
mater.scichina.com link.springer.com Published online 12 March 2024 | https://doi.org/10.1007/s40843-023-2836-0
Sci China Mater 2024, 67(4): 1082–1100

SPECIAL TOPIC: Computation-assisted Materials Screening and Design

Recent advances in machine learning interatomic potentials for cross-
scale computational simulation of materials

Nian Ran1,2, Liang Yin1,2,3, Wujie Qiu1,2,4* and Jianjun Liu1,2,3*

ABSTRACT In recent years, machine learning interatomic
potentials (ML-IPs) have attracted extensive attention in ma-
terials science, chemistry, biology, and various other fields,
particularly for achieving higher precision and efficiency in
conducting large-scale atomic simulations. This review, si-
tuated in the ML-IP applications in cross-scale computational
models of materials, offers a comprehensive overview of
structure sampling, structure descriptors, and fitting meth-
odologies for ML-IPs. These methodologies empower ML-IPs
to depict the dynamics and thermodynamics of molecules and
crystals with remarkable accuracy and efficiency. More effi-
cient and advanced techniques from interdisciplinary research
field play an important role in opening a wide spectrum of
applications spanning diverse temporal and spatial dimen-
sions. Therefore, ML-IP method renders the stage for future
research and innovation promising revolutionary opportu-
nities across multiple domains.

Keywords: machine learning interatomic potential, cross-scale
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INTRODUCTION
Interactions between atoms play a pivotal role in many scientific
and technological fields, as they significantly influence the
behavior, properties, and dynamic characteristics of matters [1–
3]. Understanding the principles governing atomic interactions
is essential for investigating various aspects such as mechanical
properties, thermodynamic stability, and electronic structures
[4]. However, from the atomic scale to the macroscopic scale,
phenomena in different scale ranges are intertwined with each
other, forming a complex multi-scale system. In this context, the
urgency to develop a methodology capable of accurately
depicting atomic interactions while efficiently managing com-
putations across multiple scales becomes evident.

Traditionally, the elucidation of atomic interactions involved
the solution of the Schrödinger equation, which captures the
quantum mechanical behavior of atoms and molecules. The
solution of this equation provides insights into IPs and wave-
functions, forming the basis for predicting material properties

and dynamics. However, the complexity of the Schrödinger
equation arises from its treatment of the many-body problem,
involving the positions, momenta, and intricate IP of numerous
atoms [5–7]. This computational complexity presents challenges
for investigating large-scale systems and extends the time
required for research. To address these challenges, classical
potential models have been widely adopted for atomic simula-
tions [8]. These models have been widely adopted for atomic
simulations due to their ability to represent the fundamental
physics of interatomic interactions using simplified mathema-
tical formulations. These models incorporate empirical para-
meters, which are often derived from experimental
measurements or quantum mechanical computations. While
such models abstract many-body complexities, they retain the
ability to predict physical properties that are critical to material
behavior, such as equilibrium bond lengths, bond angles, and
cohesive energies. In systems where the interactions are well-
understood and can be approximated by pairwise or simple
many-body terms, classical potentials provide a computationally
efficient means to simulate material properties. Despite their
utility, classical potentials are limited by their empirical nature
and often fail to capture complex quantum mechanical effects
and precise interactions in systems with higher complexity, thus
limiting their applications in material systems containing com-
plex interactions such as defects, surfaces, phase transitions, and
dipoles.

The introduction of machine learning interatomic potentials
(ML-IPs) presents a novel approach to overcome these limita-
tions [9–12]. This method utilizes ML algorithms, such as neural
networks, to learn potential energy functions for atomic inter-
actions from extensive datasets encompassing atomic structures
and properties. By inputting atomic positions, types, and other
relevant information S of the system, the model f can produce
the corresponding potential energy E, expressed as E = f(S) [9].
Through continuous refinement of model parameters, the ML-
IPs gradually converge towards accurate approximations of
quantum mechanical results. ML-IP methods offer distinct
advantages. Primarily, they exhibit good transferability. Drawing
insights from abundant data on atomic structures and proper-
ties, these methods accurately capture intricate interatomic
interactions, demonstrating improved accuracy and adaptability
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across various material systems. Additionally, these methods
offer significant advantages in computational efficiency. Con-
ventional density functional theory (DFT) methods rely on
iterative electronic density calculations, but they face limitations
when applied to large systems due to their high computational
demands. ML-IPs, through their data-driven paradigm, cir-
cumvent the necessity for explicit electron density computations,
thus permitting more efficient simulations across diverse scales.
By extrapolating knowledge from extensive datasets of quantum
mechanical calculations, ML-IPs predict material behaviors
across disparate scales, avoiding the computational complexity
inherent in traditional methods. ML-IPs also offer significant
advantages over conventional simulation techniques such as
continuum mechanics, which often neglect atomic-scale phe-
nomena crucial to material behavior, and Monte Carlo simula-
tions, which become exceedingly time-consuming for intricate
systems. What distinguishes ML-IP is their exceptional capacity
to provide intricate atomic-scale insights while accommodating
larger system sizes without proportionately increasing compu-
tational time. Coupled with their predictive accuracy and
adaptability, ML-IPs emerge as an indispensable tool for com-
putational simulations spanning different scales in materials
science.

Over the last few years, significant progress has been made in
the precision of potential energy predictions, thereby enabling
simulations of complex phenomena such as phase transitions,
surface reactions, and defect dynamics with high accuracy. This
progress is attributed to the utilization of sophisticated ML
architectures, such as graph neural networks and kernel meth-
ods, significantly enhancing the representation and predictability
of atomic-scale interactions [13]. Notably, the evolution of
descriptors has been pivotal in improving the accuracy of ML-
IPs. Descriptors serve as critical tools for transforming infor-
mation about atomic environments into formats amenable to
ML algorithms. Recent research has expanded from simple
symmetry functions and fixed geometric parameters to more
flexible and intricate descriptors, such as high-dimensional
Fourier series descriptors, many-body distribution functions,
and local environment fingerprints [14–16]. These advanced
descriptors can capture more detailed physical information and
adapt to varying types of material systems and chemical envir-
onments. Furthermore, the advancements in sampling techni-
ques, such as Metadynamics sampling, play an equally important
role in the progress of ML-IPs [17]. These sampling methods are
crucial for exploring the potential energy surfaces (PES) of
complex systems and training ML-IPs to accurately predict rare
events or states that occur infrequently in simulations. Meta-
dynamics is a powerfully enhanced sampling technique, which
facilitates the escape from metastable states and enables the
exploration of the PES more thoroughly by iteratively adding a
history-dependent potential to the PES. When combined with
ML-IPs, Metadynamics can explore complex PES with improved
efficiency and accuracy, as the ML models can predict the energy
and forces in each new region explored, guiding the sampling
process. Incorporating these advanced sampling techniques in
ML-IP training ensures that models are not solely reliant on
common configurations but also proficiently predict less fre-
quent yet crucial events like chemical reactions, phase transi-
tions, or material defects. Overall, these developments in model
architecture, descriptors and sampling techniques contribute to
the creation of more accurate and predictive ML-IPs, facilitating

the development of cross-scale computational designs for
materials.

In this review, we delved into the fundamental principles of
ML-based potentials and their applications in addressing urgent
needs in cross-scale computations. Specifically, we discussed
methods for structure sampling, atomic environment descriptor
construction, and structure-property fitting. Furthermore, we
explored the applications of these methods in the design and
discovery of materials across various domains. ML-IP methods
strike a harmonious balance between computational efficiency
and accuracy, thereby facilitating efficient material optimization,
catalyst design, ion liquid research, drug discovery, and more.
They promote the application of computational materials sci-
ence in intricate structure design and performance prediction,
providing fresh perspectives and methodologies for research in
materials science and engineering.

