fatigue or sweat. They reported that the method

can provide smooth control for the manipulator and it

might allow a physically handicapped person to sense a

feeling of prosthetic control similar to that of the original

limb. Liarokapis et al. [2] used EMG signals from sixteen

muscles of the upper limb to study the muscular co-acti-

vation patterns during a variety of reach-to-grasp motions.

EMG signals reflect the level of muscle activation, and can

thus be used to predict or recognize human motion [3–7].

This kind of technology is especially useful for the

physically handicapped person, as applied by Fukuda [1].

EMG signals can be used for intuitive control. Artemiadis

et al. [8] developed a switching regime model to decode the

EMG activity from 11 muscles into a continuous repre-

sentation of arm motion in three-dimensional space. They

reported that this switching regime model can overcome

some main difficulties of EMG-based control systems, such

as the nonlinearity of the relationship between the EMG

recordings and the arm motion, as well as the non-sta-

tionarity of EMG signals with respect to time. A Bayesian

classifier was applied for each muscle to compensate for

the various features of EMG signals. Besides motion
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interpretation, EMG signals can be used to represent hu-

man arm stiffness [9, 10]. Ajoudani et al. [11] used EMG

signals from eight muscles around the operator’s arm to

derive stiffness information, which was sent with the po-

sition command to a slave robot to achieve tele-impedance

control.

Despite progress, the non-stationarity of EMG signals

and the uncertainty of how the central nervous system

controls human motion make it difficult to implement

EMG control outside a laboratory environment. Pattern

recognition methods have been used by researchers to map

EMG signals to the target behavior. Chen et al. [12] de-

veloped a multi-kernel learning support vector machine

method to classify multiple finger movements. In order to

recognize hand motions, Tang et al. [13] applied a multi-

channel energy ratio feature extraction method to over-

come the influence of various forces for a given gesture.

They used the proposed feature extraction method and a

cascaded-structured classifier to recognize eleven hand

gestures. Phinyomark et al. [14] implemented twelve an-

thropometric variables to design an automatic/semi-auto-

matic calibration system for EMG recognition. Although

many works have been done and high classification accu-

racy has been achieved [15–17], one of the disadvantages

of pattern recognition methods is non-smooth control. The

results which are usually used as reference commands are

discrete for controller, where continuous results are de-

sired. Moreover, many electrodes are needed to record

muscle’ activation behaviors to improve recognition

results.

Some physiological models have been used to estimate

musculotendon forces using EMG signals, such as Huxley-

[18, 19] and Hill-type models [20]. For musculotendon

force calculation, EMG signals are used to represent the

muscle activation level, which is used with other pa-

rameters in the musculoskeletal model to obtain the desired

force value. Compared with the complexity of Huxley-type

models, Hill-type models are more computationally viable.

Cavallaro et al. [21] developed a Hill-type-model-based

myoprocessor to predict joint torque. Seven muscles

around the upper limb were recorded and a genetic algo-

rithm was implemented to tune the parameters of the

model. Manal et al. [22] used a Hill-typed model to cal-

culate muscle force and implemented a forward dynamics

approach to estimate joint angle. They used an optimal

controller to map the relationship between measured and

predicted joint moments. Although using the forward

muscular model to calculate human body motions is at-

tractive, there are some difficult problems that prevent its

implementation. One of the problems is the redundancy of

human muscles around joints. It is almost impossible to get

each muscle’s status around the joint. Another problem is

the parameters involved in the Hill-type model. In addition

to the muscle activation level, the muscle length changes,

muscle velocity changes, and pennation angle are usually

used in the model. Accurately estimating these parameters

is difficult. A musculoskeletal model can be used to build a

quantitative relation between EMG signals and musculo-

tendon forces.

In this paper, a continuous upper limb elbow joint angle

representation method is proposed. Single-channel EMG

signals recorded from the biceps muscle are used as the

input of the proposed method. A quantitative relationship

between EMG signals and joint angles is developed using a

Hill-type musculoskeletal model. Because only EMG sig-

nals are used, some parameters involved in the muscu-

loskeletal model can not be evaluate by measurement and

thus introduce error. Therefore, a state switching model is

developed to avoid the influence of these factors. The

tested movement of the upper limb is voluntary elbow

flexion and extension in the sagittal plane. The involved

movement includes concentric contraction motion (elbow

flexion), isometric contraction motion (elbow holding), and

active shortening motion (elbow extension). Using the

proposed method, elbow joints can be represented only

with EMG signals in these three types of contraction mo-

tion. The results are used as reference control commands

for a developed upper limb exoskeleton device (ULED). To

estimate the efficiency of the proposed method, a con-

tinuous test and a consecutive stepping test were

performed.

