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Abstract
It is well known that, in continuous time, the Cobb-Douglas function can be derived 
from the underlying, data governing, accounting identity under some reasonable 
assumptions (factor shares are constant, and the weighted growth of the labour input 
price and the capital input price is constant). In this article these results are general-
ized in three ways: (1) the accounting identity contains a (pure) profit term; (2) con-
tinuous time is replaced by discrete time periods; (3) additional assumptions appear 
to be superfluous. The article also discusses extensions: from two to multiple inputs, 
from value added to gross output, and from a single production unit to an ensemble 
of those units.

Keywords Productivity · Production function · Cobb-Douglas · Index number 
theory

JEL Classification C43 · D24 · E01 · E23

1 Introduction

One of the famous workhorses in economic theory, used in uncountable many appli-
cations at all levels of aggregation (economy, industry, enterprise, plant, or what-
ever), despite its limitations, is the Cobb-Douglas (CD) (production) function.1 Its 
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1 Two examples from recent handbooks: According to Chambers and Ray (2021, 22) “The Cobb-
Douglas production function remains a classic example of empirical evidence inspiring a theoretical 
formulation of a production function that has served as the gold standard in neoclassical production 
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‘discovery’ was reported by Cobb and Douglas (1928)2 and the subsequent success 
story told in Douglas’s presidential address at the 1947 meeting of the American 
Economic Association, as reported in Douglas (1948). The years after 1947 were 
covered in a posthumous article by Douglas (1976) — both articles are still fascinat-
ing pieces to read. The colourful history from its start in the mid-1920s to the late 
1960s is to be found in the recent book by Biddle (2021).

The universal ‘law’ one believed to have uncovered – Biddle (2021) makes us 
aware of the fact that the concept of ‘production function’ only gradually crept into 
the language used – relates production P, measured as an index number of real (i.e., 
deflated) value added, to an index number of labour input L and an index number of 
capital stock K by means of the function P = aL�K1−� , where a is some constant. 
Based on empirical evidence the labour exponent � was set equal to 0.75, whereas 
a appeared to be approximately equal to 1. In time-series as well as cross-sectional 
studies of the manufacturing industry at various levels of aggregation time and 
again it appeared that � was remarkably well approximated by the (nominal) share 
of labour cost in value added (which in turn was conceived as the sum of labour and 
capital input cost). In the 1947 address Douglas considered the slightly more general 
formula P = aL�K� , but then more often than not it turned out that the sum of the 
exponents � and � was close to 1, which was taken as signalling constant returns to 
scale. Quoting Douglas (1976, 914):

“A considerable body of independent work tends to corroborate the original 
Cobb-Douglas formula, but, more important, the approximate coincidence of 
the estimated coefficients with the actual shares received also strengthens the 
competitive theory of distribution and disproves the Marxian.”

In a relatively unknown article, Tinbergen (1942a) pointed out a number of restrictive 
implications of the CD function as well as a number of statistical estimation prob-
lems, especially in a cross-section context. One of these implications is that labour 
productivity, P/L, is related to capital intensity, K/P, by P∕L = a1∕�(K∕P)(1−�)∕� ; for 
a = 1 and � = 0.75 this means that P∕L = (K∕P)1∕3 , which implies that in a time-
series context the increase of capital intensity would be the sole driving force for the 
increase of labour productivity. Where is technological progress?

It was more or less customary among economists of those days to see techno-
logical progress as part of accumulation of the capital stock and/or as increase of the 
quality of labour. Tinbergen however suggested to introduce time as an additional 
variable in the production function; for instance, by replacing the scalar a by the 
simple function at , as in Tinbergen (1942b). This can be seen as the beginninng of a 
development in which the simple function at is replaced by a more intricate function 

2 The mathematical form of the CD function had already materialized in some Swedish and German 
publications of Wicksell between 1900 and 1923, as documented by Sandelin (1976).

economic theory for decades and has retained much of its popular appeal despite the advent of more 
flexible functional forms even as it nears its centenary.” De Loecker and Syverson (2021, 161, 193) say 
“When working with production functions, we usually use the Cobb-Douglas form. It conveys most of 
the necessary intuition and makes notation easier.” and “The predominant functional form for production 
functions in applied work is Cobb-Douglas.”

Footnote 1 (continued)
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A(t), defining ‘total factor productivity’, or ‘efficiency’, or ‘state of technology’, as in 
Solow (1957).

From the start, the project of Douglas and his followers has met with approval 
and criticism, both from econometric and conceptual perspectives, as documented 
extensively in Biddle (2021) and Felipe and McCombie (2013, Chapter 4).3 Many 
empirical applications took place in agricultural economics because of the availabil-
ity of more and better (firm-level) data; here estimation could be based on less dubi-
ous assumptions.

In the meantime theoretical work showed that the conditions for the existence of 
an aggregate production function are unlikely to being satisfied in any realistic situa-
tion — see the lemma on ”Aggregation (production)” in The New Palgrave by Felipe 
and Fisher (2008). But then: why always the good fit? Is there a sort of law of pro-
duction that supports the input–output data, or is the observed, remarkably stable, 
relationship between those data some statistical artefact? But what precisely causes 
this artefact then to emerge?

Important contributions to the solution of this puzzle were provided first by 
Phelps Brown (1957),4 followed by Simon and Levy (1963), Fisher (1971), Shaikh 
(1974), and again Simon (1979). It gradually began to dawn that the responsibil-
ity rests with the underlying accounting relation stating that (nominal) value added 
equals (nominal) labour input cost and (nominal) capital input cost. Simon (1979, 
473) concluded by saying that

“Since the observed phenomena can as readily be explained on the weaker 
assumption that what is being observed is simply the accounting relation 
equating value of output to the sum of factor costs, the criterion of parsimony 
would lead us to prefer the latter explanation to the classical one.”