NATURE OF CROSS-SCALE COMPUTATION BASED
ON ML-IPs: P = F[D(S)]
In the realm of materials science, a recurring and fundamental
question frequently emerges: how can we predict and under-
stand the performance of materials, ultimately leading to the
design of superior materials, starting from the intrinsic atomic
structure of these materials? This question involves navigating
the intricate relationship between the structural description of
materials at the atomic level and their macroscopic performance
[18]. To address this challenge, we have formulated the concept
of “micro-to-macro mapping”, which tightly links the structural
(S) description (D) of a material to its performance (P) through a
mapping function (F). Specifically, within the framework of ML-
IPs, performance is typically described by quantity with quan-
tum mechanical precision, such as energy, forces, electronic
structures, and other physical properties. These parameters are
of paramount interest when conducting computational simula-
tions. For instance, accurate predictions of energy are required
to determine the thermal stability or reactivity of a material.
Likewise, understanding the interatomic interactions within the
material, even including higher-order force derivatives, is crucial
for simulating mechanical properties, diffusion dynamics, and
heat transfer processes. Therefore, performance serves as the
central focus, and ML-IP proves to be indispensable in accu-
rately predicting these performance attributes.

In this process, the function (F) serves as a mapping or
modeling tool responsible for linking the structural description
(D(S)) of a material to its performance (P). This function can
take the form of an ML model, such as a neural network, or
other mathematical models like regression models [19,20]. The
correlation between structure and performance is established
through training this function, enabling accurate predictions and
optimizations of material performance. Lastly, it is crucial to
consider the structural description (D) of material. When
crafting a structural description (D(S)), several key aspects
typically need to be considered. First and foremost is the
description of crystal structures, including lattice parameters and
atomic coordinates, to precisely define the crystal structure of
the material. In addition, it is essential to specify the types of
atoms in the material and their relative quantities, i.e., the
chemical composition. The symmetry of the crystal must also be
described, including point group and space group symmetries.
Studies of electronic properties often require a description of the
electron density to illustrate the distribution of electrons within
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the material [21]. Furthermore, the description of local envir-
onments is also critical, especially for electrocatalytic materials,
which can be achieved through parameters such as coordination
numbers, bond lengths, and bond angles to elucidate the inter-
actions between atoms [22–24]. For amorphous or disordered
materials, structural description may become more complex,
involving additional information such as disorder, coordination
diversity, and local preferences [25–27]. All these structural
characters are considered to enable computational scale exten-
sion from microscopic into mesoscopic scale. It is well-known
that mesoscopic simulations for domain structures usually are
based on considering the bulk chemical energy, interfacial
energy, elastic energy, and structural change energy from
external fields. Therefore, ML-IP approach is significantly pro-
mising to realize cross-scale computation from microscopic to
mesoscopic scales in material field.

To sum up, we tightly interconnect the above three key ele-
ments: by means of the function (F), we map the structural
description of the material (D(S)) to its performance (P), as
shown in Fig. 1. This relationship can be expressed by the fol-
lowing formula:

[ ( )]P F D S= . (1)

This concise formula reveals a fundamental concept that the
representation of material performance is not isolated but rather
relies on the nonlinear mapping of structural description via a

high-dimensional function F. This is also the essence of cross-
scale computation: by mapping atomic-level information to
macroscopic performance, we can provide powerful tools for
material design and development. Furthermore, this approach
can not only facilitate the discovery of new materials, but also
enhance the performance of existing material.

In the subsequent sections, we will take an in-depth discussion
of the three tightly coupled key elements of structure, perfor-
mance, and function, along with an introduction to various
methods, techniques, and their practical applications in material
research. Through these discussions, we will gain a clearer
understanding of how to leverage structure-property relation-
ships to advance materials science, particularly in the realm of
battery material research.

STRUCTURE SAMPLING—S
Achieving high-quality structure sampling on PESs is a crucial
and fundamental task in the development of high-precision ML-
IPs. It represents the pivotal and computationally resource-
intensive step within the comprehensive framework of con-
structing ML-IPs. In recent years, a multitude of PES sampling
techniques have flourished across virtually every scientific
domain, spanning disciplines such as chemistry, condensed
matter physics, materials science, and biology. These meth-
odologies primarily include (Fig. 2): (1) static structure
sampling: encompassing structural prediction approaches,

Figure 1 Cross-scale computational approach for microscale precision calculation of mesoscopic structures.
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including but not limited to basin hopping [28], genetic algo-
rithms [29], and particle swarm optimization [30]. (2) Dynamic
structure sampling: encompassing the realm of molecular
dynamics (MD), exemplified by simulated annealing [9,31], as
well as enhanced sampling methodologies like Metadynamics
[32,33] and iMD-VR [34], which introduce external potentials to
facilitate the escape of the system from local energy minima. (3)
Unsupervised learning sampling: incorporating innovative
techniques such as generative adversarial networks (GAN) [35],
variational autoencoders (VAE) [36], flow models [37], and
diffusion models [38]. These cutting-edge approaches have been
intricately designed to overcome the formidable challenges
associated with structure sampling, significantly advancing sci-
entific investigations across diverse fields of study.

Static structure sampling
Static structure sampling is a crucial method for exploring stable
configurations on PESs. This research area primarily focuses on
seeking the lowest energy configurations and predicting crystal
structures and molecular conformations. Basin hopping is a
widely used static structure sampling technique, especially useful
for finding local energy minima. This method operates on the

concept of initiating from an initial structure and gradually
descending to a local minimum on the PES through incremental
structural adjustments. This process can be iteratively performed
to explore diverse structures by searching for different local
minima. Basin hopping has proven successful in structure pre-
diction applications, including metal clusters [40], molecules
[41], and crystals [42].

Genetic algorithms, depicted in Fig. 2a, draw inspiration from
the biological evolution process and serve as another static
structure sampling method. They generate a collection of
structures with specific genetic characteristics and simulate
evolutionary processes, including natural selection, crossover,
and mutation, to iteratively optimize these structures in pursuit
of the lowest-energy configuration. Genetic algorithms often
demand substantial computational resources but excel in locat-
ing global minima for complex structures [43] and large systems
[44].

As shown in Fig. 2b, particle swarm optimization is a static
structure sampling method based on swarm intelligence. In this
approach, a group of “particles” represent different structures,
and they collectively search for the lowest-energy configuration
on the PES. The particles interact with each other, adjusting

Figure 2 Structure sampling. (a) Static structure sampling of genetic algorithms. (b) Static structure sampling of particle swarm optimization. (c) Dynamic
structure sampling of simulated annealing. (d) Dynamic structure sampling of Metadynamics. (e) Unsupervised learning sampling of generative models.
Reprinted with permission from Ref. [39]. Copyright 2023, Chinese Ceramic Society.
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their positions by simulating the behavior of flocks of birds or
schools of fish. This collaborative search method efficiently
locates local minima on the energy surface. CALYPSO, as one of
the representatives of particle swarm optimization, has been
widely used in fields such as cluster structure prediction [45] and
two-dimensional (2D) layer structure prediction [46].

In summary, these methods transform the PES by bypassing
transition regions between local minima, enabling rapid global
minimum searches. They typically derive the PES data from
structural relaxation trajectories, potentially missing critical
reaction pathways within transition regions.