2 Materials and Methods

2.1 Experimental Setup

Ten healthy volunteers (age: 24.60 ± 1.67 years, height:

1.70 ± 0.07 m, weight: 67.66 ± 9.54 kg, two female,

eight male, two left-handed, and eight right-handed) par-

ticipated in the experiments. Before placing the electrode,

which was aligned parallel to the muscle fibers, over the

belly of the muscle, the skin was shaved and cleaned with

alcohol in order to reduce skin impedance. The sampling

rate was 1000 Hz with differential amplification (gain:

1000) and common mode rejection (104 dB). A fourth-

order high-pass Butterworth filter with a 10-Hz cut-off

frequency was implemented in software to remove the DC

offsets in EMG signals before they were rectified. The user

interface was programmed using Visual C?? 2010 (Mi-

crosoft Co., USA). The analog/digital (A/D) data from the

A/D board was collected through the application pro-

gramming interface and processed with MATLAB (The

MathWorks Co., USA). The software was run on a per-

sonal computer with a 2.8-GHz quad-core processor (Intel

Core i7 860) and 4 GB of RAM. An MTx sensor (Xsens

166 M. Pang et al.

123



Technologies B.V., USA) was attached on the subject’s

forearm to record the elbow joint angle for calibration and

comparison.

The proposed method was implemented to control the

developed ULED to estimate its efficiency. The ULED was

designed to provide passive and active rehabilitation

training for stroke patients. There are three active degrees

of freedom (DoFs) (one for the elbow joint and tow for the

wrist joint) and four passive DoFs (two for the elbow joint

and two for the wrist joint). The total weight of this device

is 1.3 kg, making it suitable for home rehabilitation. The

details of the ULED can be found elsewhere [23]. The

proposed method can be used for home bilateral reha-

bilitation with the ULED. During home bilateral reha-

bilitation training, the hemiparesis patient can wear the

ULED on the impaired upper limb and the proposed

method can control the ULED using EMG signals recorded

from their intact upper limb. Because the EMG signals are

recorded from the intact upper limb, the healthy volunteers

can take place of the patients in the experiments. The ex-

perimental setup is shown in Fig. 1.

2.2 Experimental Protocol

A maximum voluntary contraction (MVC) test at the iso-

metric contraction condition was performed before the

experiment. Subjects were asked to hold a dumbbell (from

3 to 18 kg) at an angle of 90� between their upper arms and

forearms and the EMG signals from the biceps muscle

were recorded. Five trials were performed to determine the

MVC EMG value. A sufficient rest time between the five

trials was provided to avoid muscle fatigue.

In the experiment of upper limb flexion and extension in

the sagittal plane, the subjects were asked to start with both

side of their arms (one side, namely active arm, is used to

record EMG signals, and the other side, namely passive

arm, is with ULED worn on) relaxed vertically and then

flex their forearms to 90�. After having maintained their

forearms in the horizontal position for 3 s, the subjects

were asked to extend their forearms to the initial vertical

position. Then, a calibration calculation for proposed

method was performed offline. After the calibration was

finished, the subjects were asked to wear the ULED and

perform online experiments. The subjects moved their ac-

tive arms with the motion used in the previous experiment

and the ULED carried the other arms to move passively.

Furthermore, a consecutive stepping test was performed

by five of the ten subjects. In the consecutive stepping test,

the subjects were asked to move their active upper limb to

angle of 30�, 20�, and 10�, respectively, and hold for 3 s at

each step.

A photograph of each subject was taken to record the

electrode position on the upper arm. The condition of upper

limb movement, such as forearm rotation speed and upper

arm stiffness, should be restricted for the accurate offline

calibration. In order to keep the rotation speed and gener-

alize upper limb movement, the subjects were asked to

practice the motion by following a prerecorded video. All

motions were voluntary without any external force applied

on the upper limb. Each subject repeated the three ex-

periments ten times with a relaxation time of 1 min be-

tween tests.

2.3 Musculoskeletal Model

A side view (in the sagittal plane) of the proposed mus-

culoskeletal model is shown in Fig. 2. The distance be-

tween the attachment point of the tendon to the skeleton

Fig. 1 Experimental setup. The electrode is attached on one of the

subject’s upper arm (on the surface of the biceps brachii) and the

ULED is placed on the other arm. The ULED is driven by the

prediction results using the proposed method

Fig. 2 Side view of proposed muscular skeleton model in vertical

plane
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and elbow joint is l. According to a previous study [24], the

tendon in the upper arm can be regarded as having high

stiffness and thus the tendon deformation is zero. The de-

formation of the muscle–tendon that results in elbow ro-

tation can thus be regarded as resulting only from muscle

contraction. The elbow angle h is the one to be predicted.