In an article commemorating Douglas’s work, Samuelson (1979, 933) also 
pointed to the role of “the accounting identity involved in the residual definition of 
profit”.

Further evidence, approaching a body of data with a CES production function, 
of which the CD function is a special case, was provided by Felipe and McCombie 
(2001). Their conclusion was that

“... Occam’s razor suggests that the CES production function,..., merely reflect 
the underlying accounting identity that value added equals the wage bill plus 
profits.”

3 Another restrictive implication of the CD production function is that the elasticity of substitution 
� ≡ d ln(K∕L)∕d ln((�P∕�L)∕(�P∕�K)) = 1 . To remedy this, the CES function was invented in 1961. 
Knoblauch et  al. (2020) considered 77 studies, published during the years 1961-2017, for the US 
economy and/or its industries. In all these studies the CES production function was used as basis for 
estimation. A meta-regression suggested that “a CD production function is unlikely to be a good 
representation of the US economy.” The majority of the studies suggested that 𝜎 < 1 . A more recent 
meta-analysis with broader scope, reported by Gechert et al. (2022), covered 121 studies. It turned out 
that removal of publication bias let the mean estimate of � drop from 0.9 to 0.5.
4 On Phelps Brown’s critique, see Biddle (2021, 148-155.)
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Interesting insights can be found in a collection of symposium papers published 
in the Summer 2005 issue of the Eastern Economic Journal; in particular Felipe and 
Adams (2005), Shaikh (2005), and Felipe and McCombie (2005). Summaries of the 
state of the art were provided by Felipe and McCombie (2007) and Felipe and Fisher 
(2008), and much additional material by Felipe and McCombie (2013). Especially 
the final chapter of this book, entitled “Why have criticisms of the aggregate produc-
tion function generally been ignored? On further misunderstandings and misinter-
pretations of the implications of the accounting identity”, is well worth (re-) reading.

Basically in all these publications it is shown that, in continuous time, the CD 
function can be derived from the accounting identity under some reasonable 
assumptions (factor shares are constant, and the weighted growth of the labour input 
price and the capital input price is constant). In this paper these results are general-
ized in three ways: (1) the accounting identity contains a (pure) profit term; (2) con-
tinuous time is replaced by discrete time periods; (3) additional assumptions appear 
to be superfluous.

The layout of this article is as follows. Section 2 first provides a sketch of the clas-
sic argument, and then shows in a more rigorous way how a CD function emerges 
from observable data. Section  3 provides a number of comments and extensions. 
Section 4 discusses the generalization from real value added to gross output. Sec-
tion  5 goes beyond a single production unit and considers an ensemble of those. 
Section 6 contains some concluding thoughts.

2  The emergence of a function

Consider a production unit, operating on the market so that output prices are given 
(or can be imputed). Let t denote an accounting period of a certain length (say, a 
year). The ex post accounting relation according to the KL-VA model reads

where Ct
KL

 denotes (nominal) primary inputs cost, VAt denotes (nominal) value 
added (that is, revenue minus intermediate inputs cost; assumed to be positive), and 
profit Πt is defined as the difference between value added and primary inputs cost. 
Thus the accounting relation is merely a definitional identity. Profit may be posi-
tive, zero, or negative. For a more detailed exposition the reader is referred to Balk 
(2021, Chapter 2). In particular one should note that revenue, intermediate inputs 
cost, capital input cost, and labour input cost are sums of prices times quantities. 
Usually the number of commodities (goods and services) making out each of these 
aggregates is huge. Data are therefore usually presented in the form of aggregate 
nominal values and corresponding price index numbers.

The reader is warned that there is no standardized terminology here; e.g., Felipe 
and Adams (2005) call value added minus labour cost, in our notation VAt − Ct

L
 , 

total profits, which is then seen as remuneration of the capital stock.
Primary inputs concern owned capital and labour (including self-employed per-

sons). Since nominal values are additive, we have, in obvious notation, that

(1)Ct
KL

+ Πt = VAt,
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We consider two periods, which may or may not be adjacent. These periods are 
labeled 0 (base period) and 1 (comparison period).5 Let us start by summarizing the 
classic argument.

2.1  The classic argument

The first assumption is that profit equals zero, Πt = 0 . Then, by combining expres-
sions (1) and (2), the fundamental accounting relation reads

The three elements in this equation are nominal values. In order to turn them into 
real values we need price indices (aka deflators). Let PK(t, b) , PL(t, b) , and PVA(t, b) 
be suitable deflators for capital cost, labour cost, and value added, respectively, for 
period t relative to a certain reference period b (somewhere in the past); that is, 
PK(b, b) = PL(b, b) = PVA(b, b) = 1 . Real values XK(t, b) , XL(t, b) , and RVA(t, b) are 
then defined by the three identities

The notation highlights the fact that unlike nominal values, which are observable, 
real values are outcomes of functions. Relative deflators for capital and labour cost, 
respectively, are defined by

By inserting expressions (4), (5), and (6) into expression (3), dividing both sides of 
the resulting identity by PVA(t, b) , and using expressions (7) and (8), we see that the 
fundamental accounting relation in terms of real values reads

The second assumption is that all the functions occurring in expression (9) are con-
tinuously differentiable functions of continuous time t. By differentiating both sides 
of this expression we then obtain the following identity,

(2)Ct
KL

= Ct
K
+ Ct

L
.