Dynamic structure sampling
Dynamic structure sampling involves methods that explore the
PES by simulating the dynamic behavior of a system. Unlike
static structure sampling, which primarily focuses on finding the
lowest energy configurations, dynamic structure sampling takes
into account the evolution of structures over time. This method
is particularly important for studying processes involving
structural changes and transitions on the PES, especially for
large conformational change involving chemical reactions. One
of the prominent techniques in dynamic structure sampling is
MD [9,31,47,48]. MD simulations (Fig. 2c) involve numerically
solving the equations of motion for a system of atoms or
molecules. By starting from an initial configuration and applying
forces based on the PES, MD simulations allow researchers to
track the trajectory of a system as it explores various config-
urations. This approach provides insights into the kinetics and
thermodynamics of structural transitions. Simulated annealing,
as a special variant of MD, has distinct advantages in finding the
system’s lowest energy configuration [49]. It starts from an
initial high-temperature state and gradually cools the system,
allowing it to explore different energy basins on the PES. As the
temperature decreases, the system becomes trapped in local
minima corresponding to stable configurations. The simulated
annealing method that explores the PES by iteratively cycling
between heating and cooling, has been widely applied in
research related to crystal structure prediction, including the
pressure-induced diamond to simple hexagonal phase transition,
NbF4, and N,N′-methylenebisacrylamide crystal structure pre-
dictions [50,51].

Compared with simulated annealing, which aims to find the
system’s lowest energy configuration, metadynamics (Fig. 2d)
enhances sampling by introducing a memory mechanism, par-
ticularly in the study of chemical reactions and biological sys-
tems with energy barriers, making it of significant importance.
Specifically, metadynamics introduces a history-dependent bias
potential to drive the system out of local minima, thereby pre-
venting the resampling of previously visited states and enabling
the exploration of new regions on the PES. This method is
particularly suitable for studying rare events and transitions that
traditional static sampling might overlook, making it widely
applied in research areas like water molecules, nicotine mole-
cule, the liquid-liquid phase transition critical point of liquid
phosphorus and the Claisen rearrangement of allyl vinyl ether to
4-pentenal [32,33,52]. In addition, other enhanced sampling
methods derived from the same principles as metadynamics
include coarse-grained MD [53], in the methods developed by
Engkvist and Karlström [54] and directed dynamics methods
such as adaptive biasing force (ABF) [55,56], and hyperdynamics
[57].

In summary, enhanced sampling methods improve material
sampling by introducing history-dependent bias potentials to
help the system escape local minima. However, there is a
“shortsightedness” issue with MD sampling used for data gen-
eration. At low temperatures, MD simulations have a sig-
nificantly reduced probability of sampling chemical reactions
due to the exponential increase in reaction barriers with
decreasing temperature. Conversely, at high temperatures,
simulated trajectories tend to favor structures with higher con-
figurational entropy, resulting in insufficient sampling of stable
structures. Consequently, the generated PES data are often
highly redundant and limited to local regions around the input
structures. In high-temperature conditions, enhanced sampling
methods may also lead to structures being confined to local
regions and exhibiting redundancy. Contributing factors to this
sampling limitation encompasses the selection of unsuitable
collective variables, bias potentials, or temperature ranges, as
well as the vast structural space in multi-element systems. This
inevitably leads to shortcomings in ML-IPs derived from such
data when predicting unknown materials and reactions. Liu and
colleagues [22] combined the main features of the metadynamics
method and the Metropolis Monte Carlo (MC) method to
propose a global optimization trajectory generation method
called stochastic surface walking (SSW) for creating PES datasets
[58,59]. Research results demonstrate the effectiveness of this
method in material structure searches and predicting chemical
reaction mechanisms [22,60–62], indicating that by effectively
integrating global static structural material methods with
enhanced sampling methods, it is possible to address deficiencies
in stable structure and transition-state structural materials as
well as redundancy issues.

In comparison to the traditional static structure sampling and
enhanced sampling techniques, unsupervised learning generative
models offer a fundamentally different approach to exploring
PESs and generating new structures. These models have the
capacity to either explicitly or implicitly model the probability
distribution of a generated dataset. Subsequently, they can
generate new data by sampling from this probability distribu-
tion. Prominent generative models in the field of ML include
GAN [63], VAE [36], flow models [37], and diffusion models
[38]. Presently, unsupervised learning generative models have
showcased impressive capabilities across various domains, such
as image generation, machine translation, speech synthesis, style
transfer, and more. In recent years, unsupervised learning
algorithms are integrated into the field of material design, par-
ticularly with the establishment of extensive databases contain-
ing information about material structures and properties. The
fraction-based diffusion model stands as a leading example
among deep generative models, skillfully generating new data
samples by systematically removing noise from observed data.
The diffusion model, introduced by Yang et al. [64], employs a
graph-based representation to characterize crystals. Their
approach incorporates a dual-based sampling method, expedit-
ing the diffusion process and enabling the generation of mate-
rials that exhibit both increased innovation and stability
compared with earlier generative models. These unsupervised
learning approaches have made substantial advancements in
representation learning, PES exploration, and the generation of
novel structures. Consequently, these emerging technologies are
emerging as promising avenues to expedite the exploration of
PESs in the context of structure prediction.
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The fundamental architectures of generative models include
GAN, comprising a generator, a discriminator, and VAE com-
posed of an encoder and a decoder. Many innovative models
also adhere to the GAN or VAE frameworks. Nouira andcol-
leagues [65] introduced CrystalGAN, which employs a 2D array
representation of structures created by combining crystal lattice
matrices and atomic fractional coordinates. They utilized GAN
to sample ternary stable hydrides, starting from two stable
binary hydrides. In a similar vein, Kim and colleagues [66]
divided individual unit cells into voxel grids along directions
parallel to the lattice abc axes, segmenting structures of varying
sizes in the dataset into an equal number of voxels. They har-
nessed wGAN to learn the dataset’s distribution and, with the
assistance of an additional regression network, predicted lattice
constants. This approach ultimately led to the generation of
novel crystal images and was particularly successful in the design
of various SiO2 porous adsorption materials. Xie et al. [67,68]
employed a multi-graph representation of crystal structures and
developed a crystal diffusion variational autoencoder (CDVAE)
network based on graph models and VAE principles. CDVAE
learned the dataset’s distribution and produced stable crystal
structures through a diffusion model decoder. Its efficacy in
generating structures was evidenced across various systems,
encompassing perovskite structures, elemental carbon, and the
structures in the materials project database [69]. Although flow
models are relatively recent compared with GAN and VAE, they
have not found extensive use in the realm of crystal structure
generation due to their demanding requirements for reversibility
in model design. Currently, diffusion models stand as the cut-
ting-edge approach in the field of deep generative models [64],
demonstrating ongoing rapid advancements.

In summary, when compared with static structure sampling
and enhanced sampling methods, unsupervised sampling
methods offer several distinct advantages in rapidly generating a
substantial number of samples, particularly for systems char-
acterized by intricate potential energy landscapes, thereby
enhancing computational efficiency and resource utilization.
Moreover, unsupervised learning models can autonomously
acquire representations of the PES, eliminating the need for
manual selection of sampling pathways or enhanced sampling
parameters. However, it is crucial to acknowledge that unsu-
pervised sampling methods come with their own set of limita-
tions. Their performance is significantly contingent on the
quality and diversity of input data. Furthermore, the structure
generation process within existing models often exhibits a
degree of stochasticity, posing challenges in precise control over
factors like atomic numbers, ratios, and other structural intri-
cacies. Consequently, the development of conditional generative
models holds substantial promise for achieving controlled gen-
eration of crystal structures. By amalgamating unsupervised
sampling methods with static structure sampling and enhanced
sampling techniques, the efficient sampling of the global
potential energy landscape, especially in contexts involving
reactions, transition states, and more, becomes a tangible pro-
spect. This endeavor has the potential to furnish high-quality
PES datasets for ML-based atomic potentials, ushering in new
horizons for research in materials science and chemistry.

