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SPECIAL TOPIC: Computation-assisted Materials Screening and Design

Methods and applications of machine learning in computational design of
optoelectronic semiconductors

Xiaoyu Yang, Kun Zhou, Xin He* and Lijun Zhang*

ABSTRACT The development of high-throughput compu-
tation and materials databases has laid the foundation for the
emergence of data-driven machine learning methods in recent
years. Machine learning has become a crucial methodology
propelling researches in computational materials. It has de-
monstrated tremendous potential in analyzing materials data,
expediting materials calculations, predicting material prop-
erties, advancing the discovery, screening, and design of new
materials. Consequently, an increasing number of methodo-
logies, models, and frameworks of machine learning have
emerged. This review provides a comprehensive overview of
the latest advancements and applications of machine learning
in computational design of optoelectronic semiconductors.
We introduce the workflow and strategies of machine learning
shallow models, ensemble models, and deep neural networks
based on various material representation methods. The asso-
ciated material databases and toolkits are also discussed.
Furthermore, we delve into the applications of these models in
predicting material stability, optoelectronic properties, ma-
terials inverse design, and establishing relationships between
material structures and properties. Finally, we summarize and
discuss the key challenges existing in current machine learn-
ing, with a specific focus on issues related to the size of
available data, data quality, material representation, and ma-
terials inverse design.

Keywords: machine learning, computational materials, optoe-
lectronic semiconductor materials

INTRODUCTION
In 2022, the release of chat generative pre-trained transformer
(ChatGPT) [1] gained widespread attention and acclaim. Its
remarkable capabilities in composing articles, modifying code,
and translating languages swiftly captured the imagination of the
public, heralding the advent of the artificial intelligence (AI) era.
This pivotal moment underscored the visionary concept of
“data-intensive scientific discovery”, posited by Jim Gray of the
Microsoft Research Institute as early as 2007 [2]. Depicted in
Fig. 1a, this paradigm shift augments the traditional trio of
scientific research methodologies—experimentation, theory, and
computational simulation—by accentuating the pivotal role of
big data and advanced analytics. In this paradigm, researchers

leverage a myriad of tools, including machine learning (ML) and
data mining, to amass, organize, and dissect vast datasets,
thereby unearthing novel insights and knowledge [3,4]. This
novel approach to scientific inquiry has quietly revolutionized
our lives. Noteworthy initiatives, such as the Materials Genome
Initiative (MGI) initiated by the USA government in 2011, have
epitomized this transformation by harnessing cutting-edge
computational, experimental, and data science technologies to
propel materials innovation [5,6]. The founding of the OpenAI
team in 2015 marked the inception of groundbreaking research
in AI models, culminating in the launch of ChatGPT in 2022.
Subsequently, milestones in AI, such as the development of
AlphaGo by the DeepMind team in 2016, have pushed the
boundaries of machine cognition, as exemplified by its victory
over the Korean Go champion, Lee [7]. Moreover, the intro-
duction of AlphaFold by DeepMind in 2020 addressed a long-
standing conundrum in biology—deciphering the intricate
process of protein folding [8]. Notably, recent endeavors by both
the Google DeepMind and Microsoft teams have led to the
development of material generative models, namely GNoME [9],
and MatterGen [10] , facilitating inverse material design. In
essence, the past decade has witnessed an exponential surge in
data-driven scientific research methodologies, propelling us
towards unprecedented frontiers of knowledge and innovation.
The integration of AI into materials science has yielded pro-

found advancements, evident in the accelerated pace of research
and discovery of novel materials boasting advanced performance
and diverse applications, courtesy of data-driven ML meth-
odologies [11,12]. Prior to this paradigm shift, traditional
computational simulation methods served as the primary
approach in materials research. Offering cost-effective alter-
natives to experimental studies, these methods furnish crucial
direction and guidance to experimental endeavors. Given the
intricate relationship between material properties and their
chemical compositions and intrinsic structures, the construction
of material models incorporating information on chemical ele-
ments and atomic positions has enabled the prediction of a
myriad of material properties. These encompass mechanical,
thermal, optical, electrical, and magnetic attributes, attainable
through theoretical calculations [13–16]. Computational simu-
lation methodologies for materials encompass a spectrum of
approaches, including but not limited to, first-principles meth-
ods such as density functional theory (DFT). These methods

State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, Key Laboratory of Material Simulation Methods &
Software of MOE, and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
* Corresponding authors (emails: xin_he@jlu.edu.cn (He X); lijun_zhang@jlu.edu.cn (Zhang L))

REVIEWS SCIENCE CHINA Materials

1042 April 2024 | Vol. 67 No.4© Science China Press 2024

mater.scichina.com
link.springer.com
https://doi.org/10.1007/s40843-024-2851-9
http://crossmark.crossref.org/dialog/?doi=10.1007/s40843-024-2851-9&amp;domain=pdf&amp;date_stamp=2024-03-12


simulate the electronic structure and properties of materials by
solving the Schrödinger equation [14,17]. Molecular dynamics
methods, on the other hand, elucidate the motion and interac-
tions of atoms and molecules within materials by solving clas-
sical mechanics equations. Leveraged to study material structure,
dynamic behavior, and thermodynamic properties, these meth-
ods play a pivotal role in investigating phenomena such as phase
transitions, mechanical properties, and heat conduction. [18].
Presently, the practice of predicting material structures and
properties using computational methodologies prior to experi-
mental investigations has become ubiquitous in materials
research. This approach not only facilitates the planning and
optimization of material synthesis processes, encompassing
considerations of chemical composition, material structure, and
requisite synthesis routes, but also aids in the analysis and
interpretation of potential relationships between material
structures and properties. Consequently, it furnishes invaluable
insights for the advancement of functional materials, chemistry,
and biology, thereby guiding the refinement and development of
theoretical methodologies.
In recent years, propelled by advancements in computer

hardware and software, researchers have leveraged batch, auto-
mated calculations to analyze an extensive array of materials
swiftly—a research paradigm termed high-throughput comput-
ing for materials [16,19,20]. This approach harnesses parallel
computing and automation technologies to facilitate efficient
and expedited large-scale calculations and data processing. The
significance of high-throughput computing in materials science
and engineering is multifaceted, encompassing the acceleration
of materials discovery and design, reduction of time and costs,
provision of expansive datasets for in-depth analysis, and the

advancement of materials simulation and theoretical research
[21]. The advent of high-throughput computing has led to the
emergence of several materials databases, including material
project (MP) [22], the open quantum materials database
(OQMD) [23], and automatic-FLOW for materials discovery
(AFLOW) [24], which harbor detailed structural information
and diverse material properties. These repositories serve as
invaluable resources for researchers seeking comprehensive
datasets to inform their investigations and analyses in the realm
of materials science and engineering.
The intertwined advancement of high-throughput computing

and materials databases has propelled the development of data-
driven methodologies in materials simulation [25–31]. Data-
driven approaches in materials research encompass the utiliza-
tion of techniques such as data mining and ML to aggregate,
structure, and analyze extensive datasets derived from experi-
mental, computational, or literature sources. These methodolo-
gies are geared towards uncovering latent patterns within
materials, swiftly predicting material properties, and expediting
the discovery, design, and screening of novel materials. Analo-
gous to how computational simulation enhances the efficacy of
material experiments, data-driven ML methodologies have
markedly accelerated the pace of materials computational
simulation by several orders of magnitude. In the realm of
materials research, ML finds diverse applications, encompassing
but not limited to the following areas: (1) utilizing interpretable
models to evaluate material descriptors and establish correla-
tions between material composition, structure, and properties
[32,33], (2) employing deep neural networks to develop atomic
potential functions that rival the accuracy of DFT for accelerated
material structure optimization or MD simulation [34–36],

Figure 1 (a) Data-driven science has become the fourth paradigm of scientific research. (b) ML methods and applications. It is also the framework of this
review. The content includes the basic framework and processes of ML, popular ML models, and specific applications of ML in predicting material stability
and optoelectronic properties. Finally, we discuss some key challenges of ML. Some more detailed examples are given on the right.
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(3) leveraging supervised learning models for rapid and cost-
effective property prediction (e.g., energy, bandgap, defects,
phonon, optical, and elastic properties) to facilitate the screening
of functional materials [37–46], (4) utilizing generative models
to generate chemical compositions, molecules, and crystal
structures to facilitate materials inverse design [47–50], and
(5) applying unsupervised natural language processing (NLP) for
mining literature texts to extract high-quality professional
knowledge and data [51–53].
In this review, as shown in Fig. 1b, we provide an in-depth

exploration and analysis of the contemporary landscape of ML
in computational materials, following a structured progression
from fundamental to sophisticated dimensions. Our emphasis is
placed on the following pivotal elements: the methodologies and
techniques employed in ML, the repertoire of models and tools
utilized, the utilization of ML for property prediction in mate-
rials, and its applications in materials inverse design. A special
focus is directed towards optoelectronic semiconductor materi-
als, notably the widely studied metal halide materials. In the end
of the review, we further discuss the key challenges in current
ML: augmenting the quantity and quality of training data,
refining the precision of crystal representations to augment the
model’s learning capabilities, and effectuating material inverse
design. It is pertinent to acknowledge that our review does not
aim to encompass all facets of the field comprehensively. Given
the expansive domain of materials science, our discussions are
delimited to the purview of computational materials. It is
noteworthy that our primary focus lies in the realm of applying
ML methodologies to optoelectronic semiconductor materials
and solid crystals. This targeted approach allows us to dedicate
our efforts to a more thorough analysis of the pertinent subject
matter.

FRAMEWORK OF ML BASED STUDIES
The general workflow and methods of ML is depicted in Fig. 2a.
It starts from acquiring a dataset and concludes with model
evaluation. We categorize ML into four types: classification,
regression, clustering, and dimensionality reduction, based on
different tasks. We also classify ML into categories such as
supervised learning and unsupervised learning according to
different learning strategies, accompanied by relevant case stu-
dies.

General workflow

Preparing a dataset
The dataset serves as the starting point for data-driven ML
methods and is the most crucial link in the ML process. It
comprises material information (chemical composition and
crystal structure) and the properties or performance of materials
that serve as the learning objectives for the model. All the
knowledge that an ML model acquires comes from the dataset,
hence determining the upper limit of the model’s performance
[54]. The data size must be sufficient to encompass hidden
relationships between features adequately. However, an excessive
amount of data can slow down the model training process and
pose challenges for parameter tuning. Methods for obtaining
material data include manual extraction from literature [55],
NLP-based automated literature mining [52], high-throughput
computation [56], and extraction from material databases [57].
Organizing literature or conducting high-throughput computa-

tion can yield customized and accurate data, but the dataset is
often limited in size. Extracting data directly from databases
allows for quickly obtaining a large amount of data, but some
specific materials may not be present in existing databases.

Data evaluation and cleaning
After obtaining the dataset, the first step is to assess the data
quality to determine if it is suitable for constructing an ML
model. Evaluation methods include checking if the samples are
representative, identifying outliers or erroneous samples,
ensuring that sample labels are obtained under consistent
parameters, and examining the balanced distribution of label
values (close to a normal distribution) [58,59]. Subsequently,
data cleaning is performed to eliminate noise, errors, and
inconsistencies in the data to ensure its quality and reliability.
For missing values in the data, one can choose to delete samples
or features with missing values or use imputation methods (such
as mean, median, and regression) to fill in the missing values.
Normalization and standardization of the data can be applied to
eliminate differences in scale between different features, ensur-
ing that the data are comparable and analyzable on the same
scale.

Feature engineering
Feature engineering, also known as descriptor design, is a closely
integrated stage in the ML process with domain-specific
knowledge of materials. Its goal is to transform raw data into a
feature representation that ML models can understand and
process. Feature engineering includes feature extraction, feature
selection, and feature construction. Feature extraction aims to
more accurately represent samples as numerical values that a
computer can understand, such as extracting information about
crystal elements, atomic positions, atomic interactions, and local
structures, to help the model understand material characteristics
[11,60–62]. Feature selection involves removing irrelevant or
redundant features unrelated to the learning objective, reducing
samples from a high-dimensional space to a low-dimensional
space, allowing the model to focus on features most closely
related to material properties and thus improving model per-
formance [63,64]. Feature construction involves combining
original features to obtain composite features that are more
closely related to the target [65]. In actual ML tasks, one may
need to continuously fit ML models to evaluate the effectiveness
of the current feature set and iterate through the three tasks in
feature engineering.

Selecting ML methods
As shown in Fig. 2b, ML tasks include classification, regression,
dimensionality reduction, and clustering. ML strategies include
supervised learning, unsupervised learning, semi-supervised
learning, reinforcement learning, active learning, and transfer
learning. ML models can be categorized based on model com-
plexity into shallow models, ensemble models, and deep models.
Different ML tasks, strategies, and models are suitable for
addressing completely different problems. We will elaborate
further on this in subsequent chapters.

Dataset split
Before model training, it is necessary to split the dataset into
training, validation, and test sets. During the model training
process, the training set is used for model fitting, and the vali-
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dation set is used for adjust model hyperparameters. We com-
pare the model’s performance on the training and validation sets
to assess the model’s learning progress, avoiding underfitting
and overfitting. After training is completed, the test set is used to
evaluate the model’s performance on unseen data [66].

Model training
Model training involves letting the model learn from the training
set data, adjusting model parameters and structure. The model
adjusts its internal parameters (such as node weights in neural
network models) by learning on the training set and then eval-
uating on the validation set. We adjust hyperparameters (such as
decision tree maximum depth for decision tree models, the
number of hidden layers for neural network models) based on
the model’s performance on the test set [67–69].

Model evaluation
After model training is complete, it is necessary to evaluate the
model based on the test set [70,71]. For supervised models, we
measure model performance by comparing predicted values
with sample labels. For classification models, evaluation metrics
include accuracy, precision, recall, F1 Score, receiver operating
characteristic (ROC) curve and area under curve (AUC), con-
fusion matrix. For regression models, commonly used metrics
for evaluation are root mean squared error (RMSE), mean

absolute error (MAE), mean squared error (MSE), R2 score, etc.
Since the model’s performance depends on its performance on
the test set, the choice of the test set is particularly crucial. The
test set should be entirely different from the training and vali-
dation sets, i.e., it should not contain duplicate samples, to
ensure the accuracy of the evaluation results. Otherwise, the
model may encounter samples during the test that it learned
during the training process, creating a false impression of
excellent model performance. Additionally, the test set should
not be too small, and the sample selection should be entirely
random to ensure the non-accidental nature of the model’s
evaluation results [72–74].

Specific tasks
Specific tasks of ML studies include classification, regression,
dimensionality reduction, and clustering. In classification tasks,
the model learns the mapping relationship from input features
to category labels, enabling the classification prediction of new
samples. Classification tasks in ML include binary classification
and multiclass classification [75–77]. Binary classification tasks
can be used for yes/no decisions, such as an ML classification
model determining the stability of an unknown crystal. Multi-
class models can predict which category a new sample belongs
to, such as a human face recognition model.
Regression tasks are most common, where each sample label is

Figure 2 (a) General workflow of ML. It starts from dataset and goes through feature engineering, method selection, and model training, and ends with
model evaluation. (b) Classification of ML methods in this review. ML tasks are divided into four categories: classification, regression, dimensionality
reduction, and clustering. ML strategies are categorized as supervised learning, unsupervised learning, semi-supervised learning, reinforcement learning, active
learning, and transfer learning. ML models are divided into ML and deep learning. ML includes shallow models and ensemble models. Deep learning consists
of neural networks based on crystal graphs, neural networks based on chemical compositions, and generative neural networks for inverse materials design.
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a continuous value, such as the adsorption energy of two-
dimensional (2D) materials, the bandgap of semiconductors, and
the formation energy (Ef) of crystals [78,79].
In clustering tasks, the model learns the distance or similarity

of different samples, partitioning the sample points in the
dataset into different groups, ensuring high similarity among
samples within the same group to achieve the goal of classifying
samples [80]. Clustering tasks belong to a type of unsupervised
learning, where the training dataset’s samples do not require
predefined labels. Clustering models can be used to discover
potential correlations among samples for data analysis and
preprocessing. Common clustering models include K-means
clustering, hierarchical clustering, and density-based clustering.
Dimensionality reduction aims to map high-dimensional data

to a low-dimensional space, reducing the number and com-
plexity of features while preserving key information from the
original data. It helps visualize data in two or 3D feature spaces
for sample analysis and classification, reduces data complexity to
lower model training costs, and addresses the curse of dimen-
sionality [81,82]. Common dimensionality reduction methods
include principal component analysis (PCA) [65], linear dis-
criminant analysis (LDA) [83], and t-distributed stochastic
neighbor embedding (t-SNE) [68].

State-of-the-art strategies

Supervised learning
In supervised learning, each sample in the dataset consists of
features and their corresponding target values (labels). Features
are used to describe the information of the sample, while the
target variable represents the sample’s property. During training,
the model learns the relationship between the features and target
values in the training set to acquire predictive capabilities.
However, supervised learning heavily relies on labeled samples,
making it labor-intensive to label samples before constructing a
supervised learning model. This challenge particularly affects the
construction of supervised learning models in data-scarce
domains.
Classification and regression models based on supervised

learning are the most common models in materials science.
Typically, various features represent the structure and compo-
sition of materials, and the properties or performance of mate-
rials (such as concrete strength, semiconductor bandgap, defect
formation energy of 2D materials, stability of perovskite mate-
rials, and thermal expansion coefficient of high-entropy alloys)
serve as their target values. Through supervised learning, the
model learns the latent relationship between materials and their
properties, enabling the rapid prediction of relevant properties
for candidates. This accelerates the discovery of new materials.
In tasks like predicting the bandgap of perovskites using
supervised learning, a well-trained model can quickly predict the
bandgaps of new materials, achieving computational speeds
several orders of magnitude faster than traditional DFT calcu-
lations [33,56,58,63,77,84–92].
Interpretable models can also reveal specific relationships

between material composition, structure, and properties or
performance. For example, in a supervised learning task related
to perovskite crystal stability, analyzing the feature importance
output by the ML model can highlight that the octahedral factor
has a significant impact on the stability of perovskites [33,77,84–
86,88–90,92]. Examples of supervised learning work will be

further discussed in subsequent chapters.