(3)Ct
K
+ Ct

L
= VAt.

(4)Ct
K
=PK(t, b)XK(t, b),

(5)Ct
L
=PL(t, b)XL(t, b),

(6)VAt =PVA(t, b)RVA(t, b).

(7)P̃K(t, b) ≡PK(t, b)∕PVA(t, b)

(8)P̃L(t, b) ≡PL(t, b)∕PVA(t, b).

(9)P̃K(t, b)XK(t, b) + P̃L(t, b)XL(t, b) = RVA(t, b).

5 Though this paper is framed in terms of temporal (time-series) comparisons, it is straightforward to 
reframe the content in terms of spatial (cross-sectional) comparisons.
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which can be rewritten as

The third assumption is that the two factor shares are constant; that is, using expres-
sions (4)-(8),

The fundamental accounting relation in expression (3) then implies that �K + �L = 1 , 
which in turn implies that expression (11) reduces to

The fourth, and final, assumption is that the weighted mean of the relative deflators 
is constant; that is,

The consequence is that expression (14) reduces to

On the right-hand side of this identity, between the brackets, we meet the traditional 
CD function. It is interesting to notice that the fourth assumption basically means 
that the rate of value-added based price change, d lnPVA(t, b) , differs from the rate of 
capital plus labour price change, d ln(PK(t, b)

�K PL(t, b)
1−�K ) , by a fixed percentage. 

Another interpretation is that dual total factor productivity change, as introduced by 
Jorgenson and Griliches (1967, 252), is constant.

This concludes the reproduction of the classic argument: if the nominal data 
are governed by an accounting identity like expression (3) then a CD function 
will almost necessarily give a good ‘fit’ to the real data, because the relation 
between these input–output data exhibits a CD-like form. In the next subsection it 

(10)
P̃K(t, b)dXK(t, b) + P̃L(t, b)dXL(t, b) + XK(t, b)dP̃K(t, b) + XL(t, b)dP̃L(t, b)

= dRVA(t, b),

(11)

P̃K(t, b)XK(t, b)

RVA(t, b)
d lnXK(t, b) +

P̃L(t, b)XL(t, b)

RVA(t, b)
d lnXL(t, b)

+
P̃K(t, b)XK(t, b)

RVA(t, b)
d ln P̃K(t, b) +

P̃L(t, b)XL(t, b)

RVA(t, b)
d ln P̃L(t, b)

= d lnRVA(t, b).

(12)
P̃K(t, b)XK(t, b)

RVA(t, b)
=
PK(t, b)XK(t, b)

VAt
=

Ct
K

VAt
= 𝛼K

(13)
P̃L(t, b)XL(t, b)

RVA(t, b)
=
PL(t, b)XL(t, b)

VAt
=

Ct
L

VAt
= 𝛼L.

(14)
𝛼Kd lnXK(t, b) + (1 − 𝛼K)d lnXL(t, b)

+ 𝛼Kd ln P̃K(t, b) + (1 − 𝛼K)d ln P̃L(t, b)

= d lnRVA(t, b).

(15)𝛼Kd ln P̃K(t, b) + (1 − 𝛼K)d ln P̃L(t, b) = 𝛽.

(16)d lnRVA(t, b) = d ln
(

XK(t, b)
�KXL(t, b)

1−�K
)

+ �.
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will be shown that the first three assumptions of the classic approach are unneces-
sary, and that the fourth assumption can be replaced by a more modest one.

2.2  A more rigorous approach

We drop all the assumptions made in the previous subsection. Specifically, we return 
to discrete time periods. It is assumed that the (nominal) value-added ratio of period 
1 to period 0 can be decomposed into a price index and a quantity index,

where (1, 0) is used as shorthand notation for the vectors of prices and quantities of 
the two periods. Likewise, it is assumed that the joint primary inputs cost ratio is 
decomposed as

As in Balk (2021, 34) the value-added based (total factor) productivity index for 
period 1 relative to period 0 is then defined as

This index can be interpreted as the ‘quantity’ change of value added relative to the 
joint quantity change of primary inputs; or, as the index of real value added relative 
to the index of real primary inputs; or, as the real component of value-added-based 
profitability change.

Using the logarithmic mean.6 and the relation in expression (2), the primary 
inputs cost ratio can be decomposed as follows:

(17)VA1

VA0
= PVA(1, 0)QVA(1, 0),

(18)
C1

KL

C0

KL

= PKL(1, 0)QKL(1, 0).

(19)ITFPRODVA(1, 0) ≡
QVA(1, 0)

QKL(1, 0)
.

(20)

ln

(

C1

KL

C0

KL

)

=
C1

KL
− C0

KL

LM(C1

KL
,C0

KL
)

=
C1

K
− C0

K

LM(C1

KL
,C0

KL
)
+

C1

L
− C0

L

LM(C1

KL
,C0

KL
)

=
LM(C1

K
,C0

K
) ln(C1

K
∕C0

K
)

LM(C1

KL
,C0

KL
)

+
LM(C1

L
,C0

L
) ln(C1

L
∕C0

L
)

LM(C1

KL
,C0

KL
)

.