L is the distance between the forearm centroid and the

elbow joint. In the sagittal plane, it can be considered that

the biceps muscle contracts to pull the forearm against the

force of gravity during the motion of elbow flexion and

extension and that the triceps muscle remains almost un-

activated. No obvious EMG signal changes from the triceps

muscle can be observed during elbow flexion and extension

in the sagittal plane. In the transverse plane, the triceps has

to pull the forearm to extend the elbow. As only voluntary

motion in the sagittal plane is discussed, the effect from

triceps brachii is ignored in this paper.

The following equation describes the motion of elbow

flexion and extension in the sagittal plane:

FBl sin h� mgL sin h� sf ¼ I€hþ se ð1Þ

where FB is the musclotendon force exerted by the biceps

and sf represents the torque from frictional effects, which is

assumed to be zero in this paper. se represents the effects of
the environmental interaction, which is also assumed to be

zero because the subjects held nothing in their hands when

they performed the experiments. The mass and inertia of

the forearm are m and I, respectively. Dividing Eq. (1) by

lsinh on both sides yields:

FB ¼ mgLl�1 þ Il�1€h sin h ð2Þ

For Eq. (2), it is difficult to accurately estimate m and I.

However, these two parameters can be assumed to be

constant during a certain period of time. Using a Hill-type

muscular model, the term FB can be represented as a

function of muscular activation level (a), muscle contrac-

tion length (Lm), and muscle contraction velocity (dLm).

Equation (2) can thus be rewritten as:

f ða; Lm; dLmÞ ¼ c1 þ A1
€h sin h ð3Þ

where c1 equals mgLl
-1 and A1 equals Il

-1.

An actual musculoskeletal model of human upper limb

is more complex than the proposed one, for example not

only biceps brachii is involved in the elbow flexion but also

brachialis muscle. The brachialis is the deep muscle in the

upper arm. It is not easy to record EMG signals from the

brachialis using non-invasive surface electrodes. It is as-

sumed that the muscle synergies involved in a certain

motion is invariant under the same circumstance (such as

the same muscle stiffness, motion speed, and external

friction) because the control of the central nervous system

keeps the same. Thus the activation level of biceps brachii

can be used to predict the angle of elbow joint flexion and

extension without considering all involved muscles.

2.4 Hill-Type-Based Muscular Model

In order to calculate the musclotendon force FB, a con-

ventional Hill-type muscular model is adopted [25]. It

contains a pair of elements arranged in series: a passive

serial element (SE), an active contractile element (CE), and

a passive element (PE) arranged in parallel to the previous

two. The equations [21, 26] used to calculate the force

based on this model are:

FPE;SE ¼ Fmax=e
s � 1½ � eððs=DLmaxÞDLÞ � 1

h i
ð4Þ

FCE¼FmaxaðuÞ � fl � fv
fl¼ exp �0:5 DLCE=LCE0

�0:05ð Þ=0:19ð Þ2
� �

fv¼0:1433 0:1074þexp �1:3sinh 2:8
VCE

VCE0

þ1:64

� �� �� ��1

VCE0
¼0:5 aðuÞþ1ð ÞVCEmax

8>>>>>>><
>>>>>>>:

ð5Þ
FT ¼ FCE þ FPE ð6Þ

a uð Þ ¼ euðtÞR
�1 � 1

� �
= eA � 1
� �

ð7Þ

where DL is the change in length of the element with re-

spect to the slack length, S is a shape parameter, Fmax is the

maximum force exerted by the element for the maximum

change in length DLmax, and FPE,SE is the passive force

generated by the PE or SE depending on the set of pa-

rameters used. FT is the total force exerted by the muscle.

a(u) is the activation level of a muscle.

The SE element presents the force generated by the

deformation of the tendon, which is considered to be zero,

and thus the SE element is ignored in this study. For the

voluntary elbow flexion and extension considered here, the

PE element can also be ignored. The muscular force FB can

thus be calculated from Eqs. (5) to (7).

However, accurate estimation of parameters DLCE and

VCE is not easy. According to the musculoskeletal model

build in Sect. 2.3 and the assumption that the tendon is

stiff, DLCE can be defined as:

DLCE ¼ l cos h ¼ aL cos h ¼ aLCE0
cos h ð8Þ

where a is the ratio of l to L.

