Skip to main content
Log in

Fluorinated polycarbonate-based solid electrolyte plasticized using succinonitrile for 4.5 V lithium metal batteries

丁二腈增塑氟化聚碳酸酯基固态电解质用于4.5 V高压锂金属电池

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes (SPEs) are a great promising choice for energy storage owing to their enhanced safety compared to liquid electrolytes. However, challenges such as the decomposition under the high voltage, low room-temperature ionic conductivity and poor room-temperature cycling performance have hindered the practical application of SPEs. In this study, SNSPE-40, a novel fluorinated polycarbonate-based electrolyte was prepared by the in-situ polymerization of 2,2,2-trifluoroethyl acrylate and 4-vinyl-1,3-dioxolan-2-one; succinonitrile was added to the electrolyte as a plasticizer. Notably, SNSPE-40 exhibits a high ionic conductivity of 1.33 mS cm−1 and wide electrochemical window of 5.4 V (vs. Li/Li+) at 25°C. Due to the LiF-rich solid electrolyte interphase (SEI), the Li∣SNSPE-40∣Li symmetric cell remained stable for 2000 h at 0.1 mA cm−2. Finally, the Li∣SNSPE-40∣LiNi0.9Co0.05Mn0.05O2 cell, with a cut-off voltage of 4.5 V, displayed good cycling stability at 0.5 C (1 C = 220 mA g−1) and 26°C (57.4% capacity retention after 300 cycles). The Li∣SNSPE-40∣LiCoO2 cell displayed a long-cycling ability with a capacity retention of 54.9% for 250 cycles at 1 C (1 C = 200 mA g−1) under the same voltage and temperature conditions. This new solid polymer electrolyte shows great potential for the application in high-voltage solid-state lithium metal batteries.

摘要

与液态电解质相比, 聚合物电解质(SPEs)具有更高的安全性, 在储能领域具有广阔的应用前景. 但是其高压下易分解、室温离子电导率低、室温循环性能差等问题阻碍了SPEs的应用. 本研究以丙烯酸三氟乙酯和碳酸乙烯亚乙酯为原料, 丁二腈为增塑剂, 原位聚合制备了氟化聚碳酸酯基固态电解质SNSPE-40. SNSPE-40在25°C条件下离子电导率高达1.33 mS cm−1, 电化学窗口达到5.4 V. 得益于富含氟化锂的SEI层的形成, Li∣SNSPE-40∣Li电池以0.1 mA cm−2电流密度稳定循环了2000 h. 在4.5 V截止电压和室温条件下, Li∣SNSPE-40∣LiNi0.9Co0.05Mn0.05O2电池实现了0.5C(1 C=220 mA g−1)倍率300圈的稳定循环(57.4 % 容量保持率). Li∣SNSPE - 40∣LiCoO2 电池实现了1C(1C=200 mA g−1)倍率250圈的长循环(54.9%容量保持率). 这种新型固态电解质在高压固态锂金属电池中表现出巨大应用潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Xin S, Zhang X, Wang L, et al. Roadmap for rechargeable batteries: present and beyond. Sci China Chem, 2024, 67: 13–42

    Article  CAS  Google Scholar 

  2. Chang X, Zhao YM, Yuan B, et al. Solid-state lithium-ion batteries for grid energy storage: opportunities and challenges. Sci China Chem, 2024, 67: 43–66

    Article  CAS  Google Scholar 

  3. Nai J, Zhao X, Yuan H, et al. Amorphous carbon-based materials as platform for advanced high-performance anodes in lithium secondary batteries. Nano Res, 2021, 14: 2053–2066

    Article  CAS  Google Scholar 

  4. Zheng Y, Yao Y, Ou J, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev, 2020, 49: 8790–8839

    Article  CAS  PubMed  Google Scholar 

  5. Yang T, Sun Y, Qian T, et al. Lithium dendrite inhibition via 3D porous lithium metal anode accompanied by inherent SEI layer. Energy Storage Mater, 2020, 26: 385–390

    Article  Google Scholar 

  6. Han S, Li Z, Zhang Y, et al. In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode. Energy Storage Mater, 2022, 48: 384–392

    Article  Google Scholar 

  7. Aribia A, Sastre J, Chen X, et al. Unlocking stable multi-electron cycling in NMC811 thin-films between 1.5–4.7 V. Adv Energy Mater, 2022, 12: 2201750

    Article  CAS  Google Scholar 

  8. Liu Y, Lin D, Yuen PY, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater, 2017, 29: 1605531

    Article  Google Scholar 

  9. Li NW, Yin YX, Yang CP, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater, 2016, 28: 1853–1858

    Article  CAS  PubMed  Google Scholar 

  10. Cao C, Li Y, Chen S, et al. Electrolyte-solvent-modified alternating copolymer as a single-ion solid polymer electrolyte for high-performance lithium metal batteries. ACS Appl Mater Interfaces, 2019, 11: 35683–35692