6 For any two strictly positive real numbers a and b, the logarithmic mean is defined by 
LM(a, b) ≡ (a − b)∕ ln(a∕b) if a ≠ b and LM(a, a) ≡ a . The logarithmic mean can be used to convert a 
difference a − b into (the logarithm of) a ratio a/b, and vice versa It has the following properties: (1) 
min(a, b) ≤ LM(a, b) ≤ max(a, b) ; (2) LM(a, b) is continuous; (3) LM(�a, �b) = �LM(a, b) (𝜆 > 0) ; (4) 
LM(a, b) = LM(b, a) ; (5) (ab)1∕2 ≤ LM(a, b) ≤ (a + b)∕2 ; (6) LM(a, 1) is concave. See Balk (2008, 134-
6) for details.
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It is useful to define �K(1, 0) ≡ LM(C1

K
,C0

K
)∕LM(C1

KL
,C0

KL
) and 

�L(1, 0) ≡ LM(C1

L
,C0

L
)∕LM(C1

KL
,C0

KL
) . Thus �K(1, 0) is the mean (over two periods) 

share of capital in total primary inputs cost, and �L(1, 0) is the mean (over two peri-
ods) share of labour in total primary inputs cost. The previous expression can then 
be simplified to

The next step is to assume that the capital input cost ratio and the labour cost ratio 
can be decomposed in price and quantity indices as

Substituting the expressions (18), (22), and (23) into expression (21), rearranging 
the right-hand side, and exponentiating both sides, we get

Now, if

then

Technically seen, the last two equations mean that the joint capital-labour input 
price and quantity index numbers are equal to Montgomery-Vartia (MV) index num-
bers of the underlying, separate capital and labour price and quantity index numbers, 
respectively.7 Thus, if the condition in expression (25) is satisfied then the produc-
tivity index defined by expression (19) becomes equal to

Rearranging this expression in growth-accounting form, we obtain

(21)ln

(

C1

KL

C0

KL

)

= �K(1, 0) ln

(

C1

K

C0

K

)

+ �L(1, 0) ln

(

C1

L

C0

L

)

(22)
C1

K

C0

K

=PK(1, 0)QK(1, 0).

(23)
C1

L

C0

L

=PL(1, 0)QL(1, 0).

(24)
PKL(1, 0)QKL(1, 0)

=
(

PK(1, 0)
�K (1,0)PL(1, 0)

�L(1,0)
)(

QK(1, 0)
�K (1,0)QL(1, 0)

�L(1,0)
)

.

(25)PKL(1, 0) = PK(1, 0)
�K (1,0)PL(1, 0)

�L(1,0),

(26)QKL(1, 0) = QK(1, 0)
�K (1,0)QL(1, 0)

�L(1,0).

(27)ITFPRODVA(1, 0) =
QVA(1, 0)

QK(1, 0)
�K (1,0)QL(1, 0)

�L(1,0)
.

(28)QVA(1, 0) = ITFPRODVA(1, 0)QK(1, 0)
�K (1,0)QL(1, 0)

�L(1,0),

7 For history, definition, and properties of MV indices, see Balk (2008).
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which starkly looks like an unrestricted Cobb-Douglas production function. Notice 
that it is straightforward to reformulate this expression in terms of levels (real value 
added, real inputs). By taking logarithms we obtain the more familiar form

Realizing that the logarithm of an index number in the neighbourhood of 1 can be 
interpreted as a growth rate (or, what is the same, a forward-looking percentage 
change), expression (29) can be read as saying that the growth rate of output is equal 
to the growth rate of productivity plus a weighted sum of the growth rates of capital 
and labour.8 Notice, however, that these weights are not constant, but depend on the 
data of the two periods.

If these data – Recall that data are usually given in the form of index numbers. 
– were generated by a ‘genuine’ CD production function then we would have

where �, �K , �L are constants, with the last two in the interval (0, 1), and � is a kind 
of noise. The coefficients �K and �L can be interpreted as marginal productivities. 
Expression (30) perfectly fits the following description by Douglas (1948, 6), the 
production unit there being American manufacuring:

“It was twenty years ago last spring that, having computed indexes for Ameri-
can manufacturing of the numbers of workers employed by years from 1899 
to 1922, as well as indexes of the amounts of fixed capital in manufacturing 
deflated to dollars of approximately constant purchasing power, and then plot-
ting these on a log scale together with the Day index of physical production 
for manufacturing, I observed that the product curve lay consistently between 
the two curves for the factors of production and tended to be approximately a 
quarter of the relative distance between the curve of the index for labor, which 
showed the least increase over the period, and that of the index for capital 
which showed the most.”

Or, quoting Samuelson (1979, 927-8),

“... the data Douglas presented Cobb practically commanded the C-D for-
mula.”

It is important to notice that whereas expression (30) is the outcome of a model, 
expression (29) basically reflects an accounting relation. This relation imposes on 
the noise term of the model that

(29)
lnQVA(1, 0) = ln ITFPRODVA(1, 0) + �K(1, 0) lnQK(1, 0) + �L(1, 0) lnQL(1, 0).

(30)lnQVA(1, 0) = � + �K lnQK(1, 0) + �L lnQL(1, 0) + �,

(31)
� =(ln ITFPRODVA(1, 0) − �) + (�K(1, 0) − �K) lnQK(1, 0)

+ (�L(1, 0) − �L) lnQL(1, 0).

8 This reading corresponds to the way in which growth-accounting tables are usually constructed. 
Expression (29) resembles the variable-output-elasticities Cobb-Douglas (VOE-CD) function as defined 
by Reynès (2019).
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It is also interesting to consider what precisely happens when one assumes that the 
data are generated by a Translog production function; that is,

where the � ’s are constants, and � is also a kind of noise. It is straightforward to 
check that the accounting relation in expression (29) imposes the following relation 
between the Translog noise � and the CD noise �,

It thus appears that the second-order terms of the Translog production function con-
sume a great deal of the CD noise.