Unsupervised learning
In unsupervised learning, each sample in the dataset is repre-
sented only by features without corresponding target values.
Therefore, unsupervised learning can be used to discover the
intrinsic structure or relationships within unlabeled data when
obtaining sample labels is challenging. Since there are no target
values to guide the model’s learning direction, the construction
of effective unsupervised learning models requires algorithms to
autonomously discover features and patterns in the data, and the
accuracy of the model also heavily depends on the knowledge
and experience of ML engineers for evaluation [93].
Clustering and dimensionality reduction based on unsu-

pervised learning can be employed to categorize samples, reduce
data complexity, and visualize feature spaces, for instance, using
algorithms like hierachical density-based spatial clustering of
applications with noise (HDBSCAN) and t-SNE to cluster
layered homologous groups of 2D flat-band materials for dis-
covering material templates [47]. Xie and Grossman [94] utilized
PCA to reduce the dimensionality of metallic elements in per-
ovskite materials, projecting sample points into a 2D visualiza-
tion space to identify sample distributions. They also employed
t-SNE for clustering analysis on a boron dataset, oxygen, and
sulfur element coordination environments. Additionally, as
shown in Fig. 3a, Bhattacharya et al. [46] used t-SNE to visualize
the feature space of various graph neural network (GNN)
models to compare their learning capabilities regarding crystal
structures and chemical compositions.
NLP methods based on unsupervised learning are widely used

for literature text mining. This is done to collect data from lit-
erature and automatically analyze potential relationships
between knowledge by constructing knowledge graphs (KGs)
[95,96]. Zhang and He [97] utilized word embeddings to auto-
matically extract information from a material literature database,
constructing an unsupervised ML model that successfully
established implicit relationships between material chemical
formulas and their photovoltaic applications. Zheng et al. [51]
guided ChatGPT through engineering to perform text mining
and extract 26k different synthetic parameters from 800 peer-
reviewed articles on MOFs. This dataset was then used for
subsequent ML tasks. The ChemDataExtractor software toolkit
employs NLP and ML methods to extract chemical data from
scientific literature. Huang and Cole [98] used it for data mining
in 229k academic papers, resulting in a battery materials data-
base containing 292k entries. Dong and Cole [99] utilized this
software to extract 100k semiconductor bandgap records from
128k journal articles, automatically generating a database.
The variational autoencoder (VAE) model is a type of ML

model based on unsupervised learning. Vasylenko et al. [100]
employed an unsupervised learning VAE model to evaluate the
synthesizability of unexplored chemical compositions. As shown
in Fig. 3b, they utilized the anomaly detection function of the
VAE model to rank the new phases formed by random combi-
nations of elements by their reasonability. The reconstruction
error of the VAE represents the deviation of the candidate phase
space from the chemical systems in the training set, making it
suitable for the assessment of synthesizability of new phases.
Generative models based on unsupervised learning are also

important models in materials science [49]. Common generative
models are generally based on generative adversarial network
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(GAN) or VAE. They have been widely used for generating
entirely new chemical formulas, molecular structures, and
crystal structures [50,100–113]. The methods and applications of
generative models will be further detailed in subsequent chap-
ters.

Semi-supervised learning
Semi-supervised learning is a learning paradigm that falls
between supervised learning and unsupervised learning. In semi-
supervised learning, only a small portion of the training dataset
is labeled, while most samples are unlabeled. When labeling
samples is costly, semi-supervised learning can make efficient
use of both labeled and unlabeled samples for training. Common
methods include self-training and co-training [114]. Because
unlabeled samples lack labels, evaluating the distribution and
quality of these samples is challenging. Ensuring that unlabeled
samples do not contain erroneous information and belong to the
same distribution as labeled samples is one of the difficulties in
unsupervised learning.
Positive-unlabeled learning (PU learning) is a research direc-

tion in semi-supervised learning that involves training a binary
classifier in situations where only positive class and unlabeled

data are available. In practical scenarios, obtaining negative class
samples can be challenging, and negative class data may be
highly diverse and dynamically changing. For instance, in the
problem of predicting the synthesizability of materials, one may
only have data on synthesized materials (positive samples) and
unexplored materials (unlabeled samples), without information
on materials that cannot be synthesized (negative samples)
because it is difficult to know in advance which crystals cannot
be synthesized. In such cases, PU learning can effectively utilize
these two types of data for model training, thus gaining the
ability to classify samples [115,116]. The core idea behind
training PU models is iterative, as shown in Fig. 3c. First, a
portion of unlabeled samples is selected, assuming them to be
negative samples. Then, a binary classification model is trained
using labeled positive examples and assumed negative examples.
The trained model is used to predict the labels of unlabeled
samples. Based on the prediction results, labels of unlabeled
samples are adjusted (samples predicted as positive are labeled as
positive, while samples predicted as negative remain unlabeled).
Iteratively repeating these steps allows the model to gradually
learn discriminative features between positive and negative
examples, thus completing the construction of the binary clas-

Figure 3 (a) t-SNE 2D visualization of the structure fingerprint space, with different coordination patterns color-coded. Reprinted with permission from
Ref. [46]. Copyright 2023, the Author(s). (b) Workflow of the VAE model. Reprinted with permission from Ref. [100]. Copyright 2021, the Author(s).
(c) Schematic diagram of PU learning. Green, red, and gray circles express positive, negative, and unlabeled data, respectively. Reprinted with permission from
Ref. [107]. Copyright 2020, American Chemical Society. (d) Five-layer tree search structure of MCTS-PG. The light red nodes represent the 001 surface of
Cu2AlCa with the symmetry of a 230 space group. And the general framework of MCTS-PG combined with automated DFT in optimizing the alloy surface for
CO2 activation (target 1) and methanation (target 2). Reprinted with permission from Ref. [121]. Copyright 2023, American Chemical Society.
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sification model. Jang et al. [107] and Gu et al. [117] used PU
learning methods to predict the synthesizability of crystal
materials and perovskite materials, respectively.

Reinforcement learning
Reinforcement learning differs significantly from other types of
learning, primarily used to solve sequential decision-making
problems. In reinforcement learning, an agent executes specific
actions in an environment and receives rewards or feedback
from the environment. Subsequently, the environment transi-
tions to a new state. The goal of the agent is to learn a policy
through interaction with the environment, such that it selects
optimal actions in different states to maximize rewards,
achieving the learning objective [118]. Reinforcement learning
does not rely on labeled training sets but learns through inter-
action with the environment. It is a general decision-making
framework enabling computers to improve themselves autono-
mously, holding the potential to achieve general AI a key factor
in the success of the Go-playing robot AlphaGo [7].
Monte Carlo tree search (MCTS) can be seen as a specific

form of reinforcement learning. It evaluates the value of possible
decisions and actions through random simulation and statistical
sampling. The search process is guided by statistical information
rather than learning and policy updates through interaction with
the environment [119,120]. Banik et al. [43] found a connection
between the intermediate configurations of materials involved in
the defect design problem in low-dimensional materials and the
concept of “delayed rewards” in reinforcement learning. They
constructed a reinforcement learning model based on MCTS
with delayed rewards, effectively used for exploring the defect
configuration space, determining the optimal arrangement, and
evolution of defects in 2D MoS2 materials. Song et al. [121] used
the MCTS algorithm combined with policy gradient (PG),
forming the MCTS-PG algorithm. It was integrated with DFT
calculations to create an iterative search for the optimal material,
forming a versatile adaptive reinforcement learning framework.
As shown in Fig. 3d, they employed this framework to search for
materials with desired properties from initial data. After iterative
searches, they successfully filtered out 100 alloy surfaces capable
of chemically adsorbing CO2 and predicted 9 alloy surfaces with
high CO2 methanation activity.

Active learning
Active learning algorithms are a strategy to minimize data col-
lection costs. It actively selects the most valuable unlabeled
samples based on limited labeled data through learning, guiding
us in labeling or querying [122,123]. As shown in Fig. 4a, the
active learning process generally includes model training, sample
exploration, sample labeling, and model retraining. This iterative
process is repeated to collect sufficient data to improve the
model’s performance. Common sample selection strategies in
active learning include uncertainty sampling, margin sampling,
information gain, diversity sampling, model-based uncertainty
sampling, and others. Choosing an appropriate sample selection
strategy can help improve sample labeling efficiency.
Active learning is used to explore unknown material spaces

and discover valuable data [124]. Kim and Min [58], after
constructing an ML model to predict the formation energy and
bandgap of double halide perovskite materials, further used an
active learning strategy to select data from the database to train
the model and improve prediction accuracy. They chose the

exploration method as a sampling strategy, considering the
database with the maximum predicted standard deviation (i.e.,
uncertainty), and compared it with a random sampling strategy
to demonstrate the superiority of the sampling strategy. Newly
labeled data were added to the training set by performing DFT
calculations. As shown in Fig. 4b, by adding a small amount of
data with maximum uncertainty to the training set, the model’s
predictive performance significantly improved. Kim et al. [125]
proposed a deep learning framework for exploring the material
design space. As shown in Fig. 4c, this framework gradually
extends the reliable prediction domain of the deep learning
neural network (DNN) model to the desired attribute area
through active transfer learning.
In the active learning framework, the development and

exploration of the unexplored material search space are balanced
by uncertainty, guiding the next best experiment or computa-
tion. The results of experiments or computations enhance the
training data, and the cycle continues until the ideal ML model is
built (Fig. 4d), significantly improving the efficiency of materials
development [124].

Transfer learning
Transfer learning involves two ML tasks: the source task and the
target task. In the learning of the source task, the model is
typically trained on a larger and more easily obtainable dataset
to acquire foundational knowledge. Subsequently, the knowledge
gained from the source task is transferred to the target task. This
transfer can include the model’s parameters, feature repre-
sentations, and representations in intermediate layers. Finally,
the model is further fine-tuned on the target dataset to adapt to
the specific characteristics of the target task. The advantage of
transfer learning lies in its ability to leverage easily obtainable
data for pre-training the model. By equipping the model with
general knowledge and experience, it reduces the demand for a
large sample size on the target task [126,127].
This strategy is well-suited for addressing the issue of data

scarcity in specific materials. For ML tasks, pre-training models
on numerous data from material open databases allows them to
understand fundamental knowledge related to materials science
and physical chemistry. Models trained in this way are more
likely to exhibit better performance on specific material domain
problems. Jha et al. [128] used the deep neural network ElemNet
that pre-trained on 341k data from the OQMD database to
predict formation energy, then applied transfer learning to fine-
tune the model parameters on two smaller datasets (joint
automated repository for various integrated simulations (JAR-
VIS) and the MP, with 11k and 23k data points, respectively).
The results showed that transfer learning significantly improved
the model’s prediction accuracy. Similar work had done by
Goodall and Lee [129]. Additionally, Gu et al. [117] pre-trained
the MatErials graph network (MEGNet) [130] on the MP and
applied a transfer learning strategy by fixing the model weights
in the encoding layer and the first graph convolutional layer,
then retraining the rest of the model using specific perovskite
data (Fig. 4e). The results demonstrated that combining transfer
learning with training on limited data in specific material
domains significantly improved the model’s performance in
those domains.
Transfer learning strategies can be applied in a more flexible

manner by transferring knowledge between different material
domains and diverse sets of material properties. This strategy
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provides a solution to the challenge of ML modeling in material
domains with scarce data. For instance, even though low-
dimensional materials have been extensively studied for various
properties in diverse devices, the scarcity of relevant data, such
as the well-known 2D materials database computational 2D
materials database (C2DB) containing only 4k entries, hinders
deep learning tasks. Frey et al. [44] aimed to overcome this
limitation during the design of point defects in 2D materials. To
obtain an adequate pool of 2D candidates, they trained MEGNet
on a dataset with abundant bulk crystal data. Subsequently, they
transferred this model to a 2D material dataset to predict the
formation energy, Fermi energy, and bandgap of 2D materials.

This approach enabled the identification of the most promising
2D material candidates. Later, they generated nearly ten thou-
sand defect structures in transition metal dichalcogenide
(TMD), h-BN, and over 150 2D wide-bandgap materials for the
subsequent construction of defect models.
Moreover, Chen and Ong [131] further developed a transfer

learning framework called AtomSets based on MEGNet.
Although MEGNet was only pre-trained on 130k samples with
formation energies from the MP, the testing results demon-
strated that the transfer learning strategy performed well in
predicting other material properties such as bulk modulus,
bandgap, and metallic attributes. This not only proves the

Figure 4 (a) Schematic of active learning. (b) Prediction accuracy changes during optimization for Eform from the exploration and random selection
techniques with the metric of R-squared score. Reprinted with permission from Ref. [58]. Copyright 2022, Wiley-VCH GmbH. (c) Schematic of gradual
expansion of reliable prediction domain of DNN based on the addition of data generated from the hyper-heuristic genetic algorithm and active transfer
learning. Reprinted with permission from Ref. [125]. Copyright 2021, the Author(s). (d) Adaptive design paradigm to iteratively learn a surrogate model and
use uncertainties to trade-off exploitation and exploration of the search space of unexplored materials to select the next best experiment or calculation.
Reprinted with permission from Ref. [124]. Copyright 2019, the Author(s). (e) Domain-specific transfer learning workflow and the out-of-sample true positive
rate for perovskites for various tested models. TL indicates transfer learning. Reprinted with permission from Ref. [117]. Copyright 2022, the Author(s).
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effectiveness of the transfer learning strategy but also affirms
that some different material properties stem from the unified
fundamental principles of physical and chemical laws.

ML BASED MODELS AND TOOLKITS

Shallow learning models
Shallow learning models refer to relatively simple ML models
with shallow frames and learning capabilities. These models are
typically based on traditional statistical learning methods.
Although they may struggle with overly complex problems, due
to their lower computational complexity and friendliness with
small datasets, they remain highly effective in many practical
applications [132,133]. Popular shallow models include decision
tree [78] and support vector machine (SVM) [134,135]. Decision
tree predicts the target value by learning simple decision rules
inferred from data features. Each internal node in the tree
represents a feature decision, and based on the decision results,
samples are assigned to different child nodes. Leaf nodes
represent the final classification label or regression value.
Decision tree is easy to understand and interpret, and the tree
structure can be visualized. However, it can be unstable, as small
changes in the data may lead to the generation of entirely
different trees. Overfitting issues may arise if a decision tree
creates too many trees during training, necessitating tree prun-
ing and limiting the maximum depth of the tree. SVM works by
mapping data to a high-dimensional feature space and finding
an optimal hyperplane in this space to maximally separate
samples of different classes. For problems that are not linearly
separable, SVM can use a Kernel Function to map data to a high-
dimensional feature space. Unlike SVM applied to classification
tasks, the goal of support vector regression (SVR) is to fit the
data as closely as possible within a tolerance, making the
distance between samples and the hyperplane as small as pos-
sible.
SVM and SVR have consistently been popular shallow models

in materials science. For instance, Shen et al. [88] constructed an
SVR model to predict the bandgap of 2D organic–inorganic
halide perovskites materials. The model was used for high-
throughput screening and successfully identified 18 candidates
with appropriate bandgaps, environmental friendliness, and
stability from a vast chemical space containing 1017k virtual
samples. Kumar et al. [91] built decision tree and SVM to
determining whether transition metal chalcogenides and oxides
are semi-metals (zero bandgap) or semiconductors (non-zero
bandgap). Yang et al. [86] constructed an SVM classifier to
screen out 3098 perovskites from 6529 virtual samples. They also
used an SVR model for predicting bandgaps, ultimately selecting
60 oxide double perovskites with bandgap between 1.00 and
1.60 eV. Chen et al. [64] developed an SVR model to predict the
energy above the convex hull (Ehull) of ABO3-type compounds,
enabling the assessment of material stability.
For other shallow models, Wang et al. [39] built a Gaussian

regression process (GRP) model to predict bandgaps and band
edge positions, revealing layer-dependent electronic properties
in heterostructures of transition metal chalcogenides. Maddah
et al. [136] constructed a decision tree to determine the stability
of Ti-based perovskites and investigated the influential factors.