ENCODING STRUCTURE—D
In contemporary material science research, gaining insights into
and predicting the physical and chemical properties of materials

stands as a paramount objective. To accomplish this goal, precise
descriptions of material structures are indispensable [2,70].
Traditional methods of structural description often rely on
manual selection of features or fixed parameter settings, a
practice that can significantly curtail their adaptability and
precision. Nevertheless, with the advancements in computer
technology and algorithmic development, methods for structural
description have rapidly evolved, especially those utilizing
numerical encoding.

The objective of structural description is to convert the
structural information of a material or molecule into numerical
or vector formats, enabling its processing by computer pro-
grams. This conversion typically involves turning continuous
spatial information or distributions into discrete numerical data,
striving to retain crucial structural details. Properly encoding
these structures not only provides accurate inputs for sub-
sequent calculations or simulations, but also ensures the relia-
bility and accuracy of the research outcomes. To better capture
and numerically represent these structural details, researchers
have developed a variety of descriptors. As shown in Fig. 3, these
descriptors can be categorized into two main categories: global
descriptors and local descriptors [70,71]. While global descrip-
tors aim to offer a comprehensive overview of the entire struc-
ture, local descriptors focus on specific areas within a material or
molecule, such as the environment around a particular atom or
group of atoms. This section will present in detail the various
approaches from these two categories of descriptors, along with
their mathematical expressions, physical connotations, and
scope of application. Therefore, this comprehensive analysis is
favorable to gain a deep insight of how to select and apply the
most suitable structural description to meet our specific models.

Global descriptors
Global descriptors offer a unified representation of the entire
molecular or material structure. Unlike local descriptors, which
focus on individual atoms or specific regions, global descriptors
aim to capture characteristics of the structure as a whole.
Therefore, the selection and design of global descriptors are
critical. They not only need to convey information concisely, but
also ensure that the described structural information is repre-
sentative and distinguishable.

The Coulomb matrix is a commonly used global descriptor
that relies on the Coulomb interactions between atoms to
describe molecular structure [72]. This descriptor constructs a
symmetric matrix by considering the nuclear charges of atoms
and their distances from one another. The Coulomb matrix
provides a simple and intuitive way to describe the electronic
environment of a molecule and has been widely employed in
various chemical applications [73,74]. The construction of the
Coulomb matrix is relatively straightforward. For a molecule
containing N atoms, the Coulomb matrix C is an N × N sym-
metric matrix, with each element (Cij) defined as follows:

C

Z Z
R R i j

Z i j
=

,

0.5 , =
, (2)ij

i j

i j

i
2.4

where Zi and Zj are the nuclear charges of the ith and jth atoms,
respectively, and R Ri j is the Euclidean distance between
them. The diagonal Coulomb matrix element Cii is an empirical
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description of the self-interaction when i = j.
The primary physical insight behind the Coulomb matrix lies

in its ability to describe the charge distribution within materials
and the strength of interactions between atoms, which is crucial
for understanding the atomic charge properties and perfor-
mance of materials, particularly in molecular and lithium-ion
battery materials. Elements on the diagonal provide information
about the individual atomic charges, while off-diagonal elements
describe the Coulomb interactions between two atoms. This is
particularly relevant in processes such as Li-ion migration,
which depends on the surrounding charge environment. The key
advantages of the Coulomb matrix are its simplicity and uni-
versality. The Coulomb matrix can be directly calculated for any
material without additional parameters or assumptions. In
addition, the Coulomb matrix provides rich features for ML
models, enabling effective learning and prediction of molecular
properties. However, the Coulomb matrix approach also has
some limitations. Since it is based on nuclear charges and atomic
distances, this approach may be not comprehensive to capture
all information for complex chemical environments, especially
in intricate battery materials such as cathode materials and solid
electrolytes, which involve ion channels and defects. Moreover,
the size of the Coulomb matrix is proportional to the number of
atoms, posing challenges for large-size materials, especially those
with periodic structures [70].

A major issue with the Coulomb matrix approach is that it
generates different representations for an identical structure
with different atomic labellings. To address this issue,
researchers have proposed the sorted Coulomb matrix [75]. In
this approach, the ranks of the matrix are sorted according to the
strength of atomic interactions, providing invariance to different
atomic labels. The Coulomb matrix does not inherently possess
rotational symmetry. However, this issue can be indirectly
mitigated by combining the sorted Coulomb matrix with ML
models, such as rotationally invariant neural networks. In
addition, the direct use of Coulomb matrix for large structures
may lead to computational and storage challenges. The ran-
domly sampled Coulomb matrix approach reduces the dimen-
sionality of the descriptors by randomly selecting atomic pairs
while preserving the essential structural information [75]. Fur-
thermore, in order to provide a richer description of materials,
atomic properties such as atomic radius and electronegativity
can also be incorporated as weights to form a weighted Coulomb

matrix approach with multidimensional features [76,77]. These
various variants not only retain the simple physical connota-
tions, but also enhance its descriptive capability and application
in diverse contexts.

The many-body tensor representation (MBTR) is a more
complex global descriptor, which captures the effects of many-
body atomic interactions, and it is widely employed to describe
complex structures and properties [78,79]. In contrast to tradi-
tional two-body descriptors (e.g., Coulomb matrix approach),
the MBTR considers three-body, four-body, and even higher-
order atomic interactions, offering a more comprehensive
description for complex systems [80]. The core idea of MBTR is
to map many-body atomic interactions into a tensor form that
encapsulates information about all atoms and captures various
interaction patterns among them. This tensor can be regarded as
a multidimensional array, where each dimension corresponds to
a different atom or combinations of atoms, and the elements of
the tensor represent the strength of interactions or other relevant
information between these atoms. In this way, the MBTR
transforms complex many-body interaction problems into high-
dimensional tensor operations, providing a more flexible and
comprehensive modeling tool.

In contrast to two-body descriptions like the Coulomb matrix,
which typically utilizes a 2D matrix C, we can extend this con-
cept and introduce an N-dimensional tensor T to describe N-
body interactions in the MBTR. For three-body interactions, we
can define a 3D tensor Tijk mathematically:

( )T V r r r= , , , , (3)ijk ijk ij jk ki ijk

where rij and θijk are the respective distances between atomic
pairs and the angle they formed. The key to the MBTR lies in its
ability to capture complex phenomena such as angle depen-
dence, electronic rearrangement and energy decreases due to
many-body interactions. These ofen play crucial roles in systems
such as organic molecules, polymers, solid-state physics, and
biomacromolecules [2]. For example, in the study of protein
folding and charge transfer systems, this approach can provide
rich and accurate information [81,82]. Accurately describing
interactions between neighboring sets of three atoms may sig-
nificantly impact the overall stability and reactivity of certain
organic molecules [83].