3  Comments and extensions

A couple of things are worth noting about the key result in expressions (28) or (29). 
First, due to the concavity of the logarithmic mean, the exponents �K(1, 0) and 
�L(1, 0) don’t add up to 1. In fact, their sum is smaller than 1,

but the discrepancy usually appears to be small (see Balk 2008, 88 for an example). 
Note that there is no reason whatsoever to interpret the sum of the exponents as 
measuring returns to scale.

Second, �K(1, 0) as well as �L(1, 0) are by definition ratios of logarithmic means. 
Using the Sato (1974) approximation, it appears that

Thus a close approximation of �K(1, 0) is provided by

that is, the geometric mean of the capital input cost shares of the two periods. Simi-
larly, a close approximation of �L(1, 0) is provided by

(32)
lnQVA(1, 0) =� + �K lnQK(1, 0) + �L lnQL(1, 0) + �KK(lnQK(1, 0))

1∕2

+ �LL(lnQL(1, 0))
1∕2 + �KL lnQK(1, 0) lnQL(1, 0) + �,

(33)
� = �KK(lnQK(1, 0))

1∕2 + �LL(lnQL(1, 0))
1∕2 + �KL lnQK(1, 0) lnQL(1, 0) + �.

(34)�K(1, 0) + �L(1, 0) ≤ 1,

(35)�K(1, 0) ≈

1

3

(

C1

K
+C0

K

2
+ 2(C1

K
C0

K
)1∕2

)

1

3

(

C1

KL
+C0

KL

2
+ 2(C1

KL
C0

KL
)1∕2

)
.

(36)�K(1, 0) ≈
(C1

K
C0

K
)1∕2

(C1

KL
C0

KL
)1∕2

=

(

C1

K

C1

KL

C0

K

C0

KL

)1∕2

;

(37)�L(1, 0) ≈
(C1

L
C0

L
)1∕2

(C1

KL
C0

KL
)1∕2

=

(

C1

L

C1

KL

C0

L

C0

KL

)1∕2

;
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that is, the geometric mean of the labour input cost shares of the two periods. Now, 
recall that due to relation (2), capital input and labour cost shares add up to 1,

so that we may expect that

This would reduce expression (28) to a lookalike of the original, restricted Cobb-
Douglas function, except that �L(1, 0) and �K(1, 0) are not constant. Also, there is 
no reason to interpret the fact that �L(1, 0) and �K(1, 0) are cost shares in terms of 
competitiveness, as Douglas would have done; this is just a matter of definition.9

Third, it is important to note that in expression (29) the productivity factor, 
ITFPRODVA(1, 0) , cannot be conceived as an independent source of output growth. 
Basically, expression (29) is nothing but a rewritten version of the definition of pro-
ductivity change. Put otherwise, ITFPRODVA(1, 0) is the result of the interplay of 
output change, measured by QVA(1, 0) , and input change, measured by QK(1, 0) and 
QL(1, 0) . Contrast this with expression (30) and imagine an estimation setting in 
which � represents an exogenous ‘productivity shock’. The fundamental challenge 
in production function estimation, already recognized in the 1940s, comes from the 
fact that inputs and outputs are simultaneously chosen by the production unit, in 
connection with a ‘productivity shock’ about which its management may or may not 
be informed. Thus the variables on the right-hand side of expression (30) are corre-
lated and potentially endogenous. The recent literature contains several approaches 
to handle this challenge; however, none of these appears to be completely satisfac-
tory according to Kim et al. (2019).

Fourth, it must be observed that expression (28) holds independent of the mag-
nitude of profit Πt (t = 0, 1) , and also independent of the magnitudes of or even-
tual relations between the price indices PVA(1, 0) , PK(1, 0) and PL(1, 0) . However, if 
profit Πt = 0 (t = 0, 1) then expression (28) may be replaced by the dual expression

This can immediately be checked by using expressions (22), (23), (21), (17), and (3) 
respectively.10 Thus, if profit is zero then input and output price indices are linked by 
total factor productivity.

Fifth, the functional form of the quantity indices QVA(1, 0) , QK(1, 0) and QL(1, 0) 
is left unspecified. The only restriction is that the Product Test be satisfied according 
to expressions (17), (22) and (23). Dependent on the time distance between periods 
0 and 1 the indices might be direct or chained.

(38)
Ct
K

Ct
KL

+
Ct
L

Ct
KL

= 1,

(39)�L(1, 0) ≈ 1 − �K(1, 0).

(40)PVA(1, 0) = ITFPRODVA(1, 0)
−1PK(1, 0)

�K (1,0)PL(1, 0)
�L(1,0).

9 Put otherwise, though Gechert et  al. (2022) concluded that “The Cobb-Douglas production function 
contradicts the data.”[my emphasis], the data might well be represented by a Cobb-Douglas function.
10 Expression (40) resembles expression (18) in Reynès (2019).
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Sixth, in the derivation of expression (28) the only, technical not behavioural, 
assumption made is that the joint capital-labour input price index number behaves 
as an MV index number of the underlying factors; recall expression (25). This  
assumption, however, is rather harmless. More generality is obtained by defining a 
factor �(1, 0) such that

As one easily checks, the consequence is that to the noise � must be added ln �(1, 0) . 
Now it is well known that an MV index is a second-order differential approxima-
tion of symmetric indices such as Fisher or Törnqvist, and a first-order diferential 
approximation of asymmetric indices such as Laspeyres and Paasche (Diewert 
1978). Thus if the time span between periods 0 and 1 is short enough then it does 
not matter much which index is employed for deflating primary inputs cost. Put 
differently, if the time span between periods 0 and 1 decreases then one generally 
expects �(1, 0) to tend to 1.