Ensemble learning models
We can obtain a more powerful and robust ensemble model

[137,138] by combining shallow models through certain strate-
gies. These strategies typically involve weighting the predictions
of multiple shallow models to derive the final prediction.
Common ensemble models mainly include three types: bagging,
boosting, and stacking [139]. In the bagging method, multiple
sub-training sets are generated by randomly sampling with
replacement from the original training set. Then, a basic model
is independently trained based on each sub-training set. The
final prediction of the ensemble model is obtained by averaging
the predictions of these basic models. For example, random
forest (RF) [140,141] predicts by averaging the predictions of
multiple decision trees. It has been used in some material pre-
diction works [136,142]. Boosting involves sequentially training
a series of basic models, each attempting to correct the output of
the previous model. The predictions of multiple basic models are
then combined through weighted voting or weighted averaging.
Common boosting algorithms include AdaBoost tree (AdaBT)
[143], gradient boosting tree (GBT) [144], XGBoost tree (XGBT)
[145], LightGBM (LGBM) [146]. The core idea of stacking is to
independently train a series of models of different types and then
integrate the output results of each model using a meta-model to
form the output of the ensemble model. For example, using
logistic regression and naive Bayes as basic models and a
decision tree as the meta-model creates a stacking ensemble
model.
Shallow models and ensemble models heavily rely on manu-

ally crafted material descriptors. The ability of descriptors to
accurately capture the underlying relationships between mate-
rials and the properties to be predicted directly determines the
model’s performance. Crystal descriptors include elemental
descriptors (atomic radius, electronegativity, electron affinity,
electron count, etc.), local structure descriptors (average bond
length, bond angle, octahedral factors Of etc.) [63,87,92,147],
crystal global structure descriptors (crystal density, packing
fraction, crystal complexity, symmetry, etc.), as well as band
structure descriptors [148], electron density descriptors. There
are also many structure descriptors that satisfy translational and
rotational invariance, including but not limited to Coulomb
matrix, atom-centered symmetry functions (ACSF), and smooth
overlap of atomic positions (SOAP) [149], etc. [60,62,150,151].
However, these manually constructed descriptors have sig-
nificant uncertainty, meaning it is not known a priori whether
these descriptors are effective before model training. It is also
challenging to ascertain whether these descriptors possess
uniqueness. Therefore, relying on expert knowledge to find
effective descriptors for materials may be challenging.
In materials science, ensemble models are widely recognized

and used due to their higher accuracy and interpretability
compared with shallow models, and less dependency on data
size compared with deep learning models. This has made some
ensemble models such as RF, GBT, XGBoost, LGBM, widely
accepted and utilized [32,33,37,38,44,58,63,65,77,84,88–
90,92,136,147,152–155]. They find broad applications in pre-
dicting material properties based on small datasets obtained
from high-throughput computations, including assessing crystal
stability (predicting Ef or Ehull) [32,58,63,64,147,153], exploring
the optoelectronic properties of crystals (predicting bandgaps)
[33,58,63,77,84–86,88–92], and conducting high-throughput
virtual screening of materials to accelerate the discovery or
design of new materials. Specific examples will be elaborated in
subsequent chapters.
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Deep learning models
Deep learning models primarily refer to neural networks based
on deep learning [3,156]. Neural networks are a type of ML
models that mimics the structure and functioning of the human
brain’s neural system. They consist of multiple artificial neurons
connected by weighted connections, and information is trans-
mitted and processed through activation functions. Neural net-
work models typically consist of an input layer, multiple hidden
layers, and an output layer (Fig. 5a). The input layer receives raw
data as the model’s input, hidden layers process and extract
features from the input, and the output layer generates the final
prediction. While both the input and output layers have only
one layer each, the hidden layers can have many layers, and each
hidden layer can have many nodes (neurons). All nodes in each
layer can communicate information with nodes in adjacent
layers. The non-linear features of neural networks enhance the
model’s complexity, allowing it to handle more information and
perform more challenging prediction tasks than shallow and
ensemble models [157].
Compared with shallow models and ensemble models, neural

networks not only have the ability to learn more complex
knowledge but also come with additional advantages. Firstly,
they are well-suited for transfer learning [158]. The training
process of neural networks involves finding an appropriate
network architecture and node weights. By retaining the fra-
mework and some weights, the model can be transferred to a
target domain for retraining, further adjusting model parameters
without the need to train a neural network model from scratch.
Secondly, the training of neural networks involves a large
number of matrix multiplications and convolution operations,
which can be efficiently executed on graphic process units
(GPUs) through parallel computing [159]. This capability facil-
itates the processing of large-scale data and the construction of
large models, as exemplified by the massive 175 billion para-
meters in large models like ChatGPT (GPT-3.5) [1].
However, neural networks also have some drawbacks. Firstly,

they exhibit low interpretability (black-box model) [160]. Due to
the presence of hidden layers and numerous nodes, neural
networks transform inputs into a high-dimensional feature space
for learning relationships between features. This abstract
mechanism is challenging to interpret and understand. Secondly,
neural networks have a dependency on data size [3,68,129].
Compared with traditional ML methods, neural networks have
parameters that are orders of magnitude higher. As shown in
Fig. 5b, the performance of neural networks surpasses that of
shallow models and ensemble models only when the data size
reaches a certain level [133,161]. For example, for GNN, a data
size on the order of 103 to 104 is necessary for the model to
achieve sufficient accuracy [68]. As depicted in Fig. 5c, an
increase in the number of training set samples significantly
reduces the model’s error. However, an excess of data size and
increased model complexity lead to longer training times and
greater computational requirements for neural networks. Omee
et al. [162] found that due to the workload of model training,
some GNN models suffer from undertraining. They demon-
strated that 500 epochs of training are required to reach a point
where the model no longer improves, yet some GNN models
were trained for only 200 epochs. Finally, neural networks are
sensitive to hyperparameters [163]. Hyperparameters are para-
meters set before training begins, such as learning rate, batch
size, regularization parameters, the choice of optimizer and

activation function, the number of layers in the network, and the
number of neurons in each layer. Any change in these para-
meters may significantly impact the final results of the model.
For example, the number of layers and nodes in hidden layers
has a non-linear relationship with model performance. Unfor-
tunately, due to workload constraints, it is not feasible to per-
form an exhaustive search for optimal hyperparameters.
We primarily divided the popular neural networks applied in

computational materials into two parts: supervised learning
neural networks for property prediction and unsupervised
learning neural networks for material generation. Further clas-
sified based on material representation methods, property pre-
diction models can be categorized into models based on crystal
structure graphs and models based on chemical compositions.
Generative models can be categorized into chemical composi-
tions generation models and crystal structures generation
models. In the last five years, material representation methods
and the architecture of neural network models have been con-
tinuously improved, leading to enhanced model performance.
We will introduce the core ideas of these models chronologically
and compare them to demonstrate the development process of
these models.

Neural networks based on crystal graph
GNNs are popular methods in material science because provide
a more automated, standardized, and accurate representation for
crystals, compared with the feature engineering in shallow or
ensemble models. In GNNs, a graph is represented as a collec-
tion of nodes and edges, where nodes represent entities, and
edges represent relationships between nodes. In a graph struc-
ture, each node is defined by its own features and the features of
the nodes connected to it. The core idea of GNN is to update the
representation of nodes by iteratively aggregating information
from the nodes and their neighbors, capturing information
within the graph [164]. This definition of graphs is highly
applicable to describing crystal structures [61,165–167]. In per-
iodic crystals, the crystal is composed of regularly arranged
atoms, and interactions between atoms through atomic bonds.
The interactions between atoms significantly influence the
structure and properties of the crystal. The representation of an
atom depends on the types of coordinating atoms, and coordi-
nating with different atoms significantly alters the meaning of an
atom in the crystal. Therefore, we can analogize crystals to
graphs in GNNs, where atoms are nodes, and atomic bonds
(interactions between atoms and their coordinating atoms) are
edges. The collection of nodes and edges characterizes the entire
structure of the crystal. Based on this idea, as shown in Table 1,
GNNs have been proven to effectively learn the structures of
molecules and crystals and accomplish the prediction of material
properties [57,107,117,129,130,162,168–172].
Xie and Grossman [170] first proposed the crystal graph

convolutional neural network (CGCNN) for crystal structure
representation and material property prediction. As shown in
Fig. 6a, the core of CGCNN includes graph convolutional layers
and pooling layers [175]. The convolutional layer iteratively
updates the representation of atoms by performing convolution
operations on atoms and their neighbors. This process extracts
information about the local structure in which an atom is
located and utilizes a non-linear graph convolution function for
bonding. During the model training, the weights of the con-
volutional kernel are updated to distinguish the strength of
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bonding between the central atom and its neighbors. After
convolution, the pooling layer performs normalized summation
to aggregate atomic information, generating the overall feature
vector for the crystal.
Although CGCNN provides a highly flexible framework for

representing crystal structures and demonstrates excellent per-
formance in predicting various material properties, there is still
room for improvement. For instance, the pooling method used
by CGCNN, known as normalized summation, while simple and
computationally efficient, may lose some important feature
information because all atomic information is assigned the same

weight. Building on the core idea similar to CGCNN, several
improved crystal graph network models have been proposed.
Chen et al. [130] found that CGCNN does not consider the

influence of global states (such as temperature) on the system.
They introduced MEGNet, which takes temperature, pressure,
entropy, and other state variables into account as global states.
As shown in Fig. 6b, during the training, the bond attributes,
atom attributes, and state attributes of crystals are successively
updated through convolution operations. In the MEGNet
architecture, a single block captures interactions between each
atom and its local environment. By stacking more graph

Figure 5 (a) Neural network architecture. (b) Comparison of data dependency between neural networks and non-neural networks. After training with a
larger data size, the performance of neural networks surpasses that of non-neural networks. (c) Increasing data size significantly reduces the error of neural
networks, compared with that of Random Forest. Reprinted with permission from Ref. [129]. Copyright 2020, the Author(s).

Table 1 Neural networks based on crystal graph (GNNs) with the authors, year, training data, and MAE of predicting formation energy

GNN models Author Year Training data MAE (eV/atom)

CGCNN [170] Xie and Grossman 2018 MP 28k 0.039

MEGNet [130] Chen et al. 2019 MP 60k 0.028

OGCNN [173] Karamad et al. 2020 MP 60k 0.030

iCGCNN [174] Park and Wolverton 2020 OQMD 180k 0.031

GATGNN [172] Louis et al. 2020 MP 60k 0.048

ALIGNN [168] Choudhary and DeCost 2021 MP 60k 0.022

DeeperGATGNN [162] Omee et al. 2022 MP 36k × 80% 0.0296
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network modules, atoms and bonds can capture longer-range
interactions. This clearly addresses the limitation in CGCNN,
which only considers neighboring atoms within a fixed 6 Å
range. This is particularly meaningful for predicting properties
related to short and long-range interactions, such as zero-point
vibrational energy (ZPVE) and electronic spatial extent. Based
on MEGNet, Chen and Ong [131,176] further developed a
transfer learning framework called AtomSets and an interatomic
potential (IAP) model named M3GNet.
Karamad et al. [173] found that CGCNN did not account for

features involving orbital-orbital interactions. Consequently,
they introduced the orbital graph convolutional neural network
(OGCNN). As illustrated in Fig. 6c, in addition to elemental
features, the orbital-orbital interactions between atoms and their
neighbors are represented as an orbital field matrix (OFM), with
weights assigned based on the area of the Voronoi polyhedra for
coordinating atoms. Furthermore, the inclusion of an encoder-
decoder network and a convolutional network in OGCNN
allows it to learn crucial features from basic atoms (elemental
features), orbital-orbital interactions, and topological features.
Park and Wolverton [174] proposed improved crystal graph

convolutional neural network (iCGCNN) by addressing three
shortcomings of CGCNN. Firstly, they found that CGCNN
rigidly considers the 12 nearest neighboring atoms around each
atom, learning the strength of atomic bonds through updates to
convolutional kernel weights during model training. This
representation is not always accurate. Therefore, as shown in
Fig. 6d, iCGCNN directly specifies the strength of interactions

between the central atom and neighbors by using the solid angle,
area, and volume of Voronoi polyhedra as edges for graph
network nodes. Secondly, iCGCNN also considers three-body
interactions that CGCNN overlooks. Lastly, the edge vectors
representing atomic bonds in CGCNN remain unchanged dur-
ing the training process. Therefore, iCGCNN updates atomic
bond vectors by designing a new convolution function.
Louis et al. [172] introduced graph-attention graph neural

network (GATGNN). This model incorporates an attention
mechanism, originating from neural networks in NLP, used to
learn the contributions of different context vector components
[177]. As shown in Fig. 6e, GATGNN uses the attention graph
attention layer (AGAT) to capture the attributes of the local
atomic environment and employs a global attention layer to
replace CGCNN’s inaccurate normalized summation pooling
aggregation strategy. The global attention layer performs
weighted aggregation on all these atomic environment vectors to
create a global representation of the entire crystal structure. This
strategy considers the weights of different atomic information
relative to global information, allowing the model to better
capture the fact that different atoms contribute differently to
global material properties in a crystal. GATGNN outperforms
CGCNN and MEGNet in predicting bandgap, shear modulus,
and bulk modulus.
Choudhary and DeCost [168] proposed atomistic line graph

neural network (ALIGNN) to consider local structural features,
as the electronic characteristics such as bandgaps are sensitive to
the changes in local structural features. The specific idea, as

Figure 6 Neural networks based on crystal graph. (a) Illustration of CGCNN. Reprinted with permission from Ref. [170]. Copyright 2018, American
Physical Society. (b) Overview of an MEGNet module. The initial graph is represented by the set of atomic attributes v, bond attributes e and global state
attributes u. The bond, atomic, and global state attributes are updated in turn. Reprinted with permission from Ref. [130]. Copyright 2019, American
Chemical Society. (c) OFM representation for the FeTi alloy. Blue and red atoms are Fe and Ti, respectively. The inset shows the Voronoi polyhedron for the
center Fe atom forming a truncated octahedron. The 1D binary vectors for the Fe and Ti atoms are shown as well. Reprinted with permission from Ref. [173].
Copyright 2020, American Physical Society. (d) Illustration of iCGCNN crystal graph. The crystal graph shown on the far right represents the local
environment of atom A. Multiple edges connect A to neighboring nodes to show the number of Voronoi neighbors. Reprinted with permission from Ref.
[174]. Copyright 2020, American Physical Society. (e) Architecture of our global attention graph CNN model GATGNN. Reprinted with permission from Ref.
[172]. Copyright 2020, Royal Society of Chemistry. (f) Schematic showing undirected crystal graph representation and the corresponding line graph
construction for a SiO4 polyhedron. The ALIGNN convolution layer alternates between message passing on the bond graph (left) and its line graph (or bond
adjacency graph, right). Reprinted with permission from Ref. [168]. Copyright 2021, Springer Nature.
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depicted in Fig. 6f, involves deriving a line graph L(g) from a
graph g, which describes the connectivity of edges in g. In the
original graph g, nodes correspond to atoms, and edges corre-
spond to bonds, while in the atomic line graph L(g), nodes
correspond to inter-atomic bonds, and edges correspond to
bond angles. Employing an edge-gated graph convolution
strategy, the model alternates between graph convolutions on
these two graphs, propagating information about bond angles to
atomic representations through the representation of intera-
tomic bonds and vice versa. Since the bond distances and bond
angles in the line graph capture finer details of the local structure
in a crystal, further characterization of the local structure
enhances the model’s performance.
The aforementioned GNNs focus on improving model per-

formance through more accurate representations of material
graphs. However, Omee et al. [162] found that several existing
GNN models have fewer than nine convolutional layers. They
discovered that merely increasing the number of layers in GNN
models can better capture the underlying relationships between
structure and properties, thereby further enhancing model per-
formance. They designed DeeperGATGNN by increasing the
number of convolutional layers from 5 to 15 based on
GATGNN. The predictive performance on crystal formation
energy significantly improved compared with the original
GATGNN model.

Neural networks based on chemical compositions
While GNN models based on crystal structures may have
advantages in predictive accuracy, they also exhibit some
drawbacks. In many cases, material property datasets lack
appropriate structural information. For instance, datasets like
the experimental bandgap data collected by Zhuo et al. [178]
may not provide structural information that GNN models can
use. Furthermore, GNN models are sensitive to changes in
crystal structures, making them reliant on relaxed crystal
structures. These prerequisites somewhat restrict the applic-
ability of GNN models. This limitation is particularly evident in
the discovery of new materials, where it is impossible to have a
priori knowledge of the specific structural information for
unexplored compounds. As a result, some neural network
models have been proposed that are not based on crystal
structures but instead rely on chemical compositions (Table 2).
Constructing models solely based on elemental composition
allows for faster exploration of unknown material spaces, facil-
itating the discovery of valuable candidates.
Jha et al. [179] introduced ElemNet (Fig. 7a). It takes only the

chemical composition as input and employs a deep neural net-
work with 17 hidden layers to automatically capture the physical
and chemical interactions and similarities between different
elements, thereby predicting material properties in a straight-
forward manner. The model was trained on 275k compounds
from OQMD to predict the formation energy of materials. The
results indicate that this model is at least 30% more accurate
(MAE = 0.055 eV/atom) than previous shallow models.
Although the predictive accuracy is not as high as the later

GNN models mentioned, it accomplishes the prediction task
without utilizing any domain knowledge about material stability,
relying solely on the information-capturing capability of deep
learning models. This has opened new directions for material
representation and prediction, leading to the emergence of many
deep learning models constructed solely based on elemental

composition.
Similar to ElemNet, atom table convolutional neural networks

(ATCNN) proposed by Zeng et al. [180] automatically mines
information about elements in the elemental composition based
on deep learning. As shown in Fig. 7b, in the framework of
ATCNN, compounds are treated as 10 × 10-pixel images
referred to as an atom table (AT). Each pixel in the AT repre-
sents an element, and its value is the proportion of that element
in the compound. Unlike ElemNet, ATCNN performs feature
extraction of elements through convolution operations rather
than an extensive number of hidden layers in neural networks.
In ElemNet and ATCNN, the relationships between elements

in the chemical composition, as well as the importance of dif-
ferent elements to the compound, are not explicitly considered.
A notable drawback of this approach is that the proportion of
different elements in the dataset is approximately equal to their
abundance, resulting in the importance of elements to the
compound being determined by their stoichiometry. However,
this does not reflect the real-world scenario accurately. For
instance, dopants in materials may have a critical role in con-
trolling the properties of the material, even though they con-
stitute a very small proportion. ElemNet and ATCNN cannot
capture the importance of dopant elements with low propor-
tions. To address this limitation, Goodall and Lee [129] intro-
duced the representation learning from stoichiometry (Roost).
As shown in Fig. 7c, they reframe the chemical formula of a
material as a dense, weighted graph of its elements and then
directly learn from it using a message-passing neural network.
The advantage of this approach is that, with an increase in data
size, the model’s overall learning ability improves across differ-
ent samples with diverse chemical formulas. Secondly, the model
employs a weighted soft attention mechanism to update the
representations of element nodes in the graph. This process
allows the model to learn features of each constituent element,
capturing some prior knowledge about the correlations between
elements.
Wang et al. [181] made improvements upon the Roost. They

introduced the compositionally restricted attention-based net-
work (CrabNet) (Fig. 7d). Like Roost, CrabNet employs the
mat2vec method to represent a material’s chemical formula as a
set of element vectors. However, CrabNet differs in that it
introduces a self-attention mechanism based on the transformer
architecture [177] in material performance prediction tasks. It
treats the chemical composition as a system, elements as items
within that system, dynamically learns and updates the repre-
sentation of individual elements based on their chemical envir-
onment, and shares information between elements. This
representation allows CrabNet to learn interactions between
elements within compounds and directly predict the contribu-
tion of each element’s vector to property predictions. Fig. 7e
illustrates the average contributions of each element to the bulk
modulus predicted by the CrabNet model trained on AFLOW
volume modulus data. CrabNet predicts a small contribution of
lithium to the overall bulk modulus, while tungsten has a sig-
nificant contribution. This suggests that visualization results
based on attention mechanisms can display correlations between
elements or relationships between elements and target proper-
ties.