    Article  CAS  PubMed  Google Scholar 

  11. Ma Q, Fang Z, Liu P, et al. Improved cycling stability of lithium-metal anode with concentrated electrolytes based on lithium (fluorosulfonyl) (trifluoromethanesulfonyl)imide. ChemElectroChem, 2016, 3: 531–536

    Article  CAS  Google Scholar 

  12. Wen K, Tan X, Chen T, et al. Fast Li-ion transport and uniform Li-ion flux enabled by a double-layered polymer electrolyte for high performance Li metal battery. Energy Storage Mater, 2020, 32: 55–64

    Article  Google Scholar 

  13. Wang X, Li S, Zhang W, et al. Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability. Nano Energy, 2021, 89: 106353

    Article  CAS  Google Scholar 

  14. Wang J, Zhang C, Zhang Y, et al. Advances in host selection and interface regulation of polymer electrolytes. J Polym Sci, 2022, 60: 743–765

    Article  CAS  Google Scholar 

  15. Zhang K, Wu F, Wang X, et al. 8.5 µm-thick flexible-rigid hybrid solid-electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries. Adv Energy Mater, 2022, 12: 2200368

    Article  CAS  Google Scholar 

  16. Gond R, van Ekeren W, Mogensen R, et al. Non-flammable liquid electrolytes for safe batteries. Mater Horiz, 2021, 8: 2913–2928

    Article  CAS  PubMed  Google Scholar 

  17. Huo S, Sheng L, Xue W, et al. Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. InfoMat, 2023, 5: e12394

    Article  CAS  Google Scholar 

  18. Xu P, Shuang ZY, Zhao CZ, et al. A review of solid-state lithium metal batteries through in-situ solidification. Sci China Chem, 2024, 67: 67–86

    Article  Google Scholar 

  19. Rong Z, Sun Y, Zhao Q, et al. UV-cured semi-interpenetrating polymer networks of solid electrolytes for rechargeable lithium metal batteries. Chem Eng J, 2022, 437: 135329

    Article  CAS  Google Scholar 

  20. Zhang Q, Liu K, Ding F, et al. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res, 2017, 10: 4139–4174

    Article  Google Scholar 

  21. Tang S, Guo W, Fu Y. Advances in composite polymer electrolytes for lithium batteries and beyond. Adv Energy Mater, 2021, 11: 2000802

    Article  CAS  Google Scholar 

  22. Wan Z, Lei D, Yang W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv Funct Mater, 2019, 29: 1805301

    Article  Google Scholar 

  23. Xu S, Sun Z, Sun C, et al. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv Funct Mater, 2020, 30: 2007172

    Article  CAS  Google Scholar 

  24. Yang X, Jiang M, Gao X, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal–OH group? Energy Environ Sci, 2020, 13: 1318–1325

    Article  CAS  Google Scholar 

  25. Chen-Yang YW, Chen HC, Lin FJ, Chen CC. Polyacrylonitrile electrolytes 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and α-Al2O3. Solid State Ion, 2002, 150: 327–335

    Article  CAS  Google Scholar 

  26. Wang F, Li L, Yang X, et al. Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and Li-ion battery performance. Sustain Energy Fuels, 2018, 2: 492–498

    Article  CAS  Google Scholar 

  27. Gopalan A, Santhosh P, Manesh K, et al. Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium batteries. J Membrane Sci, 2008, 325: 683–690

    Article  CAS  Google Scholar 

  28. Liu T, Chang Z, Yin Y, et al. The PVDF-HFP gel polymer electrolyte for Li-O2 battery. Solid State Ion, 2018, 318: 88–94

    Article  CAS  Google Scholar 

  29. Wu S, Wu M, Zhang H, et al. Single-ion-conducting gel polymer electrolyte based on lithiated nafion. ACS Appl Polym Mater, 2023, 5: 4266–4273

    Article  CAS  Google Scholar 

  30. Wang Q, Liu X, Cui Z, et al. A fluorinated polycarbonate-based all solid state polymer electrolyte for lithium metal batteries. Electrochim Acta, 2020, 337: 135843

    Article  CAS  Google Scholar 

  31. Wang Y, Chen S, Li Z, et al. In-situ generation of fluorinated polycarbonate copolymer solid electrolytes for high-voltage Li-metal batteries. Energy Storage Mater, 2022, 45: 474–483

    Article  Google Scholar 

  32. Tang L, Chen B, Zhang Z, et al. Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nat Commun, 2023, 14: 2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou G, Yu J, Ciucci F. In situ prepared all-fluorinated polymer electrolyte for energy-dense high-voltage lithium-metal batteries. Energy Storage Mater, 2023, 55: 642–651