Seventh, the extension of expression (28) to more than two (aggregate) inputs is 
straightforward. Let capital K consist of I types, and let labour L consist of J types. 
Then, in obvious notation,

and

Suppose that each lower level cost ratio can be decomposed into a price index and a 
quantity index; that is,

and

Let the aggregate capital input quantity index be defined as a MV index of the lower 
level indices; that is,

where �Ki(1, 0) ≡ LM(C1

Ki
,C0

Ki
)∕LM(C1

K
,C0

K
) (i = 1,… , I) . Similarly, let

PKL(1, 0) = �(1, 0)PK(1, 0)
�K (1,0)PL(1, 0)

�L(1,0).

(41)Ct
K
=

I
∑

i=1

Ct
Ki

(42)Ct
L
=

J
∑

j=1

Ct
Lj
.

(43)
C1

Ki

C0

Ki

= PKi(1, 0)QKi(1, 0) (i = 1,… , I)

(44)
C1

Lj

C0

Lj

= PLj(1, 0)QLj(1, 0) (j = 1,… , J).

(45)QK(1, 0) ≡

I
∏

i=1

QKi(1, 0)
�Ki(1,0)
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where �Lj(1, 0) ≡ LM(C1

Lj
,C0

Lj
)∕LM(C1

L
,C0

L
) (j = 1,… , J) . Substituting these two 

expressions into expression (28) delivers

Notice that �Ki(1, 0)�K(1, 0) = LM(C1

Ki
,C0

Ki
)∕LM(C1

KL
,C0

KL
) (i = 1,… , I) and 

�Lj(1, 0)�L(1, 0) = LM(C1

Lj
,C0

Lj
)∕LM(C1

KL
,C0

KL
) (j = 1,… , J) , so that we would have 

obtained expression (47) also when we immediately had acted on the situation that 
there are I + J inputs instead of 2. This is due to the fact that the MV indices are 
consistent-in-aggregation (see Balk 2008, 111).

4  Gross output

Our key expression (28) relates real value added to multiple inputs. Can the expres-
sion be extended to account for gross output? For this we have to go back to the 
definition of (nominal) value added as revenue minus the cost of intermediate inputs 
(encompassing energy E, materials M, and services S); that is,

Following Balk (2021, 57-61) it is now supposed that the revenue ratio can be 
decomposed by price and quantity indices PR(.) and QR(.) , so that

and that the intermediate inputs cost ratio likewise can be decomposed as

Then, by following the same steps as leading to expression (21), except that a minus 
sign now replaces the plus sign, it appears that a value-added based quantity index 
can rather naturally be defined as a generalized MV index; that is,

(46)QL(1, 0) ≡

J
∏

j=1

QLj(1, 0)
�Lj(1,0)

(47)

QVA(1, 0) =ITFPRODVA(1, 0)

×

(

I
∏

i=1

QKi(1, 0)
�Ki(1,0)

)�K (1,0)( J
∏

j=1

QLj(1, 0)
�Lj(1,0)

)�L(1,0)

.

(48)VAt ≡ Rt − Ct
EMS

.

(49)R1

R0
= PR(1, 0)QR(1, 0),

(50)
C1

EMS

C0

EMS

= PEMS(1, 0)QEMS(1, 0).

(51)QVA(1, 0) ≡
QR(1, 0)

�R(1,0)

QEMS(1, 0))
�EMS(1,0)

,
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where �R(1, 0) ≡ LM(R1,R0)∕LM(VA1,VA0) , that is, mean revenue over mean value 
added, and �EMS(1, 0) ≡ LM(C1

EMS
,C0

EMS
)∕LM(VA1,VA0) , that is, mean intermediate 

inputs cost over mean value added. Notice that �R(1, 0) is an instance of the so-
called Domar factor.

Substituting expression (51) into expression (28) delivers

or

This is the extension asked for.
However, we could have followed a direct route by considering that combining 

expressions (3), (2) and (48) lead to the KLEMS-Y accounting identity

The gross-output based (total factor) productivity index is then defined by

where QKLEMS(1, 0) is the quantity index component of the total input cost ratio 
C1

KLEMS
∕C0

KLEMS
 (see Balk 2021, 19). As before, by following the same steps as lead-

ing to expression (21) it appears that a total input quantity index can rather naturally 
be defined as a MV index; that is,

where the exponents are, respectively, defined by

By substituting expression (56) into expression (55), and rearranging, we obtain

Notice the differences between expressions (53) and (57). If, however, profit Πt = 0 
( t = 0, 1 ) then the corresponding exponents become the same; that is,

(52)
QR(1, 0)

�R(1,0) =ITFPRODVA(1, 0)QK(1, 0)
�K (1,0)QL(1, 0)

�L(1,0)

× QEMS(1, 0))
�EMS(1,0),

(53)
QR(1, 0) =ITFPRODVA(1, 0)

1∕�R(1,0)QK(1, 0)
�K (1,0)∕�R(1,0)

× QL(1, 0)
�L(1,0)∕�R(1,0)QEMS(1, 0))

�EMS(1,0)∕�R(1,0).

(54)Ct
KLEMS

+ Πt = Ct
K
+ Ct

L
+ Ct

EMS
+ Πt = Rt.