VCE can be defined as:

VCE ¼ dl cos h=dt ¼ � _hl sin h ð9Þ

According to a previous study [27], VCE0 can be re-

garded as 10LCE0/s for the upper limb muscles in most of

cases. Given this condition, the following equation is

obtained:
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VCE

VCE0

¼ �
_haLCE0

sin h
10LCE0

¼ �0:1a _h sin h ð10Þ

Substituting Eqs. (8) and (10) back into the Hill-type

model and rewriting the term FB with the detailed equa-

tions yields:

Fmaxa� flðcos hÞ � fv _h; sin h
� �

¼ C1 þ A1
€h sin h ð11Þ

Taking the natural logarithm of both sides yields:

C2 þ ln exp uR�1
� �

� 1
� �

þ ln fv _h sin h
� �� �

¼ ln A1
€h sin hþ c1

� �
þ ða cos h� 0:05Þ2 ð12Þ

where C2 and C3 equal ln(Fmax(exp(A) - 1)-1) and

0.5 9 0.19-2, respectively. The value of term lnfv(dh,sinh)
is around zero in this circumstance, and thus ignored. Since

the value of c1 is much larger than that of A1d
2hsinh, the

term ln(A1d
2hsinh ? c1) can be simplified as lnc1 and we

use C1 to instead for the purpose of keeping mathematic

unification. Equation (12) can thus be further simplified as:

C2 þ ln exp uR�1
� �

� 1
� �

¼ C1 þ C3ða cos h� 0:05Þ2

ð13Þ

where u represents the muscle activation level, which can

be calculated from EMG signals, and h is the upper limb

elbow joint angle.

In Eq. (13), the term ln(exp(uR-1) - 1) can be repre-

sented as a quadratic polynomial with variable uR-1. Then,

Eq. (13) can be transformed into Eq. (14), which has a

quadratic-like relationship between cos2h and uR-1.

According to the experimental results (discussed in the

next section), this quadratic-like relationship is extremely

strong during the upper limb elbow flexion period.

C2 þ
X2

i¼0
ai uR

�1
� �i¼ C1 þ C3ða cos h� 0:05Þ2 ð14Þ

2.5 Muscle Activation Level

The EMG signals can directly reflect the muscle activation

level [a(u)]. Raw EMG signals should be filtered by a high-

pass filter to remove any DC offsets or low-frequency noise

and then rectified. Sometimes, these rectified signals are

directly transformed into muscle activation levels by di-

viding them by the peak rectified EMG value obtained

during the MVC test. Some researchers suggest that a more

detailed model of muscle activation dynamics is warranted

in order to characterize the time-varying features of the

EMG signal. In this paper, a discretized recursive filter is

used.

A discretized recursive filter with a continuous form of a

second-order differential equation was implemented:

uðtÞ ¼ Md2eðtÞ
�
d2t þ BdeðtÞ

�
dt þ KeðtÞ ð15Þ

where M, B, and K are the constants that define the dy-

namics of Eq. (15) and e(t) is the processed EMG signal.

This equation can be expressed in discrete form using

backward differences:

uðtÞ ¼ aeðt � dÞ � b1uðt � 1Þ � b2uðt � 2Þ ð16Þ

where d is the electromechanical delay and a, b1, and b2
are the coefficients that define the second-order dynamics.

Selection of the values for a, b1, and b2 should follow the

following restrictions:

b1 ¼ c1 þ c2 ð17Þ
b1 ¼ c1 � c2 ð18Þ
c1j j\1 ð19Þ
c2j j\1 ð20Þ
a� b1 � b2 ¼ 1 ð21Þ

in order to guarantee the stability of the equation and that

neural activation does not exceed 1.

The calculation results should be filtered by a low-pass

filter (with a cut-off frequency of 3–10 Hz) because the

muscle naturally acts as a filter, resulting in that force

changing frequency is much lower than amplitude chang-

ing frequency of EMG signals. Here, the cut-off frequency

was set even lower, to around 0.5–1 Hz. As a consequence,

some energy of the original signals was filtered, but a more

smooth muscle activation level curve was obtained. Since

the purpose of this paper is to represent the elbow joint

angle, not clinical analysis, this processing is reasonable.