However, while the MBTR excels in capturing many-body
interactions with high precision and rich physical insights, it also

Figure 3 Structural descriptors: (a) global descriptors accounting for overall atomic environments; (b) local descriptors centered around selected atoms.
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has inevitable limitations. The first is computational complexity,
particularly in large systems and high-order interactions. This
complexity typically manifests as exponential growth, where an
increase in system size or interaction order leads to an expo-
nential increase in required computational resources. In addi-
tion, the MBTR approach faces the completeness concern of the
basis set [84]. In quantum mechanics calculations, wave func-
tions is required to be expanded in a set of basis functions, and
an incomplete basis may lead to an inaccurate representation of
many-body effects, especially in electron-correlated systems.
This requirement places higher demands on the size and com-
plexity of the basis set, further increasing the computational
burden. Parameter selection and optimization are also issues of
concern for MBTR. The MBTR approach involves numerous
parameters to describe many-body potential functions, and the
selection and optimization of these parameters can be complex
and time-consuming, and may lead to overfitting or other
numerical issues. Moreover, high-dimensional tensors often
contain a large number of zero elements, particularly in sparse
systems, which not only raise storage concerns, but may also
result in waste of computational resources, as many calculations
may be unnecessary.

Despite these limitations, the MBTR approach still demon-
strates significant advantages, especially in complex systems
where traditional two-body description methods face difficulties.
Its high precision and wide applicability make it a promising
tool in quantum chemistry, condensed matter physics, materials
science, and the structural analysis of biomolecules. Therefore,
overcoming its limitations through algorithm optimization and
hardware acceleration may help broaden its applications in
scientific research.

Local descriptors
Local descriptors are powerful and flexible tools in the study of
structural encoding. In contrast to global descriptors, local
descriptors focus on individual atoms or a small group of atoms
and their roles in local environments. This approach offers
significant advantages when dealing with large-scale or hetero-
geneous systems.

Atom-centered symmetry functions (ACSF) provide an
effective mathematical framework for local descriptions of
materials and molecular structures [85]. In this framework, each
atom is described by its surroundings, which is crucial in the
presence of many-body interactions and diverse atomic
arrangements. ACSF is usually represented by a set of differ-
entiable, rotationally invariant functions Gi, which are defined
based on distances rij to neighboring atom j, angles θijk, and
higher-order geometric relationships. Mathematically, a com-
monly used radial part function can be expressed as

( ) ( )G r r f r= exp , (4)i
j

ij ij
R

0
2

c

where rij is the distance between atoms i and j, η and r0 are
parameters, and fc(rij) is a cutoff function that ensures the
function value is zero when rij exceeds a specified range [0, r0].
The angular part is typically expressed as

( ) ( ) ( ) ( ) ( )G f r f r f r= 2 1 + cos e , (5)i
j k

ijk
r r r

ij jk ki
A 1

,

+ +
c c c

ij jk ki
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where θijk is the angle between atoms i, j, and k, and λ and ζ are
parameters. This design enables the set of descriptors to have not

only clear physical connotations, but also favorable mathema-
tical properties, such as smoothness and differentiability, which
is beneficial for subsequent ML models. It is noteworthy that the
parameter η acts as a sensitivity factor, determining the range
over which the descriptor is responsive to variations in intera-
tomic distances. A larger value of η implies that the symmetry
function is more sensitive to atomic pairs at closer distances,
with contributions from farther distances diminishing rapidly.
In contrast, a smaller η value makes the symmetry function more
receptive to atomic pairs at extended distances. η is pre-deter-
mined, usually based on empirical or trial-and-error methods,
and is not always directly related to the actual chemical prop-
erties of the system, which may lead to an inadequate capture of
key features of the atomic environment. A fixed η value might
not be appropriate for a variety of chemical environments, such
as systems with different types of chemical bonds or complex
coordination environments. Zhang et al. [86] proposed a phy-
sically inspired variation of ACSF by substituting the η para-
meter with atomic radii. This refinement links η more directly to
specific types of chemical bonds in the target system, allowing
the descriptor to reflect the actual physical and chemical
environments more directly, which enhances the adaptability
and predictability of ACSF for complex systems.

The ACSF inherently maintains permutational symmetry as it
is constructed based on the local atomic environment. Rota-
tional invariance is ensured by designing a series of functions
based on distances and angles that remain unchanged under
rotation. However, translational symmetry is typically not a
requirement for local descriptors as they describe relative posi-
tions of atoms, not absolute ones. Such descriptors can reveal
chemical interactions between atoms to a certain extent, such as
covalent bonds and van der Waals interactions [87]. Since these
descriptors are local, their calculations are highly scalable in
large-scale or heterogeneous systems. As a result, this enables the
ACSF to compete with more complex and computationally
intensive first-principles methods in calculating energies, forces,
and other atomic-level properties. The ACSF is therefore widely
employed in the description of both periodic (e.g., crystals) and
non-periodic (e.g., molecules or clusters) systems [88]. These
descriptors have demonstrated high accuracy and reliability in a
range of ML tasks, including MD simulations, and the screening
and design of new materials [86,89].

Despite their many advantages, the ACSF approach also suf-
fers from several limitations. Due to their highly nonlinear and
high-dimensional nature, these descriptors require relatively
large training sample sizes for effective fitting. In addition, a
great deal of a priori knowledge and experimentation is often
required to select the most suitable symmetry function form and
parameters for a particular task.

Overall, as a local descriptor, the ACSF has emerged as a
powerful and widely used tool in materials science and chem-
istry. It combines rich physical insights with good mathematical
properties, providing a feasible approach to understanding and
predicting many-body interactions and dynamic behavior in
complex systems. However, in practical applications, careful
selection and adjustment of their forms and parameters are still
required to maximize their performance and applicability.

Smooth overlap of atomic position (SOAP) is a state-of-the-
art technique for describing the local atomic environments of
molecules and solid systems [90]. In contrast to ACSF, SOAP is
primarily designed to provide a smooth and comprehensive
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description of the local atomic environment and explicitly
represent the relative arrangements of atoms. Due to its com-
plexity and richness, SOAP is considered a powerful descriptor,
especially in chemical environments with long-range interac-
tions.

The central idea of SOAP is to smooth the distribution of local
atomic environments and represent them in a rotation-invariant
manner. For a specific atom, its SOAP descriptor can be written
as

( ) ( ) ( ) ( ) ( ) ( )P r f r r r Y rik Y rjk= , (6)ij
k

ik i ik j jkc lm lm
*

where rik represents the distance between atoms i and k, fc(rik) is
a cutoff function,

i
and j are radial basis functions, and Ylm is a

spherical harmonic function. This formula describes the two-
body relationship between atoms i and j and the three-body
relationship formed with other atoms k. The smoothing nature
of the descriptor ensures that slight movements or perturbations
of atoms do not lead to large variations in the descriptor. This is
valuable in chemical and physical environments, where atoms
often vibrate due to fluctuations of temperature, pressure, or
other external factors. However, the cutoff function fc(rik) in the
traditional SOAP framework may lack smoothness at the cutoff
radius rc, leading to discontinuous changes in the contribution
from atomic pairs. This can introduce artificial discontinuities
on the PES, resulting in discontinuities in the forces at the
boundaries. Tirelli et al. [91] proposed substituting the tradi-
tional cutoff function fc with a piecewise-defined polynomial
that smoothly vanishes at rc, ensuring continuity at the cutoff
boundaries. This modification allows for improved computa-
tional efficiency while maintaining physical accuracy and
numerical stability. Furthermore, SOAP descriptors provide a
rotation-invariant structural description by constructing its
power spectrum, which can be achieved by calculating the
autocorrelation function of SOAP descriptors [92].

The SOAP approach has been widely employed in various
tasks of computational chemistry and materials science. For
instance, SOAP can be used to describe atomic environments
associated with specific properties, such as mechanical strength,
in the screening and design of new materials [93,94]. Based on
these descriptors, researchers can use ML models to predict
material properties, allowing for rapid screening of potential
material candidates without performing time-consuming first-
principles calculations. In addition, SOAP has also been used for
structural and dynamical studies of complex systems with high-
pressure phase transition and grain boundary [95,96].