(55)ITFPRODY (1, 0) ≡
QR(1, 0)

QKLEMS(1, 0)
,

(56)QKLEMS(1, 0) ≡ QK(1, 0)
�K (1,0)QL(1, 0)

�L(1,0)QEMS(1, 0)
�EMS(1,0),

�K(1, 0) ≡ LM(C1

K
,C0

K
)∕LM(C1

KLEMS
,C0

KLEMS
)

�L(1, 0) ≡ LM(C1

L
,C0

L
)∕LM(C1

KLEMS
,C0

KLEMS
)

�EMS(1, 0) ≡ LM(C1

EMS
,C0

EMS
)∕LM(C1

KLEMS
,C0

KLEMS
).

(57)QR(1, 0) = ITFPRODY (1, 0)QK(1, 0)
�K (1,0)QL(1, 0)

�L(1,0)QEMS(1, 0)
�EMS(1,0).

(58)�K(1, 0)∕�R(1, 0) =�K(1, 0)
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and it turns out that

Recall that �R(1, 0) is an instance of the Domar factor (= revenue divided by value 
added). Expression (61) reflects Theorem 1 of Balk (2009) (see Balk 2021, 61-2).

5  An ensemble of production units

We now consider an ensemble K of production units. Think of an economy consist-
ing of industries, or an industry consisting of enterprises. For each unit and period the 
KL-VA accounting identity in nominal values reads

which differs from expression (3) in that a superscript k has been added. Provided 
that there are no tax wedges between input and output prices and that capital and 
labour inputs are specific for each production unit, the individual accounting identi-
ties may simply be added up to the accounting identity for the aggregate,

where CKt
KL

=
∑

k∈K Ckt
KL

 , ΠKt =
∑

k∈K Πkt , and VAKt =
∑

k∈K VAkt.
The aggregate value-added ratio, for period 1 relative to period 0, can be decom-

posed as follows (see Balk 2008, 85-86):

where

Thus, aggregate nominal value-added change, measured as ratio, is equal to a 
weighted geometric mean of individual nominal value-added changes. Each coeffi-
cient Ψk(1, 0) is the (normalized) mean share of production unit k in aggregate nomi-
nal value added. Notice that these coefficients add up to 1; that is,

(59)�L(1, 0)∕�R(1, 0) =�L(1, 0)

(60)�EMS(1, 0)∕�R(1, 0) =�EMS(1, 0),

(61)ITFPRODY (1, 0) = ITFPRODVA(1, 0)
1∕�R(1,0).

(62)Ckt
KL

+ Πkt = VAkt (k ∈ K),

(63)CKt
KL

+ ΠKt = VAKt,

(64)VAK1

VAK0
=
∏

k∈K

(

VAk1

VAk0

)Ψk(1,0)

,

Ψk(1, 0) ≡
LM

�

VAk1

VAK1
,
VAk0

VAK0

�

∑

k∈K LM
�

VAk1

VAK1
,
VAk0

VAK0

� (k ∈ K).

(65)
∑

k∈K

Ψk(1, 0) = 1.
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For each individual unit it is assumed that the value-added ratio, the capital input 
cost ratio, and the labour cost ratio can be decomposed into price indices and quan-
tity indices as in expressions (17), (22), and (23) respectively, with superscripts k 
added appropriately. In addition, it is assumed that the aggregate value-added ratio 
can be decomposed as

Substituting expressions (66) and (17) into expression (64), and moving PK

VA
(1, 0) 

from the left-hand side to the right-hand side, delivers

as aggregation rule. Substituting now expression (28), with superscripts k added in 
appropriate places, into expression (67) delivers our final result:

A number of comments are worth making. First of all, it must be noted that, apart 
from the first factor on the right-hand side, expression (68) has the same structure 
as expression (28). This first factor measures differential price change and becomes 
unity if and only if

that is, PK

VA
(1, 0) is a Sato-Vartia (SV) index of the underlying indices Pk

VA
(1, 0) 

(k ∈ K).11

The second factor on the right-hand side of expression (68) is a weighted mean of 
individual value-added based productivity indices. The third factor is an aggregate 
measure of capital input quantity change, whereas the fourth factor is a similarly 
weighted measure of labour input quantity change. These weights deserve some 
attention.

Notice that the capital input weights �k
K
(1, 0)Ψk(1, 0) as well as the labour input 

weights �k
L
(1, 0)Ψk(1, 0) (k ∈ K) do not add up to 1. Each capital input weight 

approximates a production unit’s share in aggregate value added times its share of 
capital in joint capital input and labour cost. Similarly, each labour input weight 
approximates a production unit’s share in aggregate value added times its share of 

(66)VAK1

VAK0
= PK

VA
(1, 0)QK

VA
(1, 0).

(67)QK

VA
(1, 0) =

∏

k∈K

(

Pk
VA
(1, 0)

PK

VA
(1, 0)

Qk
VA
(1, 0)

)Ψk(1,0)

(68)
QK

VA
(1, 0) =

∏

k∈K

(

Pk
VA
(1, 0)

PK

VA
(1, 0)

)Ψk(1,0)
∏

k∈K

(

ITFPRODk
VA
(1, 0)

)Ψk(1,0)

×
∏

k∈K

(

Qk
K
(1, 0)�

k
K
(1,0)

)Ψk(1,0) ∏

k∈K

(

Qk
L
(1, 0)�

k
L
(1,0)

)Ψk(1,0)

.

(69)PK

VA
(1, 0) =

∏

k∈K

(

Pk
VA
(1, 0)

)Ψk(1,0)
;

11 For history, definition, and properties of SV indices, see Balk (2008).
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labour in joint capital input and labour cost. Together, their sum is smaller than 
unity; that is,

Again, there is no reason to interpret this inequality in terms of returns to scale as it 
is entirely due to the concavity of the logarithmic mean.