Neural networks based on generative methods
Generative models are a type of deep learning model that
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creatively generates new samples similar to input samples by
unsupervised learning of the latent distribution and features of
the samples [182]. In recent years, well-known generative
models include the stable diffusion model applied to image
generation [183] and ChatGPT used for text generation [1].
Generative models for generating organic molecular structures
or protein structures have found widespread applications in life
sciences, exemplified by AlphaFold [8]. In materials science,
generative models are employed to create crystal structures or
chemical compositions [48,49,184]. When considering condi-
tional constraints, the generated materials can possess specified
properties, aiming at the inverse design of materials [185].
Compared with traditional methods such as element substitu-
tion or structure search, data-driven generative models sig-
nificantly enhance the efficiency of exploring new materials.
Based on different model architectures, generative models

applied in materials science can be broadly classified into two
main categories: probabilistic VAE models (Fig. 8a) and adver-
sarial GAN models (Fig. 8b).

VAE consists of an encoder and a decoder. The encoder
encodes samples into a latent space, from which samples are
then sampled and decoded into new samples. The latent space is
a multidimensional continuous vector space where each point or
vector corresponds to a state, or feature of the data automatically
extracted during the model’s learning process. By manipulating
vectors in the latent space, we can influence the attributes of the
generated samples. Typically, the sum of the reconstruction
error and the Kullback-Leibler (KL) divergence is used as the
loss function for VAE. They characterize the difference between
the data generated by the decoder and the original data, as well
as the difference between the distribution of the latent variables
generated by the encoder and the prior distribution (usually
assumed to be a standard normal distribution) [186].
GAN consists of a generator and a discriminator. The gen-

erator is a neural network whose goal is to learn a mapping that
can transform noise vectors in the latent space into new samples
similar to the training data distribution. The discriminator’s role
is to judge whether a sample is a real sample from the training

Table 2 Neural networks based on chemical compositions with the authors, year, training data, and MAE of predicting formation energy

Composition-based models Author Year Training data MAE (eV/atom)

ElemNet [179] Jha et al. 2018 OQMD 275k 0.055

ATCNN [180] Zeng et al. 2019 OQMD 5886 × 80% 0.078

Roost [129] Goodall and Lee 2020 OQMD 256k × 90% 0.024

CrabNet [181] Wang et al. 2021 OQMD 341k × 70% 0.031

Figure 7 (a) ElemNet based predictive approach directly learns to predict properties of materials. Reprinted with permission from Ref. [179]. Copyright
2018, the Author(s). (b) Schematic diagram of the ATCNN model for superconducting critical temperature (Tc) prediction. Reprinted with permission from
Ref. [180]. Copyright 2019, the Author(s). (c) An example stoichiometry graph for La2CuO4. And a graphical representation of the the update function for the
La representation. Reprinted with permission from Ref. [129]. Copyright 2020, the Author(s). (d) Schematic illustration of the element-derived matrix (EDM)
representation for Al2O3. And the schematic of the CrabNet architecture including the input EDM, the self-attention layers (repeated N times), the updated
and final element representations (EDM and EDM′′), the residual network, and the final model output. Reprinted with permission from Ref. [181]. Copyright
2021, the Author(s). (e) Average contribution of all elements to bulk modulus predictions. Reprinted with permission from Ref. [181]. Copyright 2021, the
Author(s).
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set or a new sample generated by the generator. In the training
process of GAN models, the generator and discriminator con-
tinuously adjust their parameters to outperform each other. This
parameter optimization is achieved by minimizing the loss
functions of the generator and discriminator, which respectively
characterize the ability of the generator and discriminator to
generate realistic new samples and distinguish between real and
fake samples [187].
Generative models can be used to generate chemical compo-

sitions or crystal structures (Table 3). The former is more flex-
ible and efficient compared with the latter, enabling rapid
exploration of feasible compositional spaces. However, one
compound may correspond to multiple phases, and after gen-
erating chemical formulas, crystal structure exploration methods
are still needed to find reasonable crystal structures. For
instance, methods like USPEX [188] or CALYPSO [189] can be
used to determine the crystal structure for a given set of ele-
ments and their stoichiometry. Furthermore, crystal structure
generative models can directly generate the crystal structures,
including lattice constants, space groups, atomic coordinates.
However, their construction is typically more challenging
because it requires a reversible representation of 3D crystals.
This means establishing a one-to-one mapping between the
crystal entity and the material representation, enabling accurate
reconstruction of cell parameters and atomic positions.
Noh et al. [110] first proposed the inverse design framework

for crystals called iMatGen, which was used to predict new
crystal structures of vanadium oxides. To generate crystal
structures with continuous representations, they decomposed
the crystal structure into cell images (lattice constants and
angles) and basis images (atomic positions). In the crystal
reconstruction process, lattice parameters and atomic positions
were reconstructed separately from these two images. As shown
in Fig. 9a, iMatGen consists of two parts: an AE image com-

pressor used to reduce the size of the two aforementioned
images, and a VAE generator used to encode the elemental
information from the first step. Additionally, to ensure the
model could reconstruct stable crystal structures, the VAE
training process included a classification task to categorize stable
and unstable crystals (Ef > 0.5 eV/atom). The specific method for
generating new materials involved sampling the material vector
(z) from the material latent space, and then applying the two
decoders successively to obtain the two types of material images
in grid space. These grid space images were then inversely
transformed into real space atomic positions and unit para-
meters, completing the crystal construction.
On the other hand, there have been attempts to efficiently

sample the design space of inorganic materials by generating
valuable chemical compositions. Dan et al. [108] proposed
MatGAN based on a GAN architecture. Each material is
represented by an 85 (number of elemental types) × 8 (max-
imum number of atoms) one-hot encoded matrix. As shown in
Fig. 9b, in MatGAN, both the discriminator (D) and the gen-
erator (G) are deep neural networks containing convolutional
and deconvolutional layers. After constructing MatGAN, Dan et
al. [108] conducted a comprehensive evaluation of the model-
generated new samples, including charge balance, thermo-
dynamic stability, uniqueness, and novelty. Additionally, Pathak
et al. [190] also proposed a model for generating material che-
mical compositions, but with a different approach based on the
VAE architecture. As shown in Fig. 9c, deep learning based
inorganic material generator (DING) consists of two parts: a
generator network based on conditional VAE (CVAE) and an
attribute prediction network. CVAE provides a continuous
latent space along with control over attributes. The attributes of
the material to be generated (formation energy, volume of each
atom, and energy of each atom) are represented as a conditional
vector, which is directly passed as input to CVAE. Thus, it can

Figure 8 Frame of generative models (a) VAE and (b) GAN.
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selectively sample the latent space during the decoding process
as needed to generate samples with the expected attributes. After
generating new samples, three predictors trained on the OQMD
database are used to predict the three attributes of the generated
samples, thereby evaluating and filtering the candidate objects.
After Noh et al. [110] introduced iMatGen, more exploration

into crystal generation has been undertaken. As shown in
Fig. 9d, Court et al. [109] proposed the crystal generation model
called conditional deep-feature-consistent VAE (Cond-DFC-
VAE), characterized by utilizing the U-net for crystal structure
construction. The crystal structure is initially represented as a
voxelized 256-dimensional electron-density map. Similar to the
strategy in the iMatGen model, they further enhance this latent
space by training a binary classification formation energy model
on the latent vector of input crystals to distinguish stable
structures from unstable ones. Sampling the latent space based
on formation energy generates new electron density maps. The
density map is then reconstructed into atomic positions through
a combination of UNet semantic segmentation network and
morphological transformations. Visual evaluations of the latent
space show it to be sufficiently smooth (continuous latent space),
capable of generating realistically novel (similar but not identical
to training samples) new samples.
Zhao et al. [103] from the same research group as the devel-

opers of MatGAN, later proposed the CubicGAN for generating
cubic crystal structures. As shown in Fig. 9e, a crystal is repre-
sented by its lattice parameters, atomic coordinates, element
features (3 elements × 23 element features), and space group.
The generator takes randomly chosen space group, element
combinations, and random noise Z as input, and then generates
a material structure with the specified space group and element
composition. The discriminator’s input includes non-equivalent
atomic coordinates, element attributes, cell parameters, and
space group. Information extraction and implicit relationships
between these four components are carried out through con-

volutional operations to determine the authenticity of the crys-
tal.
Based on the aforementioned exploration, some have started

considering conditional constraints for crystal structure gen-
eration, enabling inverse design of crystals. For instance, Ren
et al. [50] proposed an inverse design framework for inorganic
crystal structures based on the VAE model called Fourier-
transformed crystal properties (FTCP). As shown in Fig. 9f, it
includes a general crystallographic representation (varied in
composition and structure) and a VAE model. The reversible
material representation consists of real-space CIF-like features
(element matrix, lattice matrix, atomic coordinate matrix,
atomic occupancy matrix, and element property matrix) com-
bined with reciprocal-space Fourier-transformed features. The
VAE’s latent space is connected to a target learning branch that
maps points in the latent space to certain properties. Hence, the
loss function of the VAE model includes an additional attribute
mapping loss, a strategy that differs from CVAE by introducing
target values into the VAE. The inverse design of new crystals is
achieved by sampling points in the latent space of structural
attributes outside existing crystals but within a local perturba-
tion (Lp) strategy that satisfies user-defined design objectives.
Several of the earlier-generation generative models did not

satisfy crystal invariance in the encoding and decoding of crystal
structures. In other words, they lacked translational, rotational,
permutation, and supercell invariance. Xie et al. [101], the
creators of the CGCNN, proposed a crystal structure generative
model named crystal diffusion variational autoencoder
(CDVAE) that meets the requirements of crystal invariance.
CDVAE is based on the diffusion mechanism and the VAE
model. Property constraints are implemented based on the dif-
fusion mechanism: adding noise (random values following a
normal distribution) to a stable structure and denoising it might
increase stability. They represent a crystal asM = (A, X, L)∈AN ×
RN × 3 × R3 × 3 (A: atomic types, X: atomic coordinates, L: periodic

Table 3 Generative models with the authors, model frame, year, generative target, material representation, and training data

Generative models Author Model frame Year Generative
target Material representation Training

data

iMatGen
[110] Noh et al. VAE 2019 VxOy crystal structures

Lattice
atomic coordinates

MP 10k VxOy

crystal

MatGAN [108] Dan et al. GAN 2020 Chemical composition One-hot matrix of
85 elements × 8 atoms QMD 291k

DING [190] Pathak et al. VAE 2020 Chemical composition One-hot matrix of
89 elements × 11 atoms

OQMD
272k × 72%

Cond-DFC-VAE [109,191] Callum J.
Court VAE 2020 Crystal structures 256-dimensional

electron-density map MP 78k

CubicGAN [103] Zhao et al. GAN 2021 Ternary cubic crystal
structure

Lattice
Atomic coordinate

3 elements × 23 features
vector

375k
Ternary

cubic crystal

FTCP [50] Ren et al. VAE 2022 Crystal structures

Real-space CIF-like fea-
tures

Reciprocal-space Four-
ier-transformed features

MP

CDVAE [101] Xie et al. VAE 2022 Crystal structures Crystal multi-graph
Perov-5

Carbon-24
MP-20
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lattice, N: number of atoms, R: Euclidean space). As shown in
Fig. 9g, CDVAE consists of three neural networks: (1) periodic
GNN encoder: encodes the crystal M into the latent space vector
z (adding noise), (2) property predictor: sampling from the
latent space vector z and predicting the composition c, lattice L,
and the number of atoms N for crystalM, and (3) periodic GNN
decoder: a diffusion model that denoises X′ and A′ conditioned
on z. Crystal generation involves two pathways: (1) sampling z
from the latent space with added noise. The property predictor is
used to predict the three properties of the crystal: composition c,
lattice L, and the number of atoms N. These values are used to
randomly initialize the new crystal structure. (2) Using the
decoder to denoise X′ and A′ conditioned on z to enhance the
stability of the new structure. Through testing, they demon-
strated that the CDVAE model surpasses previous generative
models in both crystal generation capabilities and optimizing
crystal properties.

Toolkits for ML based materials research
Data collection, material representation, model construction is

crucial for ML tasks. These processes heavily rely on various
toolkits.

Data collection
Material databases provide us with convenient access to a vast
amount of material data. Large neural networks are typically
trained based on extensive material databases. Computational
material databases include crystal structure files, related prop-
erties, and computational parameters. Table 4 provides detailed
information about these databases, including their names, data
size, links, and constructed structures. MP [22], OQMD [23],
and JARVIS [193] are popular computational material databases
and are often used as training sets for models. Constructing
models based on the same database allows for the possibility of
cross-model comparisons. Additionally, the experimental data-
base inorganic crystal structure database (ICSD) [202] is widely
used for high-throughput calculations to further generate data-
sets due to its detailed crystal information and convenient file
types.
The recent development of low-dimensional materials has

Figure 9 (a) Proposed hierarchical two-step image-based materials generator. Reprinted with permission from Ref. [110]. Copyright 2019, Elsevier.
(b) MatGAN is composed of a generator, which maps random vectors into generated samples and a discriminator, and tries to differentiate real materials and
generated ones. Reprinted with permission from Ref. [108]. Copyright 2020, the Author(s). (c) In model DING, CVAE model is used for generation of
materials. The encoder networks encode 979-dimensional one-hot feature vector into a vector in the latent space (z). The decoder networks take the property
of the material along with its latent vector and regenerate the material. Reprinted with permission from Ref. [190]. Copyright 2020, Royal Society of
Chemistry. (d) The Cond-DFC-VAE takes electron-density maps (M) with a corresponding property and produces reconstructed maps (M′). Reprinted with
permission from Ref. [109]. Copyright 2020, American Chemical Society. (e) Fworkflow of the CubicGAN framework. Reprinted with permission from Ref.
[103]. Copyright 2021, the Author(s). (f) VAE architecture using the invertible FTCP representation for inverse design. On top of the encoder + decoder
architecture of a normal VAE, the latent space is also connected to a target-learning branch for property mapping, reflecting a property gradient(s) (property-
structured latent space). Reprinted with permission from Ref. [50]. Copyright 2022, Elsevier. (g) Overview of the proposed CDVAE approach. Reprinted with
permission from Ref. [116]. Copyright 2022, the Author(s).

REVIEWS SCIENCE CHINA Materials

1058 April 2024 | Vol. 67 No.4© Science China Press 2024



prompted the construction of related material databases. The
C2DB, constructed by Haastrup et al. [194] and Gjerding et al.
[195] is applied in high-throughput calculations or ML work on
2D materials. However, it is evident that low-dimensional
material databases face the challenge of data scarcity. For
example, C2DB has only around 4k data, and the data size of
C1DB [196] is even less than 1k, significantly smaller than the
million-level data points in 3D databases, making it difficult to
support the training of deep neural networks. The development
of ML research of low-dimensional materials urgently demands
the construction of relevant databases, which is expected to
accelerate with time.
On the other hand, scientific literature indexed in databases

like science citation index (SCI) can provide trustworthy
knowledge and high-quality data. In recent years, an increasing
number of researchers have been constructing material data-
bases by extracting information from literature. Jacobsson et al.
[55] manually reviewed every paper retrieved by searching
“perovskite solar cells” on the Web of Science. This exhaustive
process involved more than 15k papers and the manual extrac-
tion of data from over 42k devices. A more efficient approach
involves the use of unsupervised NLP to automatically mine data

from literature. Court and Cole [203] created a database with
20k records of magnetic and superconducting phase transition
temperatures and their associated compound names. They
achieved this by using the ChemDataExtractor toolkit [204] on a
corpus of 74k scientific articles crawled from publishers such as
Elsevier, Springer, and the Royal Society of Chemistry. More-
over, Pyzer-Knapp et al. [31] designed the IBM DeepSearch
platform based on NLP. It is used to extract unstructured data
from documents, enabling the construction of document-centric
KGs and supporting sophisticated queries and data extraction
for downstream applications.
However, it is essential to note that from published experi-

mental or computational results, we can only extract positive
data. Unsuccessful experiments and computational results con-
taining negative data are unlikely to be published. Using such
data for analysis or building ML models may introduce biases
towards successful cases and may miss valuable knowledge and
experiences from failures.