Similar to ACSF, the computational complexity of SOAP is
also relatively high, especially when considering large-scale
systems or high-order interaction calculations. This increases
computational costs and may render it ineffective in certain
applications. SOAP descriptor maintains rotational invariance
through its power spectrum, constructed by calculating the
autocorrelation function of the SOAP descriptors. SOAP pro-
vides a continuous description of the local atomic environment
by smoothing out the atom distribution in 3D space, main-
taining translational invariance for molecules or crystals. While
SOAP descriptors do not directly consider permutational sym-
metry in their design, this symmetry can be implicitly achieved
in feature space through appropriate kernel functions in ML
applications. Furthermore, while SOAP provides detailed
information about local environments, it may not be suitable for

capturing long-range interactions or large-scale structural fea-
tures.

Moment tensor potential (MTP) is a recent developed force-
field method. Compared with traditional force field methods,
MTP offers higher precision and flexibility, as this method do
not only rely on pairwise distances between atoms but also
higher-order, many-body interactions [97]. The emergence of
this method addresses the current demand for high-precision
calculations, especially in nonlinear materials and chemical
systems. The MTP method is characterized by a series of
moment tensors describing their atomic environments and
many-body interactions, with the order of moment tensor being
related to the number of participating atoms. For instance, a
second-order tensor can describe a pairwise interaction, while a
third-order tensor accounts for three-body interactions, and so
forth. The energy expression in MTP can be written as follows:

( )E E c R= = , (7)
i

i

where Ei represents the local energy of atom i. This local energy
can be further expressed as a sum of products between a series of
basis functions ( )R and their corresponding coefficients cα,
where α represents the type and order of the moment tensor.
The ( )R here is a basis function associated with the atomic
positions R and is defined by the contraction of moment poly-
nomials Mµ , :

( ) ( )R M R= , (8)
i

k
def

=1
,ii i

where αi′ represents the sum of off-diagonal elements in the
matrix:

= , (9)i
j j i

k

ij
=1,

while Mµ , is a ν-order tensor which contains a radial part and an
angular part:

( ) ( )M R f r r r= , (10)µ i
j

N

µ ij ij ij, ,

i

where is a tensor product, r rij ij is a tensor with rank ν,
Ni is the number of atoms within the cutoff radius of the ith
atom, and fμ,v is a self-defined radial function similar to that in
ACSF. Notably, the basis functions ( )R utilized in MTP satisfy
the intrinsic symmetries of translations, rotations, and permu-
tations, which are essential for any IP aimed at improving
physical accuracy and computational efficiency. The transla-
tional symmetry is achieved as the basis functions are defined
based on relative positions and do not change when the entire
system undergoes spatial shifts. Rotational invariance is incor-
porated by constructing the basis functions from scalar products
of vectors and tensors that are invariant under rotation. Con-
sequently, these functions produce the same set of values
regardless of how the system is oriented in space. Permutational
symmetry is sustained by formulating the basis functions as a
summation over atoms or atom pairs, ensuring their indepen-
dence from the order of atoms. This formulation guarantees that
swapping any pair of atoms does not affect the potential’s value.
This comprehensive symmetry integration within the MTP
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framework allows for the accurate prediction of physical prop-
erties under various configurations and orientations of the
atomic system. In the MTP expression, there are no fitting
parameters in ( )R , and the total energy E is linearly related to
these coefficients { }c to be fitted. To determine these coeffi-
cients, a substantial amount of first-principles computational
data is typically employed for training. This dataset encompasses
precise energies and atomic forces for diverse geometric con-
figurations, guiding the selection of coefficients to ensure that
MTP predictions closely align with first-principles calculations.
Selecting the appropriate tensor order and radial functions is
paramount. If the order is too simplistic, it may struggle to
accurately capture complex many-body effects. Conversely,
overly complex orders can lead to overfitting, diminishing the
accuracy of MTP predictions for unseen configurations. Con-
sequently, a series of tests, often involving cross-validation and
other model validation techniques, are conducted to identify the
optimal tensor order and radial functions. From this, one of the
limitations of MTP lies in its demand for a substantial number
of parameters to accurately represent many-body effects. This
requires an extensive training dataset for parameter fitting,
potentially resulting in a complex and time-consuming fitting
process. Furthermore, while MTP can effectively account for
many-body effects, it may still exhibit reduced accuracy if the
training data lack diversity or the structural sampling fails to
include certain specific interactions.

Nevertheless, MTP has been employed to various systems,
ranging from simple elements to binary systems [12,98]. In
many cases, MTP predictions closely match first-principles cal-
culations or experimental results while offering significantly
faster computational speed [97,99]. For instance, MTP can
provide in-depth insights into diffusion paths and coefficients
without expensive quantum mechanical simulations in the study
of Cu diffusion processes in high-temperature phase Cu2−xSe of
classical thermoelectric materials [100].

Overall, the MTP method is a promising way to describe
complex materials and molecular systems. Its ability to consider
many-body effects renders it more accurate than traditional
force field methods in many applications. Nevertheless, suffi-
cient training data and elaborate parameter tuning are also
required, as with most state-of-the-art methods, in order to
achieve optimal performance of cross-scale calculations.

Comprehensive comparison of descriptors
In the realm of cross-scale calculations, achieving accurate and
efficient descriptions of complex atomic structures is of para-
mount importance. Descriptors play a pivotal role in this pro-
cess, each offering its unique advantages, limitations, and
applications. Global and local descriptors serve as essential tools
for capturing structural features from both a holistic and loca-
lized perspective, respectively. To select the most appropriate
descriptor, it is required to deeply understand the characteristics
of various descriptors and their performance in different appli-
cations.

Global descriptors, such as Coulomb matrices and MBTR,
typically focus on the overall properties of a molecule or crystal,
suggesting that they attempt to capture atomic interactions from
a macroscopic viewpoint. For example, the Coulomb matrix
approach relies on Coulomb energies to describe pairwise
interactions throughout the molecular structure. This approach

performs well in describing the total energy of systems and
certain ground-state properties (e.g., melting point and statistical
moment of spectra) [72–74], but may not be sensitive enough
when local environments evolve. In contrast, MBTR takes more
interaction details into account, such as many-body interactions
between three atoms, providing a finer framework for capturing
complex structural features.

Local descriptors, such as ACSF, SOAP, and MTP, primarily
focus on the local environment of individual atoms or a small
group of atoms. Their purpose is to describe and understand the
characteristics of local atomic environments, such as coordina-
tion, chemical bonding, and local distortion. These descriptors
therefore have advantages in describing the local properties of
materials, such as atomic diffusion, point defect formation, and
localized electrocatalytic activity. In particular, SOAP captures
the local environment of atoms by considering the smooth
overlap between atomic positions, rendering this approach
especially effective in describing materials with similar structures
but different properties. Whereas MTP provides an expandable
framework for describing more complex atomic interactions,
such as magnetism and spin-polarized interactions [101].

Thus, selecting the appropriate descriptor fundamentally
depends on the research objectives and the physical effects to be
considered. If the focus is primarily on macroscopic properties
of materials, such as elastic modulus or atomization energies,
global descriptors may be more appropriate. However, if the
emphasis is on structure-property correlations at the micro-
scopic level, such as enhancing ionic conductivity by introducing
dopants or point defects, local descriptors should be considered.
Therefore, there exists no definitive “optimal” descriptor, but
rather descriptors that are most suitable for specific applications.
Understanding the characteristics and limitations of various
descriptors is key to selecting the right tool and successfully
applying it to specific study. In future cross-scale calculations,
novel descriptors or methods that combine multiple descriptors
may emerge to provide more accurate and comprehensive
structural encoding.