6  Some concluding thoughts

Why is the Cobb-Douglas (production) function so popular? Biddle (2021, 312) 
ascribes its success story to a number of factors: 1. the link to the neo-classical para-
digm, 2. the flexibility/adaptability of the function, 3. the rhetorical talents of its 
protagonist, 4. the research and teaching activities of a (small) number of charis-
matic personalities. Add to this "the prima facie plausibility of the results of Doug-
las’s research with the regression", and those of many of his followers in a variety of 
applications.

Why this plausibility? The simple answer appears to be: because the CD structure 
is an alternative representation of the accounting identity coming with the data. At 
any level of aggregation, real input and output data are not observables but con-
structs. Given are nominal data, tied together by an accounting identity that in most 
general terms states that revenue equals cost plus profit. In this article it is rigorously 
demonstrated that the real version of this identity exhibits the CD pattern, whatever 
the underlying data-generating mechanism may be. This explains the good ‘fit’ one 
usually encounters in empirical work.12

With hindsight, Phelps Brown (1957) must be given the credit for having noticed 
this for the first time, though his explanation was a bit heuristic and needed some 
assumptions. In deriving the key results in the previous sections of this paper no 
structural or behavioural assumptions were invoked. It was all a matter of account-
ing and playing with identities, realizing that addition and multiplication are isomor-
phic operations.

The history as documented by Biddle (2021) makes clear that through time 
the status of the CD function has changed from being a ’law’, ideally holding for 
the input and output of aggregates such as the manufacturing industry, to a handy 

(70)
∑

k∈K

(

�k
K
(1, 0)Ψk(1, 0) + �k

L
(1, 0)Ψk(1, 0)

)

≤ 1.

12 This explanation differs from the argument put forward by Ishikawa (2021). This author started by 
observing the empirical fact that the distributions of capital, labour, and output over firms follow power-
laws, and concluded that “If firms’ assets, labor, and production are expressed as a set of points in 
three-dimensional space, the Cobb-Douglas production function can be interpreted as a quasi-inverse-
symmetric plane in three-dimensional space and a residual from the plane.” (p. 129) Evidently for a 
conclusion like this a very large data-set of individual firm data covering several countries is necessary, 
and the conclusion as such holds only for very large aggregates. On the contrary, the explanation offered 
in this paper is independent of the aggregation level.
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measurement tool that can be used in very different research situations.13 A parallel 
development was the transformation of the neo-classical paradigm from a set of test-
able propositions to a set of articles of faith.

Modern production theory14 starts with the concept of a technology set rather 
than a production function. A technology set contains all the input–output combina-
tions that are feasible in a certain period of time, and to which all the production 
units under consideration have access. Under mild conditions such a set can be rep-
resented by a radial output distance function, of which the production function is a 
specific materialization. Basically, the production function specifies the boundary 
(aka frontier) of the technology set.

To be more specific, let us return to the setting of Section 5. We know that the 
nominal accounting identity in expression (62) implies that

where real values were defined in expressions (4), (5) and (6), and St denotes the 
technology set of period t. The production function15 corresponding with St is given 
by

where XK , XL , and RVA denote generic variables. It then immediately follows that

Since RVAk(t, b) = VAkbQk
VA
(t, b) , by substituting expression (28) we obtain

or

Using the definitions of the real values in the numerator the last expression can be 
rewritten as

(Xk
K
(t, b),Xk

L
(t, b),RVAk(t, b)) ∈ St (k ∈ K),

(71)Ft(XK ,XL) ≡ max{RVA ∣ (XK ,XL,RVA) ∈ St},

(72)RVAk(t, b) ≤ Ft(Xk
K
(t, b),Xk

L
(t, b)) (k ∈ K).

(73)
VAkbITFPRODk

VA
(t, b)Qk

K
(t, b)�

k
K
(t,b)Qk

L
(t, b)�

k
L
(t,b)

≤ Ft(Xk
K
(t, b),Xk

L
(t, b)) (k ∈ K),

(74)ITFPRODk
VA
(t, b) ≤

Ft(Xk
K
(t, b),Xk

L
(t, b))

VAkbQk
K
(t, b)�

k
K
(t,b)Qk

L
(t, b)�

k
L
(t,b)

(k ∈ K).

(75)ITFPRODk
VA
(t, b) ≤

Ft(Ckb
K
Qk

K
(t, b),Ckb

L
Qk

L
(t, b))

VAkbQk
K
(t, b)�

k
K
(t,b)Qk

L
(t, b)�

k
L
(t,b)

(k ∈ K).

14 See for instance Färe (1988).
15 Hildenbrand (1981) would call this the short-run efficient industry production function.

13 For example, a bilateral price index that satisfies the basic axioms plus the Circularity (Transitivity) 
test necessarily has the generalized CD form; that is, a weighted geometric mean of price relatives with 
weights adding up to one. See Balk (2008, 97-99) for details.
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It is clear that there are several degrees of freedom here; most notably, the choice of 
production-unit-specific quantity indices (or, equivalently, deflators) for capital and 
labour. However, as these indices occur simultaneously in numerator and denomina-
tor, the upper bound on productivity growth should not be too dependent on par-
ticular choices. The specification of the function Ft(.) , however, is more important. 
Thus, to avoid unwarranted impositions this calls for a specification of the technol-
ogy set St as a close envelopment of the data, in line with the conclusion of Hilden-
brand (1981).16
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