2.6 State Switching Model

Although the relationship between EMG signals (muscle

activation level) and elbow joint angle seems simple from

Eq. (13), the actual relation is more complicated. Figure 4

shows one set of experimental results of normalized muscle

activation level during the motion of elbow flexion and

extension. There are four periods: relaxation period, elbow

flexion period (part A in Fig. 3), holding period (part B in

Fig. 3), and elbow extension period (part C in Fig. 3). In

the flexion period, the activation level has a quadratic-like

relation with the elbow joint angle, which corresponds to

Eq. (14). In this period, the type of muscle contraction is

concentric contraction. The interesting part is the connec-

tion portion between the flexion period and the holding

period, where the musclotendon force decreases rapidly

and then plateaus, which is similar to overshoot in control

theory. This result can be explained by Eq. (2). During the

motion of elbow flexion, the force or torque exerted by the

muscle can be represented as:

Electromyography-Based Quantitative Representation Method for Upper-Limb Elbow Joint Angle… 169

123



FBl sin h ¼ mg sin hLþ I€h ð2Þ

When the forearm is held at 90� from the upper arm, the

desired torque can be represented as:

FBl ¼ mgL; ðh ¼ 90�Þ ð22Þ

Compared with Eq. (22), there is an extra acceleration

term in Eq. (2), resulting in a higher force level in the

elbow flexion period. As the muscle activation level di-

rectly reflects the musclotendon force, the activation level

is higher in the flexion period than in the holding period.

Another reason is the transformation of muscle contraction

type from concentric to isometric. However, this issue is

beyond the scope of this paper. During the period of elbow

extension, the muscle activation level decreases with de-

creasing elbow joint angle. Furthermore, during the ex-

tension period, the muscle contraction type changes to

active shortening.

Given this situation, a state switching model (as shown

in Fig. 4) is developed for elbow joint angle prediction.

The input of this switching model is the muscle activation

level. There are four states in this state switching model,

namely relaxation, flexion, holding and extension states,

which correspond to the elbow joint motions with the same

names. The relaxation state is the initial state, at which the

forearm is 180� from the upper arm in the sagittal plane.

When the muscle activation level increases, the state

changes to the flexion state. The flexion state changes to

the holding state only when the activation level stops in-

creasing and the value exceeds a threshold. When the level

decreases, the state changes to the extension state. In the

holding state, the state can only change to the extension

state when the activation level starts to decrease. The ex-

tension state changes to the relaxation state when the value

of the activation level decreases to an inactivation level,

and then changes to the flexion state when the force value

increases.

Although a low-pass filter (with a cut-off frequency of

0.5–1 Hz) was used when transforming EMG signals into

muscle activation levels, a further simple value rectifica-

tion filter with an empirical change range of 1–3 % was

used to stabilize the activation level in the relaxation state.

Another problem in the state switching model is the

discontinuity of the representation elbow joint angle value

between the flexion state and the extension state, especially

when the state changes from the holding state to the ex-

tension state. It is assumed that this is caused by the ac-

celeration term in Eq. (2). The force exerted at the end of

the flexion state is higher than that at the beginning of the

extension state even though the elbow joint angle is almost

the same. Because a continuous quadratic-like function is

implemented, the outputs of this function between the two

states are discontinuous. In this paper, a simple propor-

tional gain is used to solve this problem:
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Fig. 3 One set of experimental

results from one subject

obtained during forearm flexion

and extension. In the upper

figure, the solid line is the

normalized muscle activation

level estimated from EMG

signals and the dashed line is

the upper limb elbow joint

angle. The lower figure shows

the raw EMG signals recorded

from the biceps brachii

Fig. 4 Proposed state switching model. The four states are relax-

ation, flexion, holding, and extension. The switching thresholds for

each state are determined in the calibration process
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p ¼ hmax

h0max

ð23Þ

where hmax is the elbow joint angle at the end of the flexion

state and h0max is the elbow joint angle at the beginning of

the extension state. According to the definitions of flexion

and extension states, the last value at the end of the flexion

state is the maximum elbow joint angle at the flexion state

and the first value at the beginning of the extension state is

the maximum elbow joint angle at the extension state.

2.7 Schematic of Designed Elbow Joint Continuous

Representation Method

In the pre-processing step, raw EMG signals are filtered by

a high-pass fourth-order Butterworth filter with a cut-off

frequency of 10 Hz and then are processed using Eq. (16)

to get the feature estimation of u(t). After u(t) is filtered

with a low-pass second-order Butterworth filter (with

0.5–1 Hz cut-off frequency), the results are used as the

input of Eq. (7). The outputs are the muscle activation level

(a). Then, the activation level is rectified by 1–3 % to re-

duce the drifting effect caused by the characteristics of

EMG signals. The rectified activation level is used as the

input to the proposed state switching model to obtain a

representation of the elbow joint angle, which is used as the

control reference input for the exoskeleton device. The

proposed Hill-type-based muscular model is combined in

the state switching method.

