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Abstract
This work studies machine-learning-based inverse problem solvers for a reaction–
diffusion process. The study focus is on the performance of a state-of-the-art con-
volutional neural network in discovering the source of disease spreading. This prob-
lem is called epidemiological geographic profiling. The performance is investigated 
with synthetic datasets for SIR epidemiological compartments on a square grid geo-
space. The convolutional neural network works effectively in discovering a single 
source and achieves the largest time average of accuracy for growing infection in 
a heterogeneous geo-space. The hit score remains near the lower bound over time. 
Discovering multiple sources is feasible potentially as well by learning the dataset 
for a single source.

Keywords Convolutional neural network · Geographic profiling · Infectious 
disease · Inverse problem · Reaction–diffusion process

JEL Classification C13 Estimation: General · C18 Methodological Issues: General · 
I10 General

1 Introduction

Spreading of an infectious disease is a stochastic reaction–diffusion process in a het-
erogeneous space. Infection of susceptible individuals is a reaction process in a sub-
population. Removal (or recovery) of infectious individuals is also a reaction pro-
cess. Movement of infectious individuals is a diffusion process across subpopulation 
boundaries. A subpopulation is a group of individuals in a small distinct geographic 
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area. Similar processes underlie many investigation topics in data-driven mathemati-
cal sciences, econophysics, and sociophysics. Some examples include dissemination 
of online fake-news (Vosoughi et al. 2018), spreading of rumors on social network-
ing services (Grinberg et al. 2019), fluctuating prosperity of firms in an economic 
system (Maeno 2013), structural changes in the international trade network (Ikeda 
and Iyetomi 2018), and a crash of financial markets (Maskawa et al. 2013). Uncer-
tainty in such processes results in the emergence of systemic risk (Kuyyamudi et al. 
2019) and often imposes a large adverse impact on the entire system (Daglis et al. 
2022).

Public health authorities are interested in the inception of the spreading. Once 
they detect a possible outbreak and get a big picture on the spatial distribution of 
the spreading, it becomes a pressing task for both the first-aid intervention and long-
term policy making to discover the index case (Cesar Henrique and da Fontoura 
2011). The index case is a so-called patient-zero as a source (individual or sub-
population) of spreading. This problem is called epidemiological geographic profil-
ing (Le Comber et  al. 2011). It is inspired by criminological geographic profiling 
which aids crime investigators in searching for a home base of an offender from 
serial crime sites on a map (Canter et al. 2000). Similarly, it is a significant task for 
financial regulatory authorities to discover the source of circulating disinformation 
and transmitting financial distress in the markets. Discovery of a source is an inverse 
problem for identifying the initial state retrospectively from the current snapshot of 
variables.

In general, temporal evolution of time-dependent variables is formulated by a 
Langevin equation (stochastic differential equation). Equivalently, temporal evolu-
tion of the probability density function of stochastic variables is described by a Fok-
ker-Planck forward equation (multivariate partial differential equation). The Fokker-
Plank formulation is analogous to a Boltzmann transport equation in describing 
non-equilibrium transient behaviors. The Boltzmann transport equation formalizes 
collisions and diffusion of molecular species under external forces. Susceptible and 
infectious individuals in epidemiology are such molecular species in thermodynam-
ics. Note that relaxation to equilibrium, or non-decreasing entropy in the second law 
of thermodynamics, is an informational process to lose the memory of the initial 
state irreversibly. Unless the spreading terminates in the equilibrium, the most prob-
able candidate for the initial state can be obtained in principle by analyzing a cor-
responding Fokker-Planck backward equation. But practical reaction-diffusion pro-
cesses are too complex to obtain a tractable solution even numerically.