Features engineering
Feature engineering for materials is a laborious task, besides the
GNNs mentioned earlier that can automatically extract features,

Table 4 Computational material databases with description, data size, link, and institution

Databases Description Data size Link Institution

AFLOW [24] Computational database of materials 3.5m http://aflowlib.org Duke University

Materials Project [22] Computational database of materials 154k https://materialsproject.org U.S. Department of Energy

OQMD [23] Computational database of materials 1m http://oqmd.org Northwestern University

CSD [192]
Database of organic and inorganic
materials searched from previous

journal publications
504k http://crystallography.net University of Cambridge

JARVIS-DFT [193]
A materials property repository

focused on DFT predictions of material
properties

56k https://www.nist.gov/programs-
projects/jarvis-dft

National Institute of Standards
and Technology

C2DB [194,195] Computational 2D materials database 4k https://cmr.fysik.dtu.dk/c2db/
c2db.html Aalborg University

2DMatPedia [21] Computational 2D materials database 6k http://www.2dmatpedia.org National University of Singapore

C1DB [196] Computational database for 1D mate-
rials 820 https://cmr.fysik.dtu.dk/c1db/

c1db.html Technical University of Denmark

NOMAD [197] Novel materials discovery project 12m https://nomad-lab.eu/prod/rae/
gui/search Humboldt-Universität zu Berlin

Materials Cloud A platform for open computational
science 29m https://www.materialscloud.org cole Polytechnique Fédérale de

Lausanne

MOFX-DB [198] Computational adsorption data for
nanoporous materials 168k https://mof.tech.northwestern.edu Northwestern University

CEP [199] Harvard clean energy project 2m http://cleanenergy.harvard.edu Harvard University

OMDB [200]
An electronic structure database for
various organic and organometallic

materials
12.5k https://omdb.mathub.io KTH Royal Institute of Technol-

ogy and Stockholm University

PubChem [201] An open chemistry database for small
molecules 115m https://pubchem.ncbi.nlm.nih.gov National Institutes of Health

(NIH)

QM Quantum chemistry structures and
properties of molecules 134k http://quantum machine.org/da-

tasets Argonne National Laboratory

NREL MatDB Computational materials database for
renewable energy applications 20k https://materials.nrel.gov National Renewable Energy La-

boratory

aNANt A functional 2D materials database 23k http://anant.mrc.iisc.ac.in Indian Institute of Science
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there are tools dedicated to assisting in material feature engi-
neering. The functionalities of these relevant toolkits are out-
lined in Table 5. The Mendeleev package [205] provides an
application programming interface (API) for accessing various
properties of elements in the periodic table. Python materials
genomics (Pymatgen) [206] is a robust open-source Python
library for material analysis. It includes highly flexible classes for
the representation of element, site, molecule, and structure
objects. Matminer [207] is used for data mining of material
properties. It can convert material objects into features such as
average electronegativity or differences in ionic radii. Matminer
also encompasses features for complex material data, such as
band structures and electron density. The DScribe [149,208] is
used to build descriptors for materials ML, including Coulomb
matrices, sine matrices, Ewald matrices, ACSF, SOAP, many-
body tensor representation, and local many-body tensor repre-
sentation. Robocrystallographer [209] can construct semi-local
structure descriptors (connectivity, tilt angle) for crystals. It can
represent them as readable JavaScript object notation (JSON)
and text files. Sure independence screening and sparsifying
operator (SISSO) [210] can automatically extract effective fea-
ture combinations through mathematical operations in an
expanded, vast candidate feature space. Additionally, it serves as
a symbolic regression algorithm, used to fit linear mathematical
formulas between material features and targets.

Model construction
The common underlying tools for model construction are Scikit-

learn [214], PyTorch [215], and TensorFlow [216]. Scikit-learn is
an open-source Python ML library that provides a range of
supervised and unsupervised learning algorithms. It offers a
wealth of ML tools, including classification, regression, cluster-
ing, dimensionality reduction, model selection, and preproces-
sing. Both shallow ML models and ensemble models mentioned
earlier are included in Scikit-learn. It enables tasks such as data
cleaning, model selection, model fitting, model evaluation, and
model optimization. PyTorch is an open-source ML library
primarily developed by Facebook’s AI Research team. It offers a
modular way to build and train deep learning models, sup-
porting various types of neural network architectures. All the
deep learning models mentioned earlier can be constructed and
executed using PyTorch, for tasks like image and video pro-
cessing, NLP. TensorFlow is an open-source library developed
by the Google Brain team, used for building and training ML
and deep learning models. It has overlapping functionalities with
PyTorch. It features a robust visualization tool called Tensor-
Board, which helps users visualize the model training process in
real-time.
The aforementioned three underlying tools are powerful,

providing support for the development of general ML models
and offering developers maximum flexibility. However, this
implies that each research group needs to develop a complete
workflow based on these tools to accomplish specific ML tasks in
materials science. Obviously, on the one hand, this increases the
threshold for researchers not majoring in computer science to
engage in ML work. On the other hand, the lack of standardized

Table 5 Tools for data acquisition or processing, feature engineering, model construction or usage in ML process

Tools Data acquisition or processing Feature engineering Model construction or usage

ChemDataExtractor [204] ●

IBM DeepSearch [31] ●

Matminer [207] ● ●

Pymatgen [206] ● ●

DScribe [149,208] ●

Mendeleev [205] ●

Robocrystallographer [209] ●

SISSO [210] ●

Gplearn [211] ●

MagPie [212] ●

Atom2vec [213] ●

Scikit-learn [214] ● ● ●

Pytorch [215] ●

Tensorflow [216] ●

AFLOW-ML [217] ● ● ●

DeePMD-kit [218] ● ●

JARVIS-tools [193] ● ● ●

JAMIP [219] ● ● ●

ALKEMIE [220] ● ● ●

MatDeepLearn [68] ●

MAGUS [221] ● ●

MAST-ML [222] ● ● ●

MatLearn [223] ●
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procedures results in low user-friendliness and reusability. These
issues have led to a demand for ML workflows applicable to
materials science, prompting the development of relevant tools
for users to conveniently build their own models or use devel-
opers’ semi-finished products. These tools include related soft-
ware, programs, frameworks, and more.
Among the tools listed in Table 5 for model construction or

usage, some are representative. For instance, DeePMD-kit [218]
is an open-source software package for building deep learning
models for molecular dynamics simulations. Its primary appli-
cations lie in materials science and chemistry, where it can be
used to simulate large-scale material systems such as proteins
and solid-state materials. It provides a range of tools to assist
users in building, training, and using deep potential models from
scratch. Fung et al. [68] proposed a workflow and testing plat-
form named MatDeepLearn. It is designed for the rapid,
reproducible evaluation and comparison of GNNs (SchNet,
MPNN, CGCNN, MEGNet, GCN) and other models (SOAP,
SM) in predicting various properties on different datasets (bulk
crystals, alloy surfaces, MOFs, 2D materials, Pt clusters).
AFLOW-ML [217] overcomes the high threshold of ML by
simplifying the ML methods developed by the AFLOW con-
sortium. This framework provides an open RESTful API that
allows direct access to continually updated algorithms, which
can be seamlessly integrated into any workflow to predict elec-
tronic, thermal, and mechanical properties. JAMIP, developed
by Zhao et al. [219], includes high-throughput materials calcu-
lation as its core, along with data generation, management tools,
data storage, ML, and data mining modules. It provides toolkits
for the discovery and design of new materials based on func-
tional materials big data and AI ML algorithms. The ML module
encompasses data cleaning, feature engineering, model con-
struction, and model evaluation for common ML algorithms.
ALKEMIE, developed by Wang et al. [220], achieves data gen-
eration through high-throughput calculations, data manage-
ment, and data mining using ML models. Additionally, it
includes a module for ML of cross-scale molecular dynamics
potentials and a user-friendly interface, enhancing the oper-
ability of workflows.

APPLICATIONS OF ML METHODS IN MATERIALS
DISCOVERY
Optoelectronic semiconductors refer to the materials that can
respond to light and generate electron-hole pairs (charge car-
riers), thereby achieving photoelectric conversion. They are
widely used in energy conversion, information, and electronic
devices. Traditional optoelectronic semiconductors include Si
[224] and GaAs [225], which are used for efficient solar cells and
photodetectors, as well as CdTe used in thin-film solar cells
[226]. New types of optoelectronic semiconductor materials,
such as 2D materials and metal halide materials, have gained
more attention. 2D materials, including graphene [227], black
phosphorus [228], and 2D TMDs [229] represented by MoS2, are
of particular interest. These layered 2D materials can function as
single-layer structures or be stacked together to form van der
Waals (vdW) homogeneous structures or heterostructures [230].
The selectivity, interlayer distance, coupling strength, and
interlayer twist angle of stacked materials provide rich tunability
of the optoelectronic properties of 2D vdW materials. Suitable
bandgaps, outstanding conductivity, and high optical absorption
make them important for applications in photodetectors and

photocatalysis [231]. Metal halide materials, especially the per-
ovskite with the chemical formula ABX3 [232], where A repre-
sents monovalent cations like CH3NH3

+ (MA+), CH(NH2)2+
(FA+) and Cs+; B for divalent metal cations like Pb2+ and Sn2+;
and X for halide ions: I−, Br−, and Cl−, have also attracted sig-
nificant attention. The replaceable components in the chemical
composition of ABX3 provide abundant adjustability to their
optoelectronic properties [232–234]. In addition to ABX3-type
perovskites, other metal halides or chalcogenides containing
octahedral or tetrahedral motifs also exhibit excellent optoelec-
tronic properties [235], such as Cs2AgBiBr6 [236], CuAgSe [237],
BaZrS3 [238], and MnGeO3 [239]. Due to their high light har-
vesting ability, long and balanced carrier diffusion length, high
defect tolerance, high photoluminescence quantum yield, and
readily tunable bandgap, they have broad application prospects
in solar cells [240], light-emitting diodes (LEDs) [241], photo-
detectors [242], lasers [243].
The thermodynamic and kinetic stability, electronic bandgap,

carrier effective mass, optical properties such as optical
absorption and dielectric constant, of optoelectronic semi-
conductor materials are crucial for evaluating the performance
of optoelectronic energy materials. In the past, the study of these
properties was mainly discovered through experimental trial and
error methods. However, experimental methods are often inef-
ficient and difficult to quickly discover new materials or mod-
ulate material properties. DFT methods can theoretically
simulate and predict the above material properties, and have
been widely used in the study of optoelectronic semiconductor
materials, as summarized by Luo et al. [19]. Moreover, by har-
nessing computational simulation methods to gather data and
subsequently leveraging ML techniques, we are now able to
rapidly predict the aforementioned material properties, thereby
achieving the discovery of new materials or the modulation of
their properties. We will discuss in detail the use of ML methods
for the design of optoelectronic semiconductor materials in
subsequent contents. For example, Cai et al. [63] predicted the
formation energy of perovskites using ML to assess their ther-
modynamic stability, and then screened for stable semi-
conductor materials by predicting bandgaps. Based on DFT
methods, further calculations were conducted on the band
structures, excitonic effects, and molecular dynamics simulations
of candidates. Finally, experimental synthesis or literature
retrieval was used to validate the stability and optoelectronic
properties of newly discovered materials. This is the general
process of discovering or modulating optoelectronic semi-
conductor materials by combining DFT, ML, and experi-
mentation. The accuracy of ML models, the number of
candidates, the completeness of screening criteria, and whether
they are experimentally validated are criteria that determine the
excellence of such studies. However, most of the current studies
using DFT + ML for virtual screening of materials only provide
potentially synthesizable new materials and their DFT proper-
ties, without experimental validation, due to the expensive nat-
ure of experimental methods.
Some optoelectronic semiconductor materials that are

designed using various ML techniques and then validated by
experiment synthesis are summarized in Table 6. These mate-
rials include inorganic perovskites, hybrid organic-inorganic
perovskites (HOIPs), metal halides, metal sulfides, and metal
oxides, and used as photocatalytic materials, mid-infrared (IR)
nonlinear optical (NLO) materials, ultraviolet (UV)-light emit-
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ting materials, and so on. This highlights how ML methods can
be applied to various types of optoelectronic semiconductor
materials, and serves different purposes, being used to predict
energies, bandgaps, effective masses, and structural properties.
In detail, Cai et al. [63] utilized gradient boosting regression tree
(GBRT) to predict the formation energy of HOIDPs. Then they
screened the candidates with the chemical space of 25.9k by
formation energy less than −0.2 eV/atom to obtain 17k candi-
dates. They found that three compounds ((CH3NH3)2AgSbI6,
(CH3NH3)2AgBiBr6, and (CH3NH3)2TlBiBr6) have been experi-
mentally synthesized, demonstrating the effectiveness of ML
screening process. Li et al. [244] employed transfer learning and
neural networks to predict the formation energy of 5329 inor-
ganic perovskite oxides, subsequently identifying 1314 thermo-
dynamically stable candidates. Among these, 144 oxides were
reported to be synthesized experimentally, including but not
limited to the semiconductors AgTaO3, RbInO3, and NaOsO3.
There are four studies in Table 6 employed ML to predict the
bandgap of materials. Determining bandgap is often a crucial
step in screening for optoelectronic semiconductors. Both Cai et
al. [63] and Davies et al. [245] utilized GBRT models for the
screening of photovoltaic materials. The other two studies pre-
dicting the bandgap employed neural networks. Consistent with
our previous discussion, ensemble models and neural networks
each have their own advantages. Depending on the sample types
and sample sizes, different models can be adopted. Although
effective mass is more challenging to predict compared with
energy and bandgap, Li et al. [246] used a relatively simple extra
tree model to predict effective mass due to their limited dataset
(only 31 data points). They found Zn2+ with a fully occupied d
orbital as the optimal candidate for enhancing the electronic
structures of Cs2AgBiBr6.
Furthermore, there are more cases of material design and

discovery based on ML methods, and these approaches can be
applied to semiconductor optoelectronic materials research.
From a computational perspective, they provide insights and
guidance into the modulation of chemical composition, crystal
structure, and properties of functional materials. We further
introduce and analyze the specific applications of ML methods
in materials discovery. It includes predicting the stability and

optoelectronic properties of materials, and using generative
models for material inverse design.

Prediction of new stable materials by investigating stability
The stability of materials refers to the ability of a material to
maintain its physical and chemical properties under specific
conditions, representing the most fundamental property that
materials should possess. For instance, in applications such as
batteries, catalysts, electronic devices, the stability of materials
directly influences the performance and lifespan of the devices
[248]. We typically use thermodynamic stability and kinetic
stability to measure whether a crystal is stable. The thermo-
dynamic stability of a crystal can be assessed by the formation
energy (Ef) and convex hull energy (Ehull), while the kinetic
stability can be measured by whether the phonon spectrum has
imaginary frequencies. We focus on ML for material stability
learning, primarily including ML for predicting the thermo-
dynamic stability, kinetic stability, synthesizability of materials,
and the application of ML atomic potentials.