3 Results and Discussion

A continuous upper limb elbow flexion and extension ex-

periment and a consecutive stepping experiment were

conducted to estimate the efficiency of the proposed

method. These experiments were conducted on ten subjects

for 4 days. Each subject performed the experiment ten

times each day.

3.1 Evaluation of Proposed Musculoskeletal Model

To evaluate the proposed musculoskeletal model, all

recorded data from the ten subjects during the 4 days were

fitted using the curve fitting tools of MATLAB with

quadratic polynomial equations. The inputs were values of

the muscle activation level during the flexion motion and

the outputs were values of cos2h. Some bad data caused by

electrodes sliding on the skin surface were ignored. Fig-

ure 5 shows one set of model evaluation results from the

ten subjects. The dashed lines are the results calculated

with data recorded from EMG electrodes (to get the muscle

activation level) and from the MTx sensor (to get elbow

joint angles). The solid lines are prediction results based on

the proposed model. Table 1 lists detailed information

(mean ± SD). The experimental results show that the av-

erage values of the correlation coefficient is above 0.97 for

all ten subjects. Although a linear relationship between

muscle activation level and cos2h was found for some

subjects (in Fig. 5, subjects B and F have correlation co-

efficients of 0.95 and 0.94, respectively), the quadratic-like

relationship has a higher correlation coefficient (with cor-

relation coefficients of 0.97 and 0.98) than that of the linear

one in the same case. In other cases (in Fig. 5, subjects I

and J), the quadratic-like relationship is more suitable

(linear relationship has correlation coefficients of 0.86 and

0.85 and quadratic-like one has 0.97 and 0.98).

The range of the upper limb motion was constrained

from 0� to 90�. The change of muscle length can thus be

represented by the cosine function without considering the

phase change of h. This range avoids the problem of EMG

misdetection introduced by the sliding of electrodes on the

skin surface. The subjects were asked to move their fore-

arms with angular velocity (dh) of 30�/s during the entire

experiment. This was guaranteed by subjects’ pre-practice.

However, the angular velocity is not necessary to be

strictly constrained. In Eq. (12), dh, which is ln[fv(dh,s-
inh)], can be considered as zero because the value of fv(-

dh,sinh) is around 1 (0�/s\ dh\ 90�/s). A1d
2hsinh ? c1

can be simplified as c1 because c1[[A1d
2hsinh if d2h is not

very large. As a consequence, the angular velocity of the

forearm is not needed to be strictly constrained.

3.2 Continuous Elbow Joint Angle Prediction

Figure 6 shows one set of the elbow joint angle prediction

results obtained using the proposed method. The calculated

elbow joint angles are plotted with a solid line and the

recorded elbow joint angles obtained using the MTx sensor

are plotted with a dashed line. Trajectory of the ex-

oskeleton device is plotted with a dotted line. The different

states are divided using black lines. In state 1 (relaxation

state), the prediction results and recorded results are all

zero. Actually, small changes in the muscle activation level

can be observed in this period due to the small changes in

EMG signals. These small changes may make the current

state change to the next state and cause errors. A rectifi-

cation method is thus implemented to stabilize the changes.

In state 2 (flexion state), there is usually a time lag (about

100–200 ms) at the end of this state between the recorded

data and prediction results. This time lag is caused by the

transition from the flexion state to the holding state. The

flexion state changes to holding state when the input (the

muscle activation level) for the state switching exceeds a

threshold, which is pre-determined. However the real de-

sired threshold changes with the variation of EMG signals.
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As a consequence, the constant pre-determined threshold

makes the prediction of holding state backwardly. In state 3

(holding state), the elbow joint remains in a certain position

(75� in this case). When the state changes to the extension

state, the values of prediction results decrease with de-

creasing muscle activation level. The correlation coeffi-

cients and root-mean-square (RMS) errors between

prediction results and recorded ones of the ten subjects are

listed in Table 2.