This work studies machine-learning-based inverse problem solvers for epidemio-
logical geographic profiling. The study focus is on the performance of a state-of-the-art 
convolutional neural network (CNN). The other 3 solvers for performance comparison 
include a naive Bayes classifier (NBC), a random forest classifier (RFC), and a mul-
tinomial logistic regression (MLR). They are one of the most widely used solvers in 
predicting probability for Bayesian inference, supervised learning, and statistical mod-
eling respectively. For example, some works on molecular transports (Janczura et al. 
2020; Kowalek et al. 2019) investigate a random forest classifier in detail. A trajectory 
of time-dependent variables is computed numerically from a Langevin equation for 
SIR epidemiological compartments on a square grid geo-space. Snapshots of variables 
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are recorded from the trajectory and organized as a synthetic dataset. The solvers are 
applied to discovering either a single source or multiple sources in the dataset. Accu-
racy and hit score are investigated to quantify the performance of the 4 solvers.

2  Related works

Recent works present that machine learning can play a vital role for data analysis in 
mathematical sciences. One example is approximating a solution of a complicated 
diffusion equation for polymer microphase separation (Wei et  al. 2018). Another 
is classifying a diffusion mode in single particle tracking for molecular transports 
(Janczura et al. 2020; Kowalek et al. 2019). On the other hand, many works study 
global intercity aviation and human-to-human contacts as a medium of spreading of 
an infectious disease. The key idea is founded on modeling to discretize the medium 
as a complex, temporal, or multi-layered network (Li and Saad 2021; Ortega et al. 
2022; Torrisi et al. 2021).

Some of the works propose to analyze network topologies and apply meta-heuris-
tics to epidemiological geographic profiling (Menin and Bauch 2018; Nguyen and 
Vural 2017; Paluch et al. 2021; Shi et al. 2022). But few of them study machine-
learning-based inverse problem solvers, which are applicable potentially to a multi-
dimensional geo-space and any other models of the medium. This is the motivation 
of this work.

3  Materials and methods

3.1  Reaction–diffusion process for disease spreading

Time-dependent variables Ij(t) (j = 1, 2,⋯ ,N) is the number of infectious indi-
viduals in the j-th subpopulation at continuous time t ≥ 0 . N is the number of sub-
populations. J0 is the set of source subpopulations. Temporal evolution of Ij(t) is 
described by a Langevin equation (system of stochastic differential equations) in Eq. 
(1) (Maeno 2016).

The coefficients � and � are the probability of infection and removal (or recovery) 
per unit time. These are the state transitions in SIR epidemiological compartments 
( S → I → R ). In the SIR epidemiological compartments, an individual is assigned to 
one of 3 compartments with labels S (susceptible), I (infectious), and R (removed 
(or recovered)). It is assumed in this work that Ij(t) ≪ Sj(t) which is the number of 

(1)

dIj(t)

dt
=(�Ij(t) + �

[α]

j
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(�kjIk(t) + �
[γ]

kj
(t)) −

∑

k≠j

(�jkIj(t) + �
[γ]

jk
(t))
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susceptible individuals. The decrease in Sj is negligible. The term for infection 
becomes ��SjIj(t) ≈ �Ij(t) in Eq. (1) approximately. Basic reproductive ratio is given 
by R = �∕� . The Hurst exponent (Vilk 2022) for I(t) =

∑N

j=1
Ij(t) is h = 0.5 (normal 

diffusion) if � = � (R = 1) . The coefficients � = {�ij} are the probability of unidi-
rectional movements (from the j-th to the k-th subpopulation) per unit time. The 
probability of staying in the current subpopulation is �jj = 1 −

∑
k≠j �jk . The terms 

�
[α]

j
(t) , �[β]

j
(t) , and �[γ]

jk
(t) are Gaussian white noise. Their functional forms are not 

known.
Subpopulations are placed on a two-dimensional square grid geo-space. The 

size of the geo-space is 32 × 32 (N = 1024) . A subpopulation is surrounded by 
8 neighbors. Heterogeneity parameter rht is the ratio of missing connections. 
A missing connection means that the probability of movements is negligible 
there. The geo-space is sparser and more disjoint for larger rht . This work stud-
ies only non-disjoint connections. It is assumed that �jk = � is a constant for 
connections. In other words, the probability distribution is P(�jk = 0) = rht and 
P(�jk = �) = 1 − rht . The mean and standard deviation of �jk over j,  k in �  are 
� = (1 − rht)� and � =

√
(1 − rht)rht�.