It is worth noting that descriptor transferability remains a
central concern in cross-scale calculations, where performance
on one dataset may not readily transfer to other chemical or
physical environments. It is critical that training datasets should
encompass a wide array of chemical elements, structural types,
and external conditions, ensuring that descriptors capture uni-
versally applicable features rather than those specific to parti-
cular systems. Moreover, incorporating regularization
techniques further reduces model complexity, which facilitates
avoiding overfitting and enhancing the generalizability of model
without compromising prediction accuracy. Regarding the
descriptor training, it can be trained both independently or in
conjunction with fitting models. While trained separately,
descriptors are typically pre-trained on datasets independent of
the final prediction task, followed by integration into neural
networks. This approach offers the flexibility of independent
training modules, but may require additional tuning to fit a
specific system. In contrast, joint training optimizes both
descriptor parameters and network weights. This method
directly associates the model with energy, forces, or other
properties throughout the training process, which may improve
prediction accuracy of the cross-scale model. However, this
method may also result in lower transferability of the descri-
ptors, challenging their application in other systems.
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FITTING METHODS FOR ML-IP—F
The selection of descriptors and the choice of regression models
play a crucial role in shaping the functional form of ML-IPs.
While theoretically, these two aspects can be considered inde-
pendently, in practice, they are often closely linked, with the
development of descriptors closely tied to specific regression
models. However, it is important to note that this inter-
dependence is not due to incompatibility between different
methods but rather reflects the personal preferences of devel-
opers [102]. When it comes to fitting ML-IPs, the current fitting
methods include linear regression [97,103], kernel methods
[104,105], deep neural networks (DNN), and other methods.

Kernel methods
Kernel methods (Fig. 4a) involve mapping input data to a high-
dimensional feature space using a kernel function, followed by
model training and fitting within this feature space using algo-
rithms such as linear regression, ridge regression, and support
vector machines (SVM). Kernel methods typically require the
kernel function to be square integrable and positive semidefinite,
with their smoothness guaranteed by the smoothness of the
kernel function itself. Currently, kernel methods utilize various
types of kernel functions, including linear, polynomial, Gaus-
sian, and Laplacian kernels. In the context of ML-IPs, Gaussian
approximation potential (GAP) relies on Gaussian processes and
utilizes kernels to approximate local atomic energies [104],
defining the similarity between different atomic descriptors. This
kernel-based ML-IP has been applied to predict the energy and
forces of various materials, including metals, semiconductors,

and amorphous solids [94,106–108]. Another popular kernel
regression-based ML-IP is the adaptive generalized nearest-
neighbor information (AGNI) potential, primarily used for
simulating interactions within metals [105].

Kernel methods are known for their effectiveness in dealing
with non-linear PESs in atomic potential fitting, making them
suitable for modeling interactions among multiple atoms. In
kernel methods, the cost of parameter training scales with the
cube of the number of training points. In applications of the
ML-IP, it is common for the number of training points to fall
within the range of 106 to 107, demanding significant compu-
tational resources for parameter estimation. Additionally, kernel
methods require the storage and factorization of a dense Gram
matrix, which is of size with the square of the number of training
points. This matrix impedes the hyperparameter tuning process,
as it necessitates multiple-model runs to determine optimal
hyperparameters. This training process becomes a bottleneck
when dealing with multiple elements, such as in alloys, or when
using active learning methods for training [110,111]. Another
major drawback of kernel methods is that the cost of making
predictions at new data points is proportional to the product of
the number of input features and the number of training points,
and the number of input features is typically on the order of 102.
This results in slower execution times, especially in MD. To
address the high computational costs in kernel methods, Dha-
liwal and colleagues [112] proposed approximating local atomic
energies as a linear combination of kernel-related random
features, reducing the training time by 96% compared with the
original kernel methods.

Figure 4 Fitting methods: (a) kernel function, (b) DNNs, (c) message passing neural networks, and (d) transformer. Reprinted with permission from
Ref. [109], Copyright 2017, the Authors.
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In the context of using kernel methods as fitting functions for
ML-IPs, they have found extensive application due to their
robust ability to perform nonlinear fitting, particularly excelling
with smaller datasets. Nevertheless, they entail substantial
computational costs. Kernel methods can also exhibit a sus-
ceptibility to overfitting in specific instances, especially when
intricate kernel functions are employed, potentially leading to
subpar generalization performance on novel data. Additionally,
kernel methods lack the capability to autonomously acquire
feature representations, necessitating manual intervention,
thereby posing challenges in end-to-end learning scenarios.

DNN
In recent years, deep learning has outperformed traditional
methods in various fields, including computer vision [113],
natural language processing [114], and protein folding [115].
The cornerstone of deep learning lies in the impressive ability of
DNNs to model high-dimensional nonlinear functions [116].
This technology has also been extensively researched in the
realm of ML-IPs.

In 2018, Weinan and colleagues [117] introduced a ground-
breaking MD approach called deep potential molecular
dynamics (DeepMD). This innovative method is built upon the
foundation of DNN. Within this framework (Fig. 4b), the pro-
cess of fitting atomic potentials involves two crucial compo-
nents: a feature network designed to describe chemical
environments and a residual network dedicated to training the
energies and forces of individual atoms. Through the application
of this method, they accomplished an impressive dual achieve-
ment—dramatically enhanced simulation speed while con-
currently preserving simulation results with an accuracy level
comparable to the precise AIMD method. This method has been
employed for a wide range of studies, including the elucidation
of the thermal decomposition mechanism of the novel energetic
material ICM-102 and dynamic nuclear magnetic resonance
chemical shift calculations for paramagnetic battery materials
[118,119]. Nitol and his fellow researchers [120] introduced an
atomic potential approach grounded in artificial neural networks
(ANN), with a specific emphasis on the element zinc. Remark-
ably, they effectively applied this method to replicate training
data from DFT, attaining chemical precision, and precisely
forecasting the c/a ratio of the hexagonal close-packed (HCP)
ground state. These accomplishments highlight the vast potential
of DNN and comparable deep learning techniques in the fields
of materials science and molecular simulation. They enable
researchers to furnish precise descriptions of atomic interactions
and material properties.

However, with the proliferation of experiments like quantum
chemistry calculations and MD simulations, a vast amount of
data has been generated. Most classical ML techniques struggle
to effectively harness this current data deluge. Yet, the symmetry
inherent in atomic systems suggests that neural networks
applicable to network graphs can also be applied to molecular
models. Therefore, finding a more powerful model for fitting
ML-IPs can be equivalent to discovering a model suitable for
network graphs. Expanding on this concept, as shown in Fig. 4c,
Gilmer et al. [121] introduced a framework for supervised
learning based on graphs, incorporating both message passing
and message reading neural networks (PMNN). Through this
approach, he achieved the successful development of high-pre-
cision potential functions for 13 properties within the QM-9

dataset. Veronique and her colleagues [122] constructed ML-IPs
for MOF materials based on equivariant PMNN. The results
demonstrate that even for systems with multiple phases, accurate
ML-IPs can be constructed with just around 1000 quantum
mechanical evaluations. While PMNN demonstrates strong
performance on small datasets with short-time simulations, the
field nevertheless warrants further exploration. For example,
there is currently a lack of clarity on how to assemble the most
diverse training dataset for frameworks to ensure optimal
material transferability. Additionally, it is crucial to investigate
whether equivariant message-passing neural networks, such as
neural equivariant interatomic potentials (NequIP), can main-
tain their precision across diverse materials design spaces. In
such scenarios, integrating the message-passing architecture
with more recent models may be necessary to offer a more
accurate representation of long-range interactions.