The proposed state switching model mitigates the effect

of the acceleration term in Eq. (2) and the transitory

changes between different types of muscle contraction. In

the beginning, a general quadratic-like relationship was

developed [as shown in Eq. (13)] to map the muscle acti-

vation level to the elbow joint angle. However, the over-

shoot (as shown in Fig. 4) made it very difficult or

impossible to obtain accurate representations using only

one function. As for the purpose of using only EMG sig-

nals, the measurement of acceleration is out of consid-

eration. Given this situation, different states were used to

express the different parts and a connection was made

between them. Although the EMG signals are non-sta-

tionary, the motion of the upper limb is continuous, i.e.,

there is no jump point between two continuous elbow joint

angles. The changes of EMG signals or muscle activation

levels follow a continuous trend during motion. In the

experiment, a strong quadratic-like relationship between

the calculated muscle activation level and the elbow joint

angle during the motion of flexion was found. This relation

well corresponds to the proposed Hill-type-based muscular

model. Thus, a quadratic mapping function was developed

based on the data from the motion of the subject per-

forming upper limb flexion and extension voluntarily (the

angular velocity was constrained). When the motion

changes from flexion to holding, the contraction motion of

the muscle changes from concentric to isometric and the

effect of acceleration disappears. The muscle activation

level usually drops to a relatively low level. A single

quadratic function directly reflects this kind of drop while

the actual position of the forearm remains unchanged.

Thus, two states are used to divide these two parts (flexion

and holding). When the subject goes on extending their

upper limb, a jump point appears if the same mapping

function is directly used. Thus, a proportional gain is im-

plemented to smooth this jump point. The extension state is

therefore used to denote this part.

Nevertheless, the proposed state switching model may

give rise to distortion or time lag in some cases. In Fig. 7,

the motion is forearm flexion and then extension, without a

holding period during flexion and extension. There is a
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Fig. 5 One set of experimental results of simplified musculotendon prediction results obtained using only EMG. The solid blue line is the

simplified prediction results and the green dashed line is the prediction results with EMG and MTx sensor
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time lag between the flexion and extension in the predic-

tion results. This is because the state changes from flexion

to holding and then to extension. It takes some time (as

long as the time lag) for the model to change state from

holding to extension. This time lag depends on the de-

creasing rate of EMG signals (c), the difference between

peak muscle activation levels (aP), the threshold set for the

holding state, and a range value (ar: 1–3 %) that is used to

reduce the influence of the non-stationarity of EMG sig-

nals. The time lag can be defined as:

tlag ¼
Fp � Ftð1� arÞ

c
ð24Þ

where the only parameter which can be controlled is ar.

However the influence of ar is much less than that of the

other parameters. Thus, tlag can be regarded as an inherent

defect of this model caused by the non-stationarity of EMG

signals. Although this time lag appears in certain circum-

stances, it does not affect all results, i.e. this lag, does not

accumulate in the state switching method.

3.3 Consecutive Stepping Elbow Joint Angle

Prediction

To evaluate the proposed method in a more complicated

circumstance, a consecutive stepping test was performed

by five of the ten subjects. One set of the experimental

results is shown in Fig. 8 and the detailed information for

the five subjects is given in Table 3. In the stepping ex-

periment, the subjects were asked to perform the move-

ment with an angular velocity of 30�/s. The experimental

results show that the RMS errors between prediction re-

sults and recorded ones increase with decreasing increment

angle. For the 30� increment angle case, the prediction

results corresponded to the recorded data well and only

small errors were found (with mean RMS error of 5.67�).
In this case, the ULED can follow the motions of the active

upper limb quickly and no obvious deviation was felt by

subjects. In the 20� increment angle case, relatively large

deviations or floats from the recorded elbow joint angles

were observed in the data (with mean RMS error of 8.02�)
and reported by subjects. Although the ULED can follow

the motions of the subject’s active upper limb, some

trembling was sensed. For the 10� increment angle case,

the deviations between prediction results and recorded

ones were large (with mean RMS error of 12.99�). Only a

general trend can be found from the data and obvious

trembling was sensed by subjects.

The experimental results show that the efficiency of the

proposed method decreases with decreasing of increment

angle. According to the experimental results, the proposed

method provides a ‘‘good, faire, and poor’’ predictions of

elbow joint angle with increment angles of 30�, 20�, andT
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10�, respectively. One of the reasons for that the efficiency
of the proposed method decreases with decreasing of in-

crement angle is that the trend of EMG signals tends to

become more unstable or the amplitude of ripple of EMG

signals tends to become wider with decreasing increment

angle. The wide ripple of EMG signals directly influences

the calculation of muscle activation level, i.e., there are

ripples in muscle activation levels. The activation levels

thus become unstable as well. This phenomenon was found

for all five subjects during the consecutive stepping test.