3.2  Dataset for epidemiological geographic profiling

The Langevin equation in Eq. (1) is integrated with a Monte-Carlo simula-
tion for a single source ( |J0| = 1 ). The initial state is Ij(0) = 104 for j ∈ J0 and 
Ij(0) = 0 otherwise. Time t is discretized into a step �t . Multinomial random 
number generators x ∼ M(�, �,� ) reproduce stepwise state transitions and fluc-
tuating changes in �Ij . Variable snapshot vectors I = (I1, I2,… , IN) are recorded 
at an observation interval � . The simulation conditions are t ≤ 200 and � = 10 
(20 snapshots per a trajectory). The snapshots Ij are the instances of N features 
with a source identifier j ∈ J0 as a category label. The pairs of the features 
and category label are assembled into a training dataset D[tr] = {(Ij, j)} . D

[tr] 
includes 28 × 28 = 784 different trajectories (initial states). The source excludes 
the edges of the geo-space ( 1024 − 784 = 240 subpopulations). The instances 
( |D[tr]| = 20 × 784 = 15680 ) are stored in an arbitrary order. Note that D[tr] is 
not informative explicitly on the parameters ( �, �,� , t,�t, �).

A test dataset D[te] is assembled similarly. The values of the probability 
parameters (�, �,� ) are the same. There is either a single source ( |J0| = 1 ) or 
multiple sources ( |J0| > 1 ) initially. The sources are chosen randomly so that the 
distance between any pair in J0 is larger than the mean (0.52 in a unit square) 
because they are indistinguishable if they are too close. The initial state is 
Ij(0) = 104∕|J0| for j ∈ J0 . The observation interval is � = 25 (8 snapshots per 
a trajectory). Figure 1 shows some instances in D[te] for rht = 0.45 and R = 1.2 . 
Each time series (a), (b), (c) represents a trajectory ( t ≤ 200 ) for |J0| = 1 (single 
source), 2 (multiple sources), and 3 (multiple sources). The trace of the initial 
state gets fainter gradually (correlation is lost) as fluctuation accumulates and 
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relaxation to the equilibrium progresses. They visualize how the signal level 
falls while the noise level rises.

3.3  Machine‑learning‑based inverse problem solver

For an instance I in D[te] , pj = P(j ∈ J0|I) is the probability that the j-th subpopula-
tion is a source. The vector p = (p1, p2,⋯ , pN) is a posterior probability. The role 
of a machine-learning-based solver is to find the optimal mapping function p = f (I) 
with respect to D[tr] and predict the source j0 for D[te] by eq.(2).

Prediction succeeds if j0 ∈ J0 . An accuracy measure A is defined as the number of 
successful predictions as a fraction of |D[te]| . A hit score measure H is a cumulative 
search area, which is investigated according to the ranking of pj in a descending 
order to discover the source, as a fraction of the total area (Le Comber et al. 2011). 
The area is measured by the number of grids. Larger accuracy and smaller hit score 
indicate more effective prediction. The most effective prediction achieves A = 1 for 
|J0| = 1 and H = |J0|∕N for |J0| ≥ 1 . Mere guesswork results in H = |J0|∕(|J0| + 1) 
regardless of N.

A convolutional neural network (CNN) is a state-of-the-art deep learning algo-
rithm (Kowalek et al. 2019; Wei et al. 2018). I and p are processed as if they were 
the input pixels in a monochrome image ( 32 × 32 (N = 1024) ) and the output likeli-
ness that the image contains a particular image object ( C = 1024 categories). Fig-
ure 2 shows the configuration of an 8-layer convolutional neural network ( L = 8 ) in 
this work. Large kernels ( K = 8 × 8 ) are applied in calculating convolution. Filters 
decide the number of parallel channels ( F = 32, 64 ) in the output. A convolutional 
neural network with 10 or more hidden layers works as an excellent image classifier 
empirically. Based on the rule of thumb, the configuration in Fig. 2 is decided by an 
exhaustive search to improve A and H around L = 10 , K = 10 , and F = 10 ∼ 102 . 