    Article  Google Scholar 

  34. Fu J, Li Z, Zhou X, et al. Fluorinated solid electrolyte interphase derived from fluorinated polymer electrolyte to stabilize Li metal. Chem-SusChem, 2023, 16: e202300038

    CAS  Google Scholar 

  35. Fu C, Ma Y, Zuo P, et al. In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery. J Power Sources, 2021, 496: 229861

    Article  CAS  Google Scholar 

  36. Alarco PJ, Abu-Lebdeh Y, Abouimrane A, et al. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat Mater, 2004, 3: 476–481

    Article  CAS  PubMed  Google Scholar 

  37. van Laack V, Langer F, Hartwig A, et al. Succinonitrile-polymer composite electrolytes for Li-ion solid-state batteries-the influence of polymer additives on thermomechanical and electrochemical properties. ACS Omega, 2023, 8: 9058–9066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu K, Ding F, Liu J, et al. A cross-linking succinonitrile-based composite polymer electrolyte with uniformly dispersed vinyl-functionalized SiO2 particles for Li-ion batteries. ACS Appl Mater Interfaces, 2016, 8: 23668–23675

    Article  CAS  PubMed  Google Scholar 

  39. Wang A, Geng S, Zhao Z, et al. In situ cross-linked plastic crystal electrolytes for wide-temperature and high-energy-density lithium metal batteries. Adv Funct Mater, 2022, 32: 2201861

    Article  CAS  Google Scholar 

  40. Hu Z, Xian F, Guo Z, et al. Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries. Chem Mater, 2020, 32: 3405–3413

    Article  CAS  Google Scholar 

  41. Yang Y, Xiong J, Lai S, et al. Vinyl ethylene carbonate as an effective SEI-forming additive in carbonate-based electrolyte for lithium-metal anodes. ACS Appl Mater Interfaces, 2019, 11: 6118–6125

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Q, Liu S, Lin Z, et al. Highly safe and cyclable Li-metal batteries with vinylethylene carbonate electrolyte. Nano Energy, 2020, 74: 104860

    Article  CAS  Google Scholar 

  43. Bi J, Mu D, Wu B, et al. A hybrid solid electrolyte Li0.33La0.557TiO3/poly-(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries. J Mater Chem A, 2020, 8: 706–713

    Article  CAS  Google Scholar 

  44. Wu M, Wen Z, Liu Y, et al. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J Power Sources, 2011, 196: 8091–8097

    Article  CAS  Google Scholar 

  45. Gupta RK, Kim HM, Rhee HW. Poly(ethylene oxide): succinonitrile-a polymeric matrix for fast-ion conducting redox-couple solid electrolytes. J Phys D-Appl Phys, 2011, 44: 205106

    Article  Google Scholar 

  46. Vijayakumar V, Diddens D, Heuer A, et al. Dioxolanone-anchored poly(allyl ether)-based cross-linked dual-salt polymer electrolytes for high-voltage lithium metal batteries. ACS Appl Mater Interfaces, 2020, 12: 567–579

    Article  CAS  PubMed  Google Scholar 

  47. Raihane M, Ameduri B. Radical copolymerization of 2,2,2-trifluoroethyl methacrylate with cyano compounds for dielectric materials: synthesis and characterization. J Fluorine Chem, 2006, 127: 391–399

    Article  CAS  Google Scholar 

  48. Chen R, Wu F, Li F, et al. Novel binary room-temperature complex system based on LiTFSI and 2-oxazolidinone and its characterization as electrolyte. J Phys Chem C, 2007, 111: 5184–5194

    Article  CAS  Google Scholar 

  49. Gorecki W, Jeannin M, Belorizky E, et al. Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. J Phys-Condens Matter, 1995, 7: 6823–6832

    Article  CAS  Google Scholar 

  50. Sun B, Mindemark J. V. Morozov E, et al. Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations. Phys Chem Chem Phys, 2016, 18: 9504–9513

    Article  CAS  PubMed  Google Scholar 

  51. Okumura T, Nishimura S. Lithium ion conductive properties of aliphatic polycarbonate. Solid State Ion, 2014, 267: 68–73

    Article  CAS  Google Scholar 

  52. Ren Z, Li J, Cai M, et al. An in situ formed copolymer electrolyte with high ionic conductivity and high lithium-ion transference number for dendrite-free solid-state lithium metal batteries. J Mater Chem A, 2023, 11: 1966–1977

    Article  CAS  Google Scholar 

  53. Wang X, Yasukawa E, Mori S. Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochim Acta, 2000, 45: 2677–2684

    Article  CAS  Google Scholar 

  54. Xu G, Shangguan X, Dong S, et al. Formulation of blended-lithium-salt electrolytes for lithium batteries. Angew Chem Int Ed, 2020, 59: 3400–3415