Thermodynamic stability
Formation energy is defined as the difference between the total
energy of the crystal and the total energy of the corresponding
elemental substance [249]. Generally, if Ef > 0 eV/atom for a
crystal, it means that the crystal cannot be formed from its
constituent elements. However, it is important to note that Ef <
0 eV/atom is only a necessary condition for the thermodynamic
stability of a crystal, not a sufficient condition. Based on the
predicted Ef, we can further construct the phase diagram of the
material [179,223] and obtain Ehull of the material.
Ye et al. [250] were among the early pioneers attempting to

predict Ef using neural networks. They used only two descriptors
(electronegativity and ionic radius) to construct a relatively
simple fully connected neural network (FCNN), predicting the
formation energy of C3A2D3O12 garnets and ABO3 perovskites
with MAEs of 7–10 and 20–34 meV/atom, respectively. Because
both garnets and perovskites have fixed structural prototypes, it
is easy to build elemental features for atoms at different sites,
ensuring the uniformity of feature lengths. Consequently, there
is no need for convolution and pooling operations in the neural

Table 6 Optoelectronic semiconductor materials that are designed using ML techniques and then validated by experiment synthesis

Type of material Composition Application ML method The role of ML

Inorganic perovskites [246] Cs2AgBiBr6
Photocatalytic

materials EXT Predicting effective mass

Inorganic perovskite oxides
[244]

AgTaO3

RbInO3

NaOsO3

Multiple applications Transfer learning
DNN-CE Predicting energy

HOIDPs [63]
(CH3NH3)2AgSbI6
(CH3NH3)2AgBiBr6
(CH3NH3)2TlBiBr6

Photovoltaic materials GBRT Predicting energy and bandgap

Mixed-cation HOIPs [154] MAxDMA1−xPbI3
(1−x) = 0.0 to 0.15 Photovoltaic materials Deep learning

XGBoost
Predicting the structural

properties

Ternary metal sulfides [41] LiGaSe2
KAlSe2

Mid-IR NLO materials ATCNN Predicting bandgap

Ternary metal halides [247] K2CuCl3
K2CuBr3

UV-light emitting
materials

Evolutionary algorithm
Neural network Predicting bandgap

Quaternary metal
oxides [245] Li2MnSiO5 Photovoltaic materials GBRT Predicting bandgap
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network, allowing an FCNN to achieve good performance. ML
for predicting Ef can not only operate independently but can also
be combined with structural optimization algorithms (OAs). As
shown in Fig. 10a, Cheng et al. [57] constructed the MEGNet for
predicting Ef based on OQMD and Matbench. This model was
then combined with OAs such as random search (RAS), particle
swarm optimization (PSO), and Bayesian optimization (BO) to
search for crystal structures with the minimum Ef. Comparative
studies indicate that the GN (MatB)-BO model, trained by
combining BO, can predict crystal structures with the best
accuracy and extremely low computational cost.
Currently, state-of-the-art crystal GNN models perform well

in predicting formation energy, with MAE ranging from 0.02 to
0.04 eV/atom after training on large databases [168]. However,
they are dependent on the atomic coordinates of the structure.
This dependence may lead them to bias towards learning and
predicting stable ground state (GS) structures from the training
set, significantly affecting the prediction accuracy of high-energy
structures deviating from their relaxed states. To address this
issue, Pandey et al. [251] balanced the training of GNN models
on a combined dataset of GS and high-energy structures to
accurately predict their total energy. The results show that the

model achieved an overall MAE of 0.04 eV/atom on the com-
bined dataset, which is comparable to models trained solely on
ICSD. Models trained on the combined dataset improved the
prediction accuracy for both ICSD structures and hypothetical
structures, overcoming biases observed when training total
energy models separately on each dataset. Similarly, Gibson et al.
[67] addressed this issue through a data augmentation strategy.
As shown in Fig. 10b, they perturbed the atomic coordinates of
relaxed structures to generate additional training samples that
describe the region around the minimum of the potential energy
surface (PES). These perturbed structures were then mapped to
the energy of the relaxed structures. Compared with models
trained only on relaxed structures, models trained on the aug-
mented dataset comprising both relaxed and perturbed struc-
tures significantly improved the prediction accuracy for
unrelaxed structures.
While Ef is one of the indicators for assessing the thermo-

dynamic stability of materials, as shown in Fig. 10c, even crystals
with Ef < 0 eV/atom may be unstable because there might be
more stable competing phases with lower Ef [252]. Therefore,
Ehull is an assessment indicator for the thermodynamic stability.
As illustrated in Fig. 10d, the convex hull is the lowest energy

Figure 10 (a) Flowchart of GN-OA approach. Reprinted with permission from Ref. [57]. Copyright 2022, the Author(s). (b) The red line denotes a 2D
representation of the continuous PES of materials. The blue line illustrates the effective PES, which describes the energy of a relaxed structure for a given
unrelaxed input structure. The black circle indicates the relaxed structures contained in the dataset, and the blue circles symbolize artificially generated
structures for the data augmentation. Reprinted with permission from Ref. [67]. Copyright 2022, the Author(s). (c) Illustration of the convex hull construction
to obtain the decomposition enthalpy (ΔHd), from the formation enthalpy (ΔHf). Reprinted with permission from Ref. [252]. Copyright 2020, the Author(s).
(d) ΔHd shown against ΔHf, for 85k ground-state entries in MP, indicating effectively no correlation between the two quantities. Reprinted with permission
from Ref. [252]. Copyright 2020, the Author(s). (e) A total of 2.7 million calculations from AFLOW, MP and authors’ group were accumulated and curated,
leaving in the end 2.09 million data points. The histogram depicts the distance to the convex hull of the dataset. Reprinted with permission from Ref. [169].
Copyright 2021, the Author(s).
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line formed by the Ef of all stable compounds (or phases). ΔEhull
refers to the difference between the formation energy of a
compound and the formation energy of its corresponding point
on the convex hull line. If ΔEhull = 0 eV/atom (decomposition
enthalpy ΔHd < 0 eV/atom), then the compound lies on the
convex hull line and is considered thermodynamically stable.
However, it is important to note that, in practice, materials with
Ehull < 36 meV/atom may be stable or metastable and may have
synthesizability [253].
For ML tasks aiming to predict Ehull, the issue of dataset

availability is often a challenge. On one hand, Ehull is relatively
more challenging to obtain compared with Ef because it requires
finding the decomposition phases of materials and obtaining
their formation energies. On the other hand, as shown in
Fig. 10e, the Ehull in the dataset often exhibits a non-normal
distribution. We can easily obtain stable structures from material
databases where their Ehull = 0 eV/atom, while it is difficult to
obtain the Ehull of unstable structures. Because positive samples
are readily added to the database, while negative samples are not
considered for addition. Therefore, this can lead to an uneven
numerical distribution of samples, with an abundance of sam-
ples with Ehull = 0 eV/atom in the dataset, which is clearly det-
rimental to building ML models [58,169,247].
Due to the uneven distribution of Ehull, Kim and Min [58]

adopted a classification model to predict whether the Ehull of an
A2BB′X6-type double perovskite halides is greater than
0 eV/atom. They used 145 elemental features and the space
group number as descriptors. The model achieved an accuracy
of 0.65, and tends to classify materials as unstable or metastable.
Moreover, some researchers have utilized regression models

combined with special strategies to predict Ehull. For example,
Schmidt et al. [169] used a dataset comprising 2.09 million
entries to pretrain the crystal graph attention network, achieving
a model MAE of 30 meV/atom. Subsequently, they transferred
the model to mixed quaternary compounds for further training,
and the test results demonstrated a significant improvement in
the model’s accuracy in predicting Ehull. Similarly, Choubisa et al.
[247] also utilized a GNN along with a transfer learning strategy
to achieve precise predictions of Ehull. They found that the model
employing the transfer learning strategy performed best in
predicting Ehull for unrelaxed crystals (MAE = 34 meV/atom).
This model was fine-tuned by pretraining a GNN based on 500k
Ef data from OQMD. Chen et al. [64] built a regression model
PSO-SVR [254] to predict Ehull. They selected 2031 ABO3-type
compounds from MP and WebElements database as their
dataset. Seven multi-scale descriptors, including 118 features,
were established, with Ef also considered as a feature. The PSO
algorithm was used for the initial parameter optimization of the
SVR model to avoid the randomness of initial parameters. The
PSO-SVR model achieved R2 = 0.957 and RMSE = 0.087 eV.

Kinetic stability
Determining the dynamical stability is more challenging com-
pared with thermodynamic stability. This is because the phonon
spectrum involves the vibration of atoms, relative displacements,
and non-harmonic effects. Manti et al. [37] built an XGBoost
classifier to predict the dynamic stability of 2D materials. The
dataset used was a subset of C2DB, consisting of 3212 materials.
In addition to the radial distribution of the projected density of
states (RAD-PDOS) fingerprint map, they considered a low-
dimensional fingerprint composed of five features: Perdew-

Burke-Ernzerhof (PET) electronic bandgap, Ef, DOS at the
Fermi level (DOS at EF), Ehull, and the total energy of each atom
in the unit cell. The commonality among these features is that
they are all obtained from a single DFT calculation, making
them much faster than computing phonon frequencies. The test
results of the model showed that the AUC for 10-fold cross-
validation was 0.9 ± 0.01. As shown in Fig. 11a, the model can be
used to avoid performing expensive phonon calculations on
materials that can be labeled as unstable by ML models, thereby
accelerating the screening of dynamically stable materials.
Differing from Manti et al. [37], who used ML to predict

phonon frequencies at the Γ point, Chen et al. [255] employed
ML to predict the phonon DOS, a continuous attribute. Clearly,
predicting continuous attributes from limited input information
is more challenging than predicting low-dimensional outputs
consisting of one or a few discrete points. As shown in Fig. 11b,
they utilized the Euclidean neural network E(3)NN, which
transforms the input 3D structural data into coefficients of a
spherical harmonic function expansion. Subsequently, the data
are processed and learned through a multi-layer neural network.
The structural information of crystals is converted into a peri-
odic graph, and atomic types are encoded as mass-weighted one-
hot encoding. The target quantity learned and predicted by the
model is the phonon DOS containing 51 scalars. The model
predictions displayed excellent consistency with the real values
on the test set. For 70% of the test samples, the relative error was
below 10%. As depicted in Fig. 11b, the model-predicted spectra
were consistent with the actual spectra. By using the model to
predict the phonon DOS of 4346 new crystal structures, they
further identified some high heat capacity new materials.

Synthesizability
The synthesizability of a material measures whether a material is
likely to exist from the perspective of experimental synthesis.
This evaluation metric was proposed because assessing the
possibility of a material’s existence based solely on thermo-
dynamic stability might not be accurate. A compelling piece of
evidence is the existence of metastable crystals in the ICSD,
which have Ehull > 0 eV/atom but have been successfully syn-
thesized experimentally [253]. Due to the complexity of the
material synthesis process, factors other than thermodynamic
stability, such as kinetic conditions, precursors, environmental
conditions, and experimental parameters, also play a role in
determining whether a material can be synthesized. This leads to
situations where the thermodynamic stability and synthesiz-
ability of materials are not directly correlated in certain cases
[256,257]. Therefore, some research endeavors focus on directly
predicting the synthesizability of materials by ML models.
Jang et al. [107] employed a partially supervised classification

model (PU learning) to predict the synthesis probability of
crystal structures. The dataset was sourced from MP database,
comprising 46k materials experimentally synthesized and cata-
loged in the ICSD treated as positive samples. Additionally, 77k
virtual crystals were generated through DFT calculations. Since
the synthesizability of these virtual crystals was undetermined,
they were considered “unlabeled data”. The training involved
100 rounds, resulting in the construction of 100 models. The
final prediction was obtained by averaging the results of these
100 models, defining the average as the crystal similarity score
(CLscore) ranging between 0 and 1, quantifying the synthesiz-
ability of a given crystal structure. Model testing revealed that
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87.4% of the experimentally synthesized materials were pre-
dicted as synthesizable by the model (CLscore > 0.5). To validate
the predictions, they conducted a literature search for the top
100 materials in MP based on CLscore and found that 71 of
them had been successfully synthesized and reported. The
uniqueness of this PU learning method, relying solely on labeled
data from ICSD, lies in its complete avoidance of DFT calcula-
tions for constructing the dataset, significantly saving time in
data collection.
Gu et al. [117], after completing the aforementioned work,

subsequently combined PU learning and transfer learning stra-
tegies. As shown in Fig. 11c, they further narrowed the focus of
the material system to perovskite materials. The complete
dataset for inorganic crystals, identical to the previous work, was
used to train the source model. The perovskite dataset, con-
sisting of 943 synthesizable positive samples and 11.9k virtual
samples, was derived from MP, OQMD, and AFLOW, and it was
used to train the transfer model. The evaluation results of the
transfer model showed a true positive rate of 0.957, significantly
higher than the previous work, highlighting the effectiveness of
transfer learning in a specific domain.

IAP
It is deserved to point out that IAP is a model used to calculate
the potential energy of interactions between atoms. In the pre-

diction of material stability, IAPs play a crucial role and are
employed in tasks such as crystal structure optimization and
material dynamics simulations. The selection and accuracy of
IAP functions directly impact the shape and precision of the
PES. [258] While DFT calculations are often used to obtain
accurate PES, they can be computationally expensive. ML IAPs
constitute a category of models for atomic interactions con-
structed using ML methods. Compared with traditional
empirical potentials or DFT, ML IAPs are more efficient, pro-
viding an accurate description of atomic interactions and
enabling simulations of large-scale atomic systems. Therefore,
developing ML IAP models that approach the accuracy of DFT
calculations is an important direction in the application of ML
methods in materials science [36,259,260].
Currently, the M3GNet, a universal IAP model proposed by

Chen and Ong [176] for accurate assessment in crystal structure
optimization, holds a leading position in this domain. In this
work, the dataset comprises 187k energy data points, 16 million
force data points, and 1.6 million stress data points from the MP.
As depicted in Fig. 11d, the main modules of the GNN model
M3GNet for three-body interactions include two crucial steps:
the many-body bonding module and the standard graph con-
volution. The many-body bonding step computes new bonding
information by considering the bonding environment and bond
lengths of atoms. Similar to the ALIGNN model, this bonding

Figure 11 (a) ML classification algorithm can be used to filter out unstable crystals at a minimal computational cost. Reprinted with permission from
Ref. [37]. Copyright 2023, the Author(s). (b) Overview of the E(3)NN architecture for phonon DOS prediction. And randomly selected examples in the test set
within each error quartile. MSE distribution showing that it is heavily peaked in the 1st and 2nd quartiles with lower error. Reprinted with permission from
Ref. [255]. Copyright 2021, the Author(s). (c) Positive and unlabeled learning (PU-learning) procedure overview. Reprinted with permission from Ref. [117].
Copyright 2022, the Author(s). (d) Schematic of the many-body graph potential and the major computational blocks of M3GNet. Reprinted with permission
from Ref. [176]. Copyright 2022, the Author(s). (e) Workflow of MAGUS, which includes (1) classic evolutional algorithm and (2) machine-learning crystal
structure predictions. Reprinted with permission from Ref. [221]. Copyright 2023, the Author(s).

SCIENCE CHINA Materials REVIEWS

April 2024 | Vol. 67 No.4 1065© Science China Press 2024



environment also incorporates information about bond angles
between atoms. The standard graph convolution iteratively
updates information about bonds, atoms, and optional states.
Based on M3GNet, they trained 89 universal IAPs for elements
in the periodic table with low errors in energy, force, and stress.
In the case of IAP fitting, atomic information is mapped to
atomic energy Ei, summed for total energy E, and then forces (f)
and stresses (σ) are computed via automatic differentiation.
Compared with DFT crystal structure optimization, the crystal
structure optimization error for M3GNet IAPs is 0.035 eV/atom,
and relaxation times approximately one-third of DFT. M3GNet
is capable of accurately and rapidly relaxing arbitrary crystal
structures.
Wang et al. [221] developed a crystal structure prediction

framework called MAGUS, which combines ML potentials with
structure search methods. The workflow includes a graph-the-
ory-based classical evolutionary algorithm and a machine-
learning algorithm based on ML potentials. MAGUS can be used
to predict stable chemical compositions in chemical composition
space or explore metastable structures with desired properties.
The workflow is illustrated in Fig. 11e. After generating random
structures, some of them are randomly selected for DFT single-
point energy calculations to obtain energy, forces, and stresses,
constructing a training set. The initial ML force field is then
trained. In the subsequent search process, ML force field
structure optimization is used to replace the most time-con-
suming DFT structure optimization. During optimization,
structures that extrapolate are recorded, and if the extrapolation
exceeds a specified threshold, DFT self-consistent calculations
are performed, and the structures are added to the training set
for retraining to correct the original ML potential. This iterative
process continues to train the ML potential model until no more
extrapolated structures are encountered.

Accelerating discovery of new semiconductors by optimizing
optoelectronic properties
In addition to stability, functional optoelectronic semi-
conductors need to possess a range of properties applicable to
their use in specific scenarios, such as appropriate bandgaps,
small effective carrier masses, high optical absorption, and large
dielectric constants [261,262]. ML methods could predict these
properties to accelerate the discovery of new optoelectronic
semiconductors.

Electronic bandgap
Bandgap determines the wavelength range of light that a mate-
rial can absorb and convert. Semiconductors for different
applications require different bandgap ranges. ML could be used
to accelerate the screening of materials with suitable bandgaps
[263,264]. Lu et al. [92] conducted an early study utilizing ML to
predict the bandgap of perovskites. Employing high-throughput
calculations, they compiled a dataset containing the bandgap
information for 212 organic perovskites. Considering 14 mate-
rial features, they developed a GBRT model. Subsequently, they
used the trained model to predict the bandgap for 5158 candi-
dates, ultimately selecting 218 ideal materials with bandgap in
the range of 0.9–1.6 eV. Cai et al. [41] accelerated the discovery
of nonlinear optical crystals using the ATCNN model based on
chemical compositions. As shown in Fig. 12a, they predicted
bandgap for 3887 ternary selenide chemical compositions,
selecting 1620 materials with bandgap greater than 2.5 eV.

Subsequently, crystal structure prediction methods were
employed to determine stable crystal structures. Finally, high-
throughput calculations were used to accurately screen bandgap
and calculate the nonlinear-optical coefficients of candidates.
However, some characteristics of the bandgap contribute to

the difficulty in its prediction:
Firstly, bandgap is not solely determined by the elemental

composition of the material but is also influenced by subtle
variations in the crystal structure. During the feature construc-
tion process, it is crucial to comprehensively consider both the
elemental and structural features. For instance, Im et al. [153]
constructed a GBRT model to predict the bandgap of ABB′X3
perovskites. They found that the spacegroup of the crystal
exhibited the highest feature importance, indicating its sig-
nificant influence on the bandgap. Wang et al. [77], using a
GBDT model, conducted a classification prediction for the
bandgap of double perovskites. They discovered that the dipole
polarization between B and B′ site cations had the most sub-
stantial impact on the bandgap.
Secondly, there are a significant number of materials with zero

bandgap. The numerical distribution of the dataset often devi-
ates from a normal distribution [58]. This deviation can hinder
the model’s learning and prediction capabilities. To address this
issue, Saidi et al. [87] employed a hierarchical CNN (HCNN)
approach when predict the bandgap of metal halide perovskites.
This model consists of a classifier and a regression model,
initially categorizing the predicted samples into six intervals
before predicting the specific values within each interval. The
model evaluation results showed that the HCNN method
reduced the error of the standard CNN by three times, with a
mean bandgap error of 0.14 eV. Similarly, Wang et al. [77] chose
a classification model to handle the non-uniform distribution of
bandgap. As shown in Fig. 12b, they collected bandgap for 1747
double perovskite materials from the MP as the dataset. They
labeled the bandgap of materials in the dataset as 0 (0–1 eV),
1 (1–2 eV), 2 (>2 eV) to train a GBDT three-classification
model. Using the model to predict 23k candidates, they filtered
out 2711 ideal candidates with bandgap in the range of 1–2 eV.
Similarly, Talapatra et al. [142] adopted a strategy of first clas-
sification and then regression when predicting the bandgap of
double perovskite oxides. Using the model to predict 23k can-
didates, they filtered out 2711 ideal candidates with bandgap in
the range of 1–2 eV.
Finally, we need to consider the differences between the PBE-

bandgap, Heyd-Scuseria-Ernzerhof (HSE)-bandgap, and
experimentally measured bandgap [263]. As shown in Fig. 12c,
Chen et al. [84] used a Δ-ML method to predict the HSE
bandgap of double HOIPs. They used HSE functional to calcu-
late accurate bandgap for 1923 structures as the training set.
They used the difference between PBE-bandgap and HSE-
bandgap as the target value to train a Δ-GBRT model. This
allows the model to predict the HSE-bandgap based on the PBE-
bandgap of new materials, which is evidently easier than directly
predicting the more complex HSE-bandgap. The validation
results of the model showed that considering the anisotropy of
organic cations could improve the model’s accuracy. Using the
model, they conducted high-throughput virtual screening on
78.4k DHOIPs, resulting in 19 promising DHOIPs. Mannodi-
Kanakkithodi and Chan [56] also considered the importance of
the HSE functional. As shown in Fig. 12d, they performed cal-
culations using the HSE functional for 229 perovskites. Using
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the average elemental properties of A, B, and X-site atoms or
molecules as input descriptors, they constructed a neural net-
work to predict HSE bandgap. Subsequently, they conducted
high-throughput virtual screening on approximately 18k mate-
rials using the trained models, resulting in 392 stable candidates
with appropriate bandgaps, defect tolerance, and photovoltaic
quality factors.