(2)j0 = argmin
1≤j≤N

pj.

Fig. 1  Instances in a test 
dataset D[te] for rht = 0.45 and 
R = 1.2 (� = 0.12.� = 0.1, � = 0.1) . 
The number of sources is (a) 
|J0| = 1 , (b) |J0| = 2 , and (c) 
|J0| = 3
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L, K, and F are kept as small as possible. Note that the configuration is not proven 
the best but verified effective experimentally. The hidden layers 2 through 7 employ 
leaky rectified linear functions. The activation and output layer employs a soft-max 
function f (I) ∝ exp(

∑N

k=1
ajkIk + bj) where ajk and bj are weight parameters. The 

number of weight parameters is WCNN = O(CLKF) . WCNN ∼ 106 if L,K,F ∼ 10 . In 
total, 7.2 × 105 weight parameters in Fig. 2 are optimized by an adaptive-moment 
algorithm with cross-entropy E = −

∑N

j=1
pj log pj as a loss function.

A naive Bayes classifier (NBC) is based on a maximal likelihood estimation. The 
likelihood L(j ∈ J0) = P(I|j ∈ J0) (Li and Saad 2021; Torrisi et  al. 2021) cannot 
be computed reliably unless D[tr] is dense enough. Instead in this work, it is evalu-
ated approximately by L(j ∈ J0) ∝ maxj I ⋅ Ij where Ij ∈ D

[tr] . It does not have any 
weight parameters. Optimization of weight parameters is omitted, but maximiza-
tion of I ⋅ Ij for prediction consumes more time as |D[tr]| increases. A random forest 
classifier (RFC) is a bootstrap aggregation algorithm for an ensemble of decision 
tree classifiers. An ensemble of T = 100 decision tree classifiers is optimized with 
respect to cross-entropy. The number of weight parameters is WRFC = O(CT) ∼ 105 . 
It is nearly in the same order as WCNN in Fig. 2. A multinomial logistic regression 
(MLR) is a generalized linear model with a soft-max function. The weight parame-
ters are optimized by a Newton conjugate gradient algorithm. The number of weight 
parameters is WMLR = O(C2) ∼ 106 . It is as large as WCNN.

Fig. 2  Configuration of an 8-layer convolutional neural network (CNN). The hidden layers 2 through 7 
have a number of weight parameters, which are shown in the inset table
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4  Results and discussion

4.1  Discovery of single source

Table 1 shows the time average of accuracy Ā (over the all instances in D[te] ) of 
the 4 machine-learning-based solvers (CNN, NBC, RFC, MLR) for discovering a 
single source ( |J0| = 1 ). The geo-space is either homogeneous ( rht = 0.05 ) or het-
erogeneous ( rht = 0.45 ). Infection is either growing ( R = 1.2 ), steady ( R = 1 ), or 
declining ( R = 0.9 ). The combinations of the values of rht and R are referred to by 
the 6 test cases a, b, ⋯ , f. Note that the solvers do not rely on any prior informa-
tion on SIR epidemiological compartments, probability parameters, and heteroge-
neity of a space ( �, �,� , t,�t, �, rht ) in executing optimization and prediction.