In recent years, transformer (Fig. 4d), as a powerful class of
deep learning methods, has been widely used in natural language
processing and the field of proteins. AlphaFold2, developed by
DeepMind [123], has achieved accuracy levels in predicting
protein 3D structures from amino acid sequences that are
comparable to experimentally determined structures. Building
on this, Janson et al. [124] employed GAN to learn the 3D
conformation distribution within conformational datasets. They
introduced the idpGAN model, capable of generating 3D Car-
tesian coordinates for conformations with varying sequences
and lengths. This model exhibits rapid sampling capabilities,
enabling the generation of thousands of independent con-
formations in a short time, offering an efficient means of gen-
erating conformational ensembles. As the availability of large-
scale DFT data is limited in materials science compared with the
protein field, making transformer frameworks require sub-
stantial data challenging to apply, Liao and Smidt [125] har-
nessed the advantages of the transformer architecture and
combined it with SE(3)/E(3)-equivariant graph neural networks
(Equiformer) based on irreplaceable representations. They
achieved results on QM-9, MD-17, and OC20 datasets that are
comparable to previous models. In summary, transformer-based
ML-IPs hold great promise for rapid development and appli-
cation.

In conclusion, ML-IPs are fundamentally transforming the
research paradigm in the field of molecular simulations. The
wealth of data generated from first-principle calculations have
significantly expanded the scope of these models. However,
when faced with a new and complex system, the need to generate
substantial new data for model training remains a challenge.
Drawing inspiration from developments in other artificial
intelligence domains, the question of whether we can harness the
vast amount of existing data and reuse pre-trained models is a
pressing issue for reducing the cost of model development.
Zhang et al. [126] developed a significant pre-trained model
according to a pivotal gated attention mechanism, known as
DPA-1. This model was constructed using a comprehensive
dataset that includes 56 distinct elements, with 2 million data
points (comprising energy and force) randomly sampled from
OC20. Their findings illustrate that the application of transfer
learning with this pre-trained model substantially diminishes the
reliance on new data across various datasets. Preferred networks,
in collaboration with organizations including ENEOS, have
developed a universal neural network atomic potential function
known as PreFerred Potential (PFP) [127]. This achievement is
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based on the TeaNet architecture from the Massachusetts
Institute of Technology and the University of Tokyo and
extensive training on a large-scale dataset. PFP covers all 72
elements present on the periodic table. In its pre-training phase,
PFP utilizes an extensive dataset comprising approximately 150
million molecular conformations and 1 million protein pocket
conformations. Zhou et al. [128] have developed a universal
molecular representation learning framework based on 3D
molecular structures, known as Uni-Mol. Built on the SE(3)-
equivariant transformer architecture and pre-trained on a large-
scale dataset comprising 210 million molecular conformations
and 3.2 million protein pocket conformations, Uni-Mol
demonstrates proficiency in handling diverse organic small
molecules and protein pockets. Uni-Mol stands out in directly
learning molecular representations from 3D molecular struc-
tures, while DPA-1 generates 3D molecular conformations from
1D or 2D molecular representations. Consequently, Uni-Mol
and PFP effectively use 3D molecular information, whereas
DPA-1 may necessitate more computational resources and time
for the generation and optimization of molecular conformations.
Both Uni-Mol and PFP take graph-based representations to
characterize crystal structures, whereas DPA-1 utilizes a poten-
tial energy function called deep potential to assess the stability
and activity of molecules. The strengths of Uni-Mol and PFP lie
in their abilities to generate diverse molecular structures and
consider the physical and chemical properties as well as phar-
macological effects of molecules. On the other hand, DPA-1
excels in accurately simulating the dynamics and thermo-
dynamics of molecules. These expansive pre-trained models
alleviate the need for domain-specific DFT data, consequently
reducing training costs and expediting the advancement of ML-
IPs.

APPLICATIONS OF ML-IPs
In recent years, ML-IPs have found extensive applications in
fields such as biology, chemistry, and materials science. These
applications can be further explored from two perspectives:
across different time scales and spatial scales.

Applications across time scales
When researching lithium-ion transport in lithium superionic
conductors, the conventional method typically entails extra-
polating room temperature ion diffusion properties directly
from high-temperature (>600 K) ab initio AIMD using the
Arrhenius assumption. However, this approach can introduce
certain inaccuracies. As shown in Fig. 5a, Xu et al. [129]
employing 1-μs ultra-long timescale low-temperature MLMD
simulations, have unveiled the non-linear Arrhenius behavior of
lithium ions within Li3ErCl6. This non-linearity stands as a
primary factor contributing to the tendency of traditional AIMD
simulations to overestimate its ionic conductivity. The photo-
induced processes are fundamental in nature, but the precise
simulation of their dynamics is severely constrained by the
computational costs of basic quantum chemistry calculations,
which hinders their application on long time scales. In light of
this, Westermayr et al. [130] have developed an approach based
on DNNs to learn the relationship between molecular geometry
and its high-dimensional electronic properties, as shown in
Fig. 5b, enabling accurate photodynamics on the nanosecond
time scale. ML force fields have been employed to conduct
in-situ, cross-scale, and 200-ps-long MD simulations of lithium

dendrite morphology in an electrolyte environment (Fig. 5c).
This approach has helped determine that surface energy and
grain boundary energy are the primary driving forces behind the
morphological evolution [131].

Applications across spatial scales
Jia et al. [132] employed the deep potential MD approach,
enabling them to simulate trajectories exceeding 1 ns each day
and simulating over 100 million atoms for more than 1 ns each
day. In contrast to previous simulations, which had a maximum
of 1 million silicon atoms (velocity = 4 × 10−3 s/step/atom), the
fastest simulation speed reached 1.3 × 10−6 s/step/atom (for a
system containing 9000 water molecules). The research suc-
cessfully simulated 679 million water molecules and 127 million
copper atoms (Fig. 5d), representing an improvement in speed
by several orders of magnitude compared with previous simu-
lations. Wang et al. [133] introduced AI2BMD, as shown in
Fig. 5e, a deep learning-based quantum-accurate protein
dynamics simulation system. AI2BMD incorporates novel pro-
tein segmentation techniques, an ML force field based on ViS-
Net, and a self-developed dynamic simulation system. This
system enables precise calculations for various proteins con-
taining over 10,000 atoms and exhibits a wide range of applic-
ability. Lai et al. [134] conducted large-scale MD simulations
using a neural network potential with quantum mechanical
accuracy at the lithium-copper interface (Fig. 5f). They investi-
gated the dynamic behavior of lithium atom deposition on
copper surfaces with different Miller indices and the arrange-
ment characteristics of lithium atoms on copper surfaces. It was
observed that the performance of Cu(100) and Cu(111) surfaces
is significantly superior to that of the Cu(110) surface. These
findings offer theoretical guidance for the manufacturing of
commercial copper foils and the commercialization of anode-
free lithium metal batteries. In addition, Milardovich et al. [135]
accomplished high-precision simulations of 3024 Si3N4 atoms
using ML-IPs developed through active learning combined with
the GAP method. The computed neutron scattering structure
factor of amorphous Si3N4 aligns well with experimental results.

In summary, the rapid advancement of ML-IPs has enabled
scientists to conduct more precise and efficient MD simulations