Carriers effective mass
The effective mass of charge carriers in semiconductor materials
is also an important optical and electronic property. It describes
the inertia effect exhibited by charge carriers when accelerated in
an electric or magnetic field. A lower effective mass is a
screening criterion for optoelectronic materials, as it allows the
material to achieve higher carrier mobility and greater carrier
diffusion distance [265]. Typical materials such as graphene,
with an effective mass of zero, exhibit giant intrinsic mobility
[266]. However, to our knowledge, there has been scant
exploration in ML concerning the prediction of effective mass of
charge carriers.
As mentioned earlier, even though predicting bandgaps based

on crystal composition and structure does not require an
accurate reconstruction of the band structure, accurately pre-
dicting bandgaps remains challenging. Furthermore, the com-
plexity of effective mass is significantly higher than that of
bandgaps, whether obtained by constructing band structures to
calculate band edge curvature for effective mass determination

or by solving the semiclassical Boltzmann transport equation to
obtain electronic transport properties [267]. This complexity
results in very limited data available in existing databases,
making ML predictions for effective mass more difficult than
predictions for bandgaps.
Tsymbalov et al. [148] utilized ML methods to reconstruct the

band structure and subsequently predict effective mass. They
employed a CNN as the main framework of their model, taking
strain tensors and band structures as input to predict the band
structure changes under strain (Fig. 12e). The CNN, by con-
volving matrices associated with intraband for neighboring K-
points and interband transitions for the same K-points, learned
the intricate correlation between the energy eigenvalues related
to intraband and interband transitions. This allowed the model
to effectively capture the information within the band structure.
The model also considered crucial physical properties such as
crystal periodicity and time-reversal symmetry. Using the impact
of strain on the diamond band structure as an example, they
demonstrated that the model could accurately predict the band
structure of diamond under elastic strain, thereby obtaining
bandgap and effective mass.

Optical properties
Some studies have used shallow and ensemble models to predict
the optical properties of materials, accelerating the screening and
research of new optoelectronic semiconductor materials. For
instance, Choudhary et al. [268] constructed a GBT model using

Figure 12 (a) Well-designed target-driven materials discovery workflow used for exploring novel promising mid-IR NLO materials. Reprinted with
permission from Ref. [41]. Copyrtight 2022, Wiley-VCH GmbH. (b) ML workflow for identifying double perovskites. Reprinted with permission from Ref.
[77]. Copyright 2022, American Chemical Society. (c) Framework for screening DHOIPs with combining ML models with DFT calculations. Reprinted with
permission from Ref. [84]. Copyrtight 2022, Royal Society of Chemistry. (d) DFT properties computed for 229 perovskite compounds at the PBE and HSE06
levels of theory and screening performed on ML predicted dataset of 17k perovskite compounds in terms of their stability, bandgaps, and defect tolerance.
Reprinted with permission from Ref. [56]. Copyrtight 2022, Royal Society of Chemistry. (e) CNN architecture for band structure prediction. The strain
components are passed through fully connected layers, with the last layer reshaped into a rank-5 tensor. After a few convolutional layers with residual
connections that improve convergence, the network produces the band structure as the output, which is fitted against the targeted DFT-computed band
structure. A mesh comprising 8 × 8 × 8 k-points is used. And the tensor representation and physical insights incorporated into the CNN model: time-reversal
symmetry, K-space periodicity, and inter-band and intra-band convolution. Reprinted with permission from Ref. [148]. Copyright 2021, the Author(s).
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classical force field descriptors, totaling 1557 dimensions, to
predict materials’ infrared intensities, Born-effective charges,
piezoelectric, and dielectric tensors (Fig. 13a). They opted for a
classification model for a qualitative assessment of dielectric
tensors, achieving an ROC AUC of 0.93. Using the established
ML model, the authors rapidly screened materials in a large
database, identifying 32k materials with high dielectric constants
(>20). Takahashi et al. [269] performed DFT calculations for
1226 metal oxides to obtain their dielectric constants. Subse-
quently, they developed two RF models to predict electronic and
ionic dielectric constants (Fig. 13b). They found that structural
information was not crucial for electronic dielectric constants.
On the other hand, in the model predicting ionic dielectric
constants, structural descriptors significantly enhanced the
prediction accuracy more than electronic contributions.
The complexity of optical properties and the scarcity of

samples collectively present challenges for predicting optical
properties. As a result, some studies have adopted transfer
learning strategies. Kong et al. [105] extracted 84k metal oxides
from the materials experiment and analysis database (MEAD) as
their dataset, and used only the chemical composition of
materials as descriptors to predict optical absorption. They
constructed a model named H-CLMP (hierarchical correlation
learning for multi-property prediction) that combines VAE,
attention mechanisms, and transfer learning strategies (Fig. 13c).
They divided the optical absorption of materials into 10 seg-
ments based on photon energy range (1.39–3.11 eV). Comparing

with previous chemistry-based models like ElemNet, CrabNet,
and Roost, they found that the H-CLMP(T) model, leveraging
transfer learning strategies, achieved the lowest average MAE
(0.428). They employed this model to predict the optical
absorption of 129k new three-cation metal oxide compositions.
Dong et al. [270] proposed an optical material composition
inverse design framework based on transfer learning and global
optimization. The framework (Fig. 13d) aims to predict the
optical absorption spectra of metal oxide materials based on
their chemical formulas. The database comprises a total of 178k
samples composed of 42 different elements, along with their
corresponding optical absorbance values at 220 energies ranging
from 1.32 to 3.2 eV. Materials are represented using 132-
dimensional Magpie features. The neural network model
achieved a performance with R2 > 0.99. The inverse design of
materials, based on genetic algorithms and Bayesian OAs, allows
the determination of element categories and stoichiometry by
inversely analyzing the absorption spectrum.

Structure-properties relationship
During the process of predicting material properties using ML
methods, we also usually construct material structure-property
relationships and uncover the underlying physical-chemical
principles that govern materials by the approaches shown in
Fig. 14.
Feature importance is the most popular method to construct

material structure-property relationships [271]. It is obtained

Figure 13 (a) Flow-chart portraying different steps for the DFT and ML methods. Reprinted with permission from Ref. [268]. Copyright 2020, the
Author(s). (b) Workflow for constructing a computational database of the dielectric constants of oxides. Reprinted with permission from Ref. [269]. Copyright
2020, American Physical Society. (c) The H-CLMP(T) framework. Components a) and b) are jointly trained parallel models for multi-property prediction and
multi-property reconstruction, respectively, where component b) is a variational auto-encoder. Component a) performs the desired multi-property prediction
task, while the multi-property reconstruction of component b) facilitates training of component a). Training and deployment of transfer learning are achieved
by components c) and d), respectively. Reprinted with permission from Ref. [105]. Copyright 2021, AIP Publishing. (d) The framework composed of an
FCNN-based transfer learning model trained with Magpie features and global optimization based search model including a genetic algorithm and a BO.
Firstly, they use large amounts of known data (Dataset A) for initial training of the model 1. Then the authors transfer parameters of model 1 to model 2 (with
the same type as model 1), and use a small amount of sample data (Dataset B) to fine-tune the model. Reprinted with permission from Ref. [270]. Copyright
2020, Elsevier.
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through specific algorithms associated with the model, such as
the tree-based models that measure the importance of features
by the number of splits or the reduction in split criteria in the
tree. By constructing a GBRT model to predict Ef and bandgap
of ABB′X3 perovskites, Im et al. [153] discovered that the average
Pauling electronegativity of materials has the highest feature
importance (Fig. 14a). On the other hand, bandgap model shows
that the spacegroup has the highest feature importance. In most
cases, transitioning from a cubic to a monoclinic space group
leads to an increase in bandgap. This indicates that Ef is mainly
influenced by element features, while bandgap is more sensitive
to the structure. In addition, Liu et al. [147] found that the
tolerance factor has the highest feature importance when con-
structing a classification model for perovskite materials, proving
it to be a primary factor controlling the formability of per-
ovskites. Wang et al. [77] used a GBDT model for the classifi-
cation prediction of bandgap for double perovskites. They
discovered that the differences in dipole polarization between B
and B′ site cations, covalent radius, valence electron count, and
the variance in Pauling electronegativity have a greater impact
on the model’s accuracy.
Similar to feature importance, the Shapley Additive exPlana-

tions (SHAP) method also constructs structure-properties rela-
tionships by revealing the extent to which features influence the

target [33,63,88–90]. It is based on cooperative game theory,
treating features in ML as participants and the model’s pre-
dictive results as cooperative outcomes [272]. By calculating the
average contribution of each feature to different subsets of fea-
tures, Shapley values for each feature are obtained, measuring
the relative importance of features for model predictions. The
advantage of SHAP is that it can visualize the positive and
negative impacts of feature changes on predictions through
forms like bar charts and waterfall plots. Zhang et al. [273] used
a dataset of 102 samples (44 HOIPs and 58 non-HOIPs) to build
an XGBoost classification model to differentiate the formability
of HOIPs. As shown in Fig. 14b, SHAP analysis indicated that
the radius and lattice constant of the B site are positively cor-
related with the formability of HOIPs, while the ionic radius of
the A site, tolerance factor (t), and the first ionization energy of
the B site are negatively correlated with formability.
Through symbolic regression method, we can construct

mathematical equations describing the relationship between
material features and target properties, allowing for a quantita-
tive analysis of their relationship. The basic idea of symbolic
regression methods involves performing mathematical opera-
tions on features to construct descriptors and mathematical
expressions used to calculate the target quantity. Symbolic
regression tools applied in materials science include gplearn

Figure 14 Four ML methods for constructing relationships between material components (structures) and properties. (a) Feature importance from GBRT
for c heat of formation and d bandgap of halide double perovskite. Reprinted with permission from Ref. [153]. Copyright 2019, the Author(s). (b) SHAP value
distribution. Reprinted with permission from Ref. [273]. Copyright 2021, American Chemical Society. (c) Assessing the performance of the improved
tolerance factor. τ achieves a classification accuracy of 92% on the set of 576 ABX3 solids based on perovskite classification for t < 4.18, with this decision
boundary identified using a one-node decision tree. Reprinted with permission from Ref. [279]. Copyright 2019, the Author(s). (d) Output list of solar cell
materials predicted by the ML method. The ranking is based on the absolute value of cosine similarity between the word vectors of the chemical formula and
the solar cell. Reprinted with permission from Ref. [97]. Copyright 2022, AIP Publishing.
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[40,274,275] and SISSO [210,276,277]. Gplearn is based on
genetic programming. It evolves and optimizes mathematical
expressions represented as tree structures through genetic
algorithm operations like crossover, mutation, and selection to
find the most accurate mathematical expression. Weng et al.
[278] used a gplearn method to propose descriptors for
describing the catalytic activity of perovskite oxide catalysts.
Among numerous results, they found that μ/t (μ and t are the
octahedral and tolerance factors) is the optimal compromise
between complexity and accuracy. This concise descriptor
indicates that smaller μ and larger t should lead to higher OER
activity. SISSO is also a popular symbolic regression method
that, by introducing the concepts of sparsity and operator
selection, can select the most important features and operators
from a large number of candidate mathematical expressions.
Bartel et al. [279] used SISSO to improve the well-known
Goldschmidt tolerance factor (t) for predicting the stability of
perovskite structures, significantly enhancing the accuracy of
predicting perovskite stability (Fig. 14c). The new descriptor τ,
in addition to geometric constraints such as the ionic radii of
atoms at the three sites (A, B, and X) in perovskites, also
includes chemical information, specifically the oxidation state of
the A-site atom. The false positive rates for τ and t are 11% and
51%, respectively, indicating that the main advantage of τ over t
is a significant reduction in predicting compounds as perovskites
that have not been experimentally confirmed as stable per-
ovskites.
Constructing a KG of materials using ML is another way to

build the structure-property relationships of materials. A mate-
rials KG is a representation method that organizes knowledge
into a graph structure [280,281]. It models and connects infor-
mation about material components, structures, properties, rela-
tionships, or researchers in a graphical way, forming a structured
knowledge network. For instance, Zhang and He [97] conducted
data mining on 50k materials science papers using NLP method
(Fig. 14d). They used ChemDataExtractor for tokenization in the
abstract database, identified material names in the named entity
recognition step, and built a model using word2vec to establish
relationships between material names and their applications. In
text mining centered around the term “solar cell”, the model
unsupervisedly output well-known materials for solar cells. In
addition to commonly reported solar cell materials in the lit-
erature, the model also predicted several uncommon materials.
By performing first-principles calculations on the optical and
electronic properties of candidates, they discovered a new solar
cell material, As2O5.

Inverse design of new materials by generative models
In general, the inverse design of materials can be broadly defined
as the process of designing new materials with desired properties
starting from the expected material performance. Traditional
materials design often involves iterative improvement of mate-
rial properties through trial and error and experimentation. In
contrast, the inverse design approach starts with the desired
material properties and employs computational and simulation
methods to identify materials that exhibit these properties.
Under this broad definition, we can consider high-throughput
computational methods for crystal materials, structure search
methods, and the previously mentioned use of ML models for
high-throughput virtual screening of materials as inverse design
methods for materials (Fig. 15a) [282–284]. This is because these

methods also begin by specifying the desired material properties
and then identify new materials that meet these properties.
However, if we adopt a more stringent and narrower definition,
we might consider materials inverse design as the direct
deduction of specific materials from their properties, without the
need for calculations or predictions to determine their proper-
ties, effectively avoiding the challenges present in the forward
design process of materials. Therefore, under this definition, we
can confine direct inverse design of materials to using generative
models to obtain new materials that satisfy specified properties
[49,110,185].
Using generative models for the inverse design of materials

has advantages in terms of speed compared with traditional
structure search methods, high-throughput computational
methods, and ML screening methods. Structure search methods
do not eliminate the need for property evaluation (calculation)
of generated structures, involving a cumbersome and time-
consuming process of structure generation, structure evaluation,
and structure optimization updates. High-throughput compu-
tational methods require substantial computational support. ML
screening methods typically involve predicting the properties of
unexplored materials obtained through element substitutions.
This necessitates a rational assessment of the new materials, and
the discovered materials are often constrained by inherent
crystal structure prototypes. In contrast, for generative models,
although the generated crystals may only partially meet expec-
tations due to the accuracy of the current material generation
models, the generation of structures and the determination of
properties occur simultaneously through sampling in latent
space. This is due to the data-driven nature, resulting in a fun-
damental difference from traditional materials inverse design
methods.
Some generative models have been introduced in the previous

chapter. iMatGen and FTCP both consider conditional con-
straints by incorporating the loss function of a target property
learning model outside of the VAE into the loss function. Cond-
DFC-VAE further enhances the latent space by training a clas-
sification model on the latent vectors of input crystals. CDVAE
introduces conditional constraints in the denoising process of
the sampled element types and atomic quantities from the latent
space, aiming to make the sampled results meet initial expec-
tations. In summary, these models consider conditional con-
straints through various strategies, allowing VAE models to
generate new samples from the latent space that closely meet the
properties possessed by the materials in the training set.
Some studies have already employed generative models for the

inverse design of materials with specified properties [285–287].
For instance, Lyngby and Thygesen [285] used a dataset of 2615
2D materials from C2DB with convex hull ΔHhull < 0.3 eV/atom
for training the CDVAE. As shown in Fig. 15b, they generated
5k new materials, followed by DFT structure relaxation to
remove duplicate and non-2D structures, resulting in 3k new 2D
structures. The probability of successful relaxation for these
structures was 69%. Among the successfully relaxed materials,
73.8% had ΔHhull < 0.3 eV/atom. Wines et al. [287] set the
optimization target property for CDVAE as the superconducting
transition temperature (Tc). As shown in Fig. 15c, they trained
the CDVAE model using 1058 superconducting materials from
the JARVIS-SC database. The model was then used to generate
3k new superconductors with unique structures and chemical
compositions. High-throughput virtual screening of the mate-
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rials was performed using the ALIGNN, with properties filtered
based on the thresholds Tc > 5 K, Ef < 0 eV/atom, Egap < 0.05 eV.
This led to 32 candidates with Tc > 5 K. These materials were not
present in the Supercon database, demonstrating that the
CDVAE method can generate unique materials with specific
desired properties, covering previously undiscovered regions in
the phase space.
Clearly, although these works utilize generative models for the

inverse design of materials, it still has not eliminated the need
for additional forward screening work. This is because, on the
one hand, a qualified functional material needs to satisfy mul-
tiple properties, and current generative models can only con-
sider a single condition constraint. After obtaining new
structures generated by the model, various property screenings
are still required to meet practical purposes. On the other hand,
similar to ML models used for target value prediction, generative
models also need to be assessed for accuracy because the new
materials produced by current generative models may have a
certain rate of substandard quality. This necessitates additional
efforts to exclude substandard materials from the generated set.