The convolutional neural network achieves Ā ≥ 0.85 for growing infection (test 
cases a and d) and outperforms the others. Growing infection in a heterogeneous 
geo-space (test case d) is of much practical significance. The convolutional neu-
ral network works most effectively ( Ā = 0.88 ) in this test case. The performance 
deteriorates to Ā = 0.51 for declining infection (test case f). The signal gets less 
conspicuous. But it still achieves the best performance. The multinomial logistic 
regression fails to work in contrast. The solvers must be capable of learning and 
expressing a complex mapping function p = f (I) . The convolutional neural net-
work performs a variety of non-linear computations for any correlated subpopu-
lations in each hidden layer while the others iterate similar computations for the 
all subpopulations. The naive Bayes classifier and random forest classifier work 
moderately. They can be an alternative for the test cases d and b, c respectively. 
But the performance tends to be unstable on a case-by-case basis. It may be dif-
ficult to decide confidently when to apply them if rht and R are not known. The 
convolutional neural network is not the only choice but the first choice for public 
health practitioners in investigating a variety of cases.

It is also verified that the convolutional neural network works comprehen-
sively for �  in other probability distributions ( ≠ �  in 3.1). For example, the 
time average of accuracy in the test case d is Ā = 0.91 for a uniform distribu-
tion �jk ∼ U(0, 2�) , where � = (1 − rht)� and � = �∕

√
3 , and Ā = 0.93 for a nor-

mal distribution �jk ∼ N(�,�∕2) . An interesting finding is that the convolutional 

Table 1  Time average of 
accuracy Ā of the 4 machine-
learning-based solvers (CNN, 
NBC, RFC, MLR)

Test case Parameter value Solver

rht R CNN NBC RFC MLR

a 0.05 1.2 0.85 0.76 0.77 0.50
b 0.05 1 0.49 0.41 0.45 0.22
c 0.05 0.9 0.38 0.31 0.35 0.17
d 0.45 1.2 0.88 0.84 0.57 0.56
e 0.45 1 0.58 0.53 0.27 0.33
f 0.45 0.9 0.51 0.41 0.19 0.28
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neural network works more accurately for heterogeneous geo-spaces. It may 
ensue because the speed of time evolution is different. The probability of move-
ments is a constant for connections. But the nodal degree is smaller and the hop-
count between subpopulations is larger for larger rht . The effective flux is smaller, 
the consequent relaxation time is larger, and the trace of the initial state may be 
kept more recognizable. This may no longer be true after relaxation progresses.

Figure  3 shows the accuracy A(t) as a function of time t (� = 25) . The scat-
ter plots (a), (b), … , (f) correspond to the 6 test cases a, b, … , f in Table 1. The 
4 curves in a scatter plot represent the 4 solvers (CNN, NBC, RFC, MLR). The 
convolutional neural network almost always works most effectively of the 4 solv-
ers. Note that the naive Bayes classifier works as effectively in the test case d, and 
the random forest classifier works slightly more effectively at t = 150 through 200 
in the test cases b, c. These solvers can be alternatives under particular conditions 
of spreading. In terms of the overall performance in a variety of test cases, it is 
concluded that the convolutional neural network is still the first choice, and the 
naive Bayes classifier can be the second choice for helping the practitioners verity 

Fig. 3  Accuracy A(t) as a function of time t of the 4 solvers for discovering a single source. The scatter 
plots (a), (b), ⋯ , (f) correspond to the 6 test cases a, b, ⋯ , f in Table 1
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the prediction. Performance degradation for declining infection (test cases c and 
f) at t ≥ 100 is evident as the correlation with the initial state I(0) is almost lost 
(normalized autocorrelation coefficient �(t) ≤ 0.05).

4.2  Discovery of multiple sources

Figure  4 shows the hit score H(t) of a convolutional neural network as a func-
tion of time t for discovering a single source ( |J0| = 1 for the scatter plot (a)) 
and multiple sources ( |J0| = 2, 3 for the scatter plots (b), (c)). The test cases a, b, 
⋯ , f are the same as in Table 1 and Fig. 3. In the scatter plot (a), the hit scores 
H(t) ≤ 1.5 × 10−3 remains near the lower bound ( 1∕N = 9.8 × 10−4 ) over time for 
growing infection in both homogeneous and heterogeneous geo-spaces (test cases 
a and d). It means that the second or third candidates from p are promising nearly 
equally even if the first candidate j0 in Eq. (2) fails and impairs the accuracy A.