But this kind of phenomenon doesn’t appear in the con-

tinuous motion test. This phenomenon indicates that the

subject must provide more effort to achieve the task in the

consecutive stepping text than in the continuous motion

text and the fluctuation in EMG signals during consecutive

stepping test reflects upon this effort. According to the

experimental results, the proposed method can provide

suitable predictions within increments of 20�–30�.
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Fig. 6 One set of

representation results with

proposed method from one

subject. The solid line is the

represented results and the

dashed line is the recorded

results from MTx sensor. The

trajectory of the exoskeleton

device is plotted with a dotted

line, which is good agreement

with the prediction results

Table 2 (a) Correlation coefficients and (b) RMS errors (degrees) between prediction results and recorded results

Day Subject

A B C D E F G H I J

A

1 0.96 ± 0.02 0.91 ± 0.01 0.94 ± 0.03 0.95 ± 0.01 0.98 ± 0.02 0.96 ± 0.01 0.96 ± 0.07 0.97 ± 0.02 0.94 ± 0.09 0.93 ± 0.05

2 0.98 ± 0.01 0.92 ± 0.05 0.94 ± 0.05 0.95 ± 0.04 0.95 ± 0.04 0.96 ± 0.03 0.98 ± 0.04 0.97 ± 0.03 0.97 ± 0.01 0.97 ± 0.03

3 0.98 ± 0.04 0.91 ± 0.09 0.93 ± 0.07 0.93 ± 0.06 0.95 ± 0.05 0.91 ± 0.08 0.94 ± 0.06 0.97 ± 0.02 0.94 ± 0.01 0.92 ± 0.01

4 0.94 ± 0.06 0.95 ± 0.04 0.97 ± 0.01 0.95 ± 0.07 0.94 ± 0.06 0.97 ± 0.01 0.92 ± 0.08 0.95 ± 0.05 0.95 ± 0.01 0.96 ± 0.02

B

1 9.78 ± 3.79 8.10 ± 2.59 5.20 ± 2.80 9.22 ± 2.12 5.60 ± 0.34 9.17 ± 2.80 9.47 ± 1.37 9.70 ± 0.13 8.64 ± 1.60 5.33 ± 1.27

2 7.33 ± 2.14 7.56 ± 2.31 4.32 ± 2.21 7.31 ± 3.31 5.55 ± 1.21 7.78 ± 2.57 8.33 ± 2.12 9.05 ± 2.11 5.31 ± 2.21 4.21 ± 3.17

3 6.23 ± 4.11 7.71 ± 2.77 5.78 ± 3.33 8.21 ± 2.23 6.04 ± 2.11 7.31 ± 2.23 7.78 ± 3.16 7.73 ± 3.01 7.04 ± 2.13 5.78 ± 2.00

4 7.35 ± 2.11 8.78 ± 2.11 4.32 ± 2.45 5.45 ± 3.13 5.57 ± 3.14 5.32 ± 2.85 9.01 ± 2.11 7.00 ± 1.31 6.66 ± 3.01 6.05 ± 1.15
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Fig. 7 Prediction results of

flexion and extension motion

without holding motion. The

proposed state switching

method gives rise to distortion

or time lag around the peak

point of the motion
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Fig. 8 Consecutive stepping

test results for increment angles

of a 30�, b 20�, c 10�

Table 3 RMS errors between

prediction results and recorded

results in consecutive stepping

test

Increment Subject

A C E G I

30 4.40 ± 3.15 5.40 ± 2.21 6.51 ± 3.11 5.32 ± 4.21 6.71 ± 4.00

20 6.61 ± 3.71 8.83 ± 4.94 7.139 ± 3.90 9.21 ± 2.11 8.31 ± 3.57

10 15.40 ± 3.15 17.40 ± 3.12 17.35 ± 4.12 19.35 ± 3.15 17.44 ± 4.23
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4 Conclusion

This paper proposed an upper limb elbow joint represen-

tation method that uses only single-channel EMG signals.

EMG signals are recorded from the biceps muscle and a

discretized recursive filter is implemented to calculate the

muscle activation level from these signals. A modified Hill-

type muscular model was implemented to build a quanti-

tative relationship between the elbow joint angle and the

muscle activation level (or EMG signals). After some

simplification, a quadratic-like relationship was developed.

The experimental results indicate that the proposed model

works well during flexion and extension motion. Further-

more, a state switching model was developed to avoid the

influence of acceleration and transit between muscle con-

traction states. A consecutive stepping experiment was

conducted to test the feasibility of the proposed method

with more free motion. Experimental results indicate that

this method can provide suitable prediction results with

RMS errors of below 10� in continuous motion and RMS

errors of below 10� in stepping motion with 20� and 30�
increments. The proposed method can be implemented for

real-time calculation, human–machine interaction and may

be useful for neurorehabilitation. The proposed method

will be implemented for a bilateral rehabilitation exercise

in the future.
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