SUMMARY AND DISCUSSION
In this review, we have elucidated and examined the meth-
odologies of ML models within computational materials science,
delineating the capabilities and functionalities of these models.
Certain methodologies have exhibited remarkable efficacy and
displayed promising prospects, notably crystal GNNs and gen-
erative models.
The construction of ML models typically commences with

data collection, involving the extraction of material data from
databases or employing high-throughput computing techniques.
Depending on factors such as data size, the complexity of pre-
diction targets, and the necessity for result interpretation,
researchers may opt for shallow models, ensemble models, or
delve into deep neural networks. These models facilitate pre-
dictions concerning material stability (formation energy, convex
hull energy, and synthesizability), as well as optoelectronic
properties (bandgap, effective mass, optical absorption, and
dielectric constant), and enable materials inverse design. More-
over, the interpretability of these models facilitates exploration
into the underlying relationships between material composition,

Figure 15 (a) Development of material inverse design methods. Using data-driven generative models to generate desired materials is the current advanced
method. (b) Workflow to generate 2D candidates using the CDVAE generative model (left branch) and lattice decoration (right branch). The same set of 2615
materials is used to train the CDVAE model and as seed structures for lattice decoration, respectively. Black numbers indicate the number of materials present
at a given step of the workflow while orange numbers indicate the number of materials discarded. Reprinted with permission from Ref. [285]. Copyright 2022,
the Author(s). (c) Full inverse design workflow for new superconductors using DFT, ALIGNN, and the CDVAE generative model. Reprinted with permission
from Ref. [287]. Copyright 2023, American Chemical Society.
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structure, and properties, thereby offering valuable insights into
physical chemistry. In summary, data-driven ML methodologies
have emerged as pivotal tools in computational materials sci-
ence, significantly expediting the development of novel materi-
als.
Nevertheless, it is imperative to recognize that challenges

persist in employing ML methodologies for the design and
discovery of semiconductor optoelectronic materials. These
challenges encompass various facets, including augmenting the
quantity and quality of training data, refining the precision of
crystal representations to augment the model’s learning cap-
abilities, and effectuating material inverse design based on
properties such as bandgap and effective mass. In summary,
ongoing investigations into optoelectronic semiconductors uti-
lizing ML methodologies confront significant hurdles, yet they
also present abundant opportunities for delving deeper into the
latent potential of ML in expediting correlational research within
materials science.

Size of available data
Firstly, there is the widely discussed issue of data size. As ML
methods continue to evolve, researchers are increasingly
recognizing the importance of data [54,288]. Some attempts
have shown that the error of deep learning models significantly
decreases with the increase in the volume of training data
[34,68,129]. Although we can extract data in the order of mil-
lions from computational materials databases, for some chal-
lenging-to-calculate properties such as HSE functional
bandgaps, exciton binding energies, absorption coefficients,
phonon spectra, high-order force constants, and nonlinear
optical coefficients, it is still difficult to obtain large amounts of
data from databases. Additionally, for special material families
such as low-dimensional materials, cluster materials, hybrid
organic-inorganic halide perovskites, and metal-organic frame-
works (MOFs), there is currently no database of the same
volume as 3D inorganic crystal materials, even though they are
crucial [289,290]. These challenges urgently require researchers
from different organizations to reach collaborative agreements,
and share experimentally or computationally obtained results
with consistent parameters, to collectively advance the con-
struction of databases for special materials, while adhering to
basic norms.
Another solution to address the data issue is to employ

transfer learning and active learning strategies. Regarding
transfer learning, as demonstrated by Frey et al. [44] and Chen
and Ong [131], since all material properties originate from
chemical composition and structure, pretraining a model on a
sufficiently large dataset (such as the formation energy of 3D
crystals) allows the model to learn universal basic physical and
chemical knowledge. Subsequently, transferring the model to
specific material families or prediction tasks for specific prop-
erties facilitates fine-tuning, alleviating the problem of small data
set. Active learning, on the other hand, helps alleviate the
pressure of data labeling by allowing us to focus limited
resources on labeling the most valuable samples [124,148].

Data quality and data cleaning
Samples within computational materials databases exhibit
varying levels of quality, stemming from factors such as adher-
ence to precise or coarse computational standards, utilization of
inappropriate calculation parameters, or inadvertent editing

errors during database curation. For example, based on our
observations, materials projects and OQMD contain numerous
erroneous energy entries. As previously highlighted, low-quality
data resemble noise and can severely impede the efficacy of ML
models. Thus, it is paramount to mitigate the risk of drawing
erroneous conclusions stemming from such noise.
On one hand, addressing the presence of incorrect samples

within the database necessitates their identification and sub-
sequent removal through meticulous data cleaning procedures.
We contend that data cleaning includes cleaning feature set,
cleaning materials themselves, and cleaning target values.
Cleaning the materials themselves entails scrutinizing the
accuracy of material composition and structure, while also
assessing whether the samples align with the research objectives.
Taking ICSD-2022.2 as a case in point, based on our observa-
tions, approximately 72% of the total 204k crystals were deemed
unsuitable for our study, characterized by issues such as frac-
tional occupation, duplication with other samples, or the
inclusion of isotopes. The exclusion of these samples from the
dataset contributes to its enhanced rationality. Cleaning the
feature set entails techniques such as filling, deletion, normal-
ization, and encoding. However, our primary focus lies on
cleaning the target values (labels). A common approach is to
visualize and statistically analyze the target values. This involves
using visualization tools such as scatter plots, histograms, as well
as statistical analyses like mean, standard deviation, and box
plots to identify outliers and inconsistencies in the target values,
and to check whether the data conforms to the anticipated
physical and chemical laws. Outliers may signify the presence of
noise and warrant careful further examination. Most ML
endeavors scrutinize the distribution of chemical compositions,
space groups, feature values, and target values to underscore the
absence of significant noise in the dataset
[58,63,84,87,92,153,169,291]. For example, as demonstrated by
Kim and Min [58], the formation energy of double perovskite
halides exhibits a bimodal distribution resembling a normal
distribution, while the bandgap shows a step-like distribution
with a higher frequency of samples possessing smaller bandgaps.
Such anticipated numerical distributions tend to exhibit reduced
levels of noise.
On the other hand, for samples lacking evident errors, a

delicate balance must be struck between data quality and
quantity. This stems from the fact that high-quality samples are
frequently scarce. For instance, databases frequently abound
with a multitude of unreliable PBE bandgaps, whereas scarce are
the expensive HSE bandgaps or DFT + U energies. Such cir-
cumstances often necessitate a tailored analysis in accordance
with the specific ML task at hand. Accordingly, depending on
the intricacy of the composition, structure, and target values,
appropriate ML models and quantities must be selected. More-
over, endeavors should be made to enhance data quality while
ensuring an ample quantity of data.
Moreover, the matter of data quality underscores the necessity

for transparency in databases. Database creators ought to ensure
transparency regarding data sources and computational meth-
odologies, while meticulously documenting the procedures for
data collection and processing. This approach enables users to
evaluate the quality and reliability of the data more effectively. In
turn, users should endeavor to utilize multiple databases
whenever feasible to mitigate the potential for biased conclu-
sions stemming from reliance on a single database.
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Data imbalance
Samples within databases often exhibit a bias towards positive
outcomes or materials with exceptional performance. This
departure from reality can result in flawed learning by models.
The reason lies in the model’s prediction range, which hinges on
the range of target values within the training dataset. For
example, when training a model to forecast energy levels using
materials from a database, the model may incline towards
underestimating the energy of novel samples, and consequently
misclassifying them as stable. As previously noted, databases
tend to prioritize stable materials with lower energies and those
with documented superior performance, often overlooking
others.
We contend that the following strategies can alleviate bias or

overfitting stemming from an overly favorable training set in the
model: (1) generating artificial negative samples and incorpor-
ating them into the dataset to facilitate data augmentation. For
example, as demonstrated by Gibson et al. [67], perturb stable
crystal structures to obtain crystals with slightly higher energies.
This enhances the robustness of the model. (2) Replicating
negative or underperforming samples within the dataset to
amplify their significance, thereby mimicking real-world sce-
narios as closely as feasible. For instance, in the context of
predicting bandgaps, if the dataset contains an insufficient
number of samples with bandgaps equal to 0 eV, the model may
struggle to learn the difference between metals and semi-
conductors. By duplicating these samples, the model may
enhance its predictive capabilities. (3) Making full use of nega-
tive samples and promoting the establishment of a negative
sample database. Large numbers of negative samples are often
overlooked or discarded, even though significant resources are
invested in obtaining them. For example, Shen et al. [292]
computed 400k compounds, but ultimately only discovered
fewer than 8k stable materials. Gan et al. [239] computed 21k
ABC3 chalcogenide compounds but only showcased 93 stable
materials among them. Unstable materials, considered as nega-
tive samples, can be incorporated into the dataset to facilitate a
more comprehensive understanding of material properties by
the model. Furthermore, they serve the purpose of filtering out
unsuitable candidates, thereby averting redundant verification
efforts by different researchers.

Representation of materials with descriptors
Accurate representation of materials is also an active topic. It is
addressing how to provide a detailed description of a material’s
chemical composition and crystal structure, ensuring both
accessibility and invariance. This is particularly important for
predicting the optical and electronic properties of complex
semiconductor materials such as HSE bandgap and effective
mass. As mentioned earlier, Ye et al. [250] were able to effort-
lessly enable the ML model to capture the relationship between
perovskites and formation energies using only two elemental
features. In contrast, Chen et al. [84] required complex feature
engineering to enable the model to learn the difference between
PBE bandgap and HSE bandgap. Obtaining more accurate
material representations helps to further elucidate the structure-
property relationships of optoelectronic semiconductor materi-
als.
On one hand, manually constructed material descriptors can

target specific material structures or properties, such as
descriptors measuring the stability [58,63,92,147,293] and dis-

tortion [294–296] of perovskites, algorithms for the coordination
number and motify of local crystal structures [297,298], differ-
ences in local structure properties [32], descriptors applicable to
d-band centers for metal catalysts [299], descriptors suitable for
defect and surface systems [300], and descriptors capturing the
orientation and volume of organic molecules in HOIPs [84].
Additionally, Li et al. [244] focused on the central atom and the
coordinating atoms in the local structure to construct crystal
features. They referred to this strategy as the “center-environ-
ment” method. However, the drawback is the heavy reliance on
domain experts’ knowledge, and the development process
involves significant uncertainty.
On the other hand, describing materials based on their che-

mical composition, while bypassing crystal structure, has the
clear limitation of being unable to capture phase transitions in
materials.
Feature extraction methods based on crystal structure graphs,

though enabling automation and competitive model accuracy
[68,166,301], also have some issues. Firstly, they are highly
sensitive to crystal structures, requiring precise crystal structures
as input. Gibson et al. [67] and Choubisa et al. [247] treated
unrelaxed crystals as noise added to the training set for data
augmentation, thus improving the model’s accuracy in predict-
ing unrelaxed crystals. Secondly, as observed by Gong et al.
[165], when the length of the periodicity of crystal structures
exceeds the length of the receptive fields of atoms, GNN models
may fail to capture long periodicities. They attempted to
enhance the model’s performance by combining artificially
designed material descriptors with graph networks.
Finally, when predicting complex material properties such as

carrier effective mass, one can follow the approach of Tsymbalov
et al. [148] by using underlying physics as input, such as band
structures. In such cases, ML models may struggle to directly
capture the relationship between crystal structures and target
properties.
In conclusion, there is a need for more flexible and accurate

material representations or strategies that circumvent existing
drawbacks in material representation methods to further
strengthen the model’s understanding of materials.

Inverse design by generative models
Inverse design of materials represents an idealized methodology
within the realm of new materials discovery and materials
research fields. While the development and application of some
generative models have made achieving this goal possible,
numerous challenges still exist.
Firstly, the bottleneck is achieving accurate equivariant and

reversible representations of materials. Invariance refers to the
property that the representation of a crystal remains unchanged
after operations like translation, rotation, and permutation.
Reversibility implies a one-to-one mapping between the material
and its representation, enabling the precise reconstruction of
atomic positions from the representation. Generative models for
organic molecules in drug development have achieved good
results using SMILES and graph representations, gradually
integrated with the industry [302–304]. In contrast to organic
molecules, crystals exhibit periodicity, symmetry, and con-
straints imposed by the crystal cell, making generative models
for crystal materials more challenging.
Secondly, there is controversy regarding model frame. VAE is

simple and easy to build, while GAN is challenging to train but
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generates more realistic samples. There are also diffusion
models, which are popular in image generation and molecular
design, simulating random diffusion processes to generate new
samples. Xie et al. [101] were among the first to attempt this,
drawing inspiration from NCSN [305] and proposing the
CDVAE.
Finally, unlike supervised learning, where we can easily

compare the predictive accuracy of different crystal graph net-
work models through the model’s MAE, the evaluation of
unsupervised generative models is more complex and awaits
standardization. We need to assess the quality of the latent space,
including its continuity, which characterizes the richness of new
samples that the model can generate, and its completeness,
which indicates whether the latent space covers all the infor-
mation in the training set. We also need to evaluate the quality
of generated samples, including the efficiency of new samples
(the proportion of samples where the chemical composition is
electrically neutral, and the crystal is stable), novelty (the pro-
portion of samples with components and structural prototypes
different from known materials), repetition rate (the proportion
of repeated samples generated), and conditional compliance rate
(the proportion of samples that meet the specified constraints).
Additionally, as mentioned by Türk et al. [184], the model’s

generalization ability, i.e., how well the model generalizes to new
samples that are unlike the training examples.
Furthermore, just as we are about to finalize the manuscript,

the material generative models have witnessed two major
achievements. These are GNoME (Graph Networks for Materi-
als Exploration) [9] developed by the Google DeepMind team
and MatterGen [10] (diffusion-based generative model for
designing stable inorganic materials) developed by the Microsoft
team. As illustrated in Fig. 16a, GNoME consists of two fra-
meworks: the structural pipeline creates candidates with similar
structures to known crystal structures through crystal mod-
ifications, while compositional models predict stability without
structural information. In both frameworks, models provide a
prediction of energy, and a threshold is chosen based on the
relative stability (decomposition energy) concerning competing
phases. Through GNoME, DeepMind has discovered 2.2 million
new materials. Among them, 736 have been independently
synthesized in experiments, and approximately 380k estimated
to be relatively stable new materials will be made openly
accessible in the future. MatterGen, like CDVAE, is based on
diffusion principles, generating samples by reversing a fixed
destructive process through learning score networks (Fig. 16b).
To imbue the generated stable materials with desired properties,

Figure 16 (a) A summary of the GNoME-based discovery shows how model-based filtration and DFT serve as a data flywheel to improve predictions.
Reprinted with permission from Ref. [9]. Copyright 2023, the Author(s). (b) Inorganic materials design with MatterGen. (1) MatterGen generates stable
materials by reversing a corruption process through iteratively denoising an initially random structure. The forward diffusion process is designed to
independently corrupt atom types A, coordinates X, and the lattice L to approach a physically motivated distribution of random materials. (2) An equivariant
score network is pretrained on a large dataset of stable material structures to jointly denoise atom types, coordinates, and the lattice. The score network is then
fine-tuned with a labeled dataset through an adapter module that alters the model using the encoded property c. (3) MatterGen can be fine-tuned to steer the
generation towards materials with desired chemistry, symmetry, and scalar property constraints. Reprinted with permission from Ref. [10]. Copyright 2023,
the Author(s).
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they have introduced adapter modules, which can be used to
fine-tune the underlying model on an additional dataset with
attribute labels, thereby achieving property constraints. Matter-
Gen-MP has shown 1.8 times increase in the percentage of S.U.
N. (stable, unique, and novel) structures and 3.1 times decrease
in average root mean squared displacement compared with the
previous state-of-the-art CDVAE. With these continuous
developments, we are optimistic about achieving the true sense
of material reverse design in the near future.
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机器学习方法及应用: 光电半导体材料计算设计
杨晓雨, 周琨, 贺欣*, 张立军*

摘要 高通量计算与材料数据库推动了数据驱动的机器学习方法的发
展. 机器学习已经成为材料计算研究的重要方法, 在分析材料数据、加
速材料计算、预测材料性质、推进新材料发现、筛选和设计等方面展
现出极大的潜力. 众多与材料计算相交叉的机器学习方法、模型以及
框架不断涌现. 本文综述了近年来光电半导体材料计算设计领域内机
器学习方法的最新进展与应用. 介绍了机器学习的流程与类型, 基于不
同材料表示方法的浅层模型、集成模型和深度神经网络, 以及相关材
料数据库和相关工具. 我们还讨论了这些模型在预测材料稳定性与光
电性质、材料逆向设计、构建材料构效关系等方面的应用. 最后, 本文
对目前机器学习方法存在的机遇与挑战, 即数据数量与质量、材料的
表示、材料逆向设计做了进一步总结与讨论.
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