The performance characteristics in the scatter plots (b) and (c) are different 
from those in the scatter plot (a). The performance worsens as |J0| increases. But 
the hit score H is still below 0.01 and 0.1 in the early stage of disease spread-
ing, and converges steadily to the upper bound 0.67 and 0.75 for |J0| = 2 and 3 
respectively. The solver always works more effectively for a heterogeneous geo-
space (test cases d, e, and f). Note that such instances as in Fig.  1b and c are 
absent in D[tr] and the mapping function p = f (I) is optimized with respect to 
D

[tr] . The number of patterns for the initial state O(N|J0|) is too large for |J0| > 1 . 
Those findings imply that discovery of small number of sources is potentially 

Fig. 4  Hit score H(t) of a convolutional neural network as a function of time t. The scatter plots a–c rep-
resent the hit score for |J0| = 1, 2 , and 3. The 6 curves in each scatter plot correspond to the 6 test cases 
a, b, ⋯ , f in Table 1 and Fig. 3



 Evolutionary and Institutional Economics Review

1 3

achievable, at least in the early stage of spreading, by learning a limited number 
of instances for a single source.

5  Conclusion

In this work, it is demonstrated that a convolutional neural network works effectively 
as an inverse problem solver for epidemiological geographic profiling. In terms of 
the time average of accuracy Ā , it outperforms the other 3 machine-learning-based 
solvers in any test cases of growing, steady, and declining infection in heterogeneous 
and homogeneous geo-spaces. The largest accuracy ( Ā ≥ 0.85 )) is achieved and the 
hit score ( H ≤ 1.5 × 10−3 ) remains near the lower bound over time in discovering 
a single source ( |J0| = 1 ) for the most significant test case (growing infection in a 
heterogeneous geo-space). Discovering multiple sources ( |J0| > 1 ) is feasible poten-
tially as well merely by learning of a limited number of instances in the dataset for a 
single source.

It is anticipated that growing infection in a heterogeneous geo-space generates a 
unique complex spatio-temporal pattern in the trajectories. The complex pattern may 
be left as a hidden signal on the source after a simple linear pattern (correlation) is 
lost in the noise. It is known as a profound design principle that the complexity of 
a solver is managed to match that of the dataset. Therefore, exploring less complex 
meta-heuristics as in some previous is a futile effort. Those findings corroborate the 
conclusion that the complex nature of a convolutional neural network deserves the 
first-choice solver for detecting such a hidden signal. Note that the number of hidden 
layers and filters, and the kernel settings are arbitrarily flexible, and the configura-
tion in this work is not proven the best. Performance limits with respect to the nature 
of inverse problems and the capability of solvers are yet to resolve as future theoreti-
cal, experimental, and empirical works.

Recently, large datasets become available by collecting real-time data from sen-
sors in every corner of human activities. Then in turn, machine learning aids investi-
gators in identifying the initial state (and even boundary conditions, external forces, 
stochastic terms, and equational forms possibly) and in solving miscellaneous 
inverse problems for a reaction-diffusion process. For example, the inverse problem 
solvers in this work can be applied to analyzing such an economic system as a finan-
cial market, a stock exchange, a supply chain, and a trade network. The price of a 
stock or a group of stocks in an industry sector is a time-dependent variable (similar 
to the variables Ij(t) in 3.1). Variable snapshot vectors represent the entire market 
conditions (similar to the instances I in the datasets D[tr] and D[te] in 3.2). Retro-
spective nowcasting is an inverse problem to discover the recent source incident on 
a stock which causes a big impact on the current market volatility. Such an analysis 
is beneficial to regulatory authorities, financial institutions, and investors in making 
a decision to deal with systemic risk, financial crisis, and a crash of markets. An 
inductive approach as in this work can be an essential investigation tool for data-
driven mathematical sciences, econophysics, and sociophysics, and may replace 
conventional reductionistic modeling approaches.
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