    Article  CAS  Google Scholar 

  55. Park K, Yu S, Lee C, et al. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis-(fluorosulfonyl)imide electrolytes. J Power Sources, 2015, 296: 197–203

    Article  CAS  Google Scholar 

  56. Chen X, Xu W, Engelhard MH, et al. Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures. J Mater Chem A, 2014, 2: 2346–2352

    Article  CAS  Google Scholar 

  57. Fu F, Liu Y, Sun C, et al. Unveiling and alleviating chemical “crosstalk” of succinonitrile molecules in hierarchical electrolyte for high-voltage solid-state lithium metal batteries. Energy Environ Mater, 2023, 6: e12367

    Article  CAS  Google Scholar 

  58. Lv Z, Zhou Q, Zhang S, et al. Cyano-reinforced in-situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries. Energy Storage Mater, 2021, 37: 215–223

    Article  Google Scholar 

  59. Zhou Q, Fu C, Li R, et al. Poly(vinyl ethylene carbonate)-based dualsalt gel polymer electrolyte enabling high voltage lithium metal batteries. Chem Eng J, 2022, 437: 135419

    Article  CAS  Google Scholar 

  60. Eshetu GG, Judez X, Li C, et al. Lithium azide as an electrolyte additive for all-solid-state lithium–sulfur batteries. Angew Chem Int Ed, 2017, 56: 15368–15372

    Article  CAS  Google Scholar 

  61. Tan J, Matz J, Dong P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv Energy Mater, 2021, 11: 2100046

    Article  CAS  Google Scholar 

  62. Shan X, Zhong Y, Zhang L, et al. A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives. J Phys Chem C, 2021, 125: 19060–19080

    Article  CAS  Google Scholar 

  63. Liu QC, Xu JJ, Yuan S, et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv Mater, 2015, 27: 5241–5247

    Article  CAS  PubMed  Google Scholar 

  64. Wang X, Jin L, Feng W, et al. Opportunities for ionic liquid-based electrolytes in rechargeable lithium batteries. Sci China Chem, 2023, 66: 3443–3466

    Article  CAS  Google Scholar 

  65. Xue T, Qian J, Guo X, et al. Tailoring fluorine-rich solid electrolyte interphase to boost high efficiency and long cycling stability of lithium metal batteries. Sci China Chem, 2023, 66: 2121–2129

    Article  CAS  Google Scholar 

  66. He M, Hu L, Xue Z, et al. Fluorinated electrolytes for 5-V Li-ion chemistry: probing voltage stability of electrolytes with electrochemical floating test. J Electrochem Soc, 2015, 162: A1725–A1729

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2022YFB3805702), the National Natural Science Foundation of China (No. 52130303 and 52327802), and Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies (No. EEST20214).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Sun J designed the experiments, conducted the characterization and wrote the original draft; Wang Y helped with sample fabrication and processing; Li Y performed data analysis and writing-reviewing; Feng W conceived and supervised the project. All authors participated in the discussion of the manuscript.

Corresponding authors

Correspondence to Yu Li  (李瑀) or Wei Feng  (封伟).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Jinxu Sun is now pursuing MS degree at the School of Materials Science and Engineering, Tianjin University. His research focuses on energy materials in lithium secondary batteries.

Yong Wang is currently pursuing a PhD degree at the School of Materials Science and Engineering, Tianjin University. His research focuses on solid polymer electrolytes for lithium metal batteries.

Yu Li is a professor at the Institute of Advanced Technology and Equipment, Beijing University of Chemical Technology. He obtained his PhD degree from Tianjin University in 2011 and had worked as a postdoctoral research fellow at Tianjin University from 2011 to 2014. His current research is focused on conductive polymers and nano energy storage materials.

Wei Feng is a professor at the School of Materials Science and Engineering, Tianjin University. He obtained his PhD degree from the Xi’an Jiaotong University (China) in 2000. Then, he worked at Osaka University and Tsinghua University as a JSPS fellow and postdoctoral researcher, respectively. In 2004, he became a full professor at Tianjin University. His research interests include photoresponsive organic molecules and their derivatives, thermal conductive and high-strength carbon-based composites, and new fluorinated carbon materials and functional polymers.

Electronic Supplementary Material

40843_2024_2904_MOESM1_ESM.pdf

Supporting Information: Fluorinated polycarbonate-based solid electrolyte plasticized using succinonitrile for 4.5 V lithium metal batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, Y., Li, Y. et al. Fluorinated polycarbonate-based solid electrolyte plasticized using succinonitrile for 4.5 V lithium metal batteries. Sci. China Mater. 67, 1393–1402 (2024). https://doi.org/10.1007/s40843-024-2904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2904-2

Keywords

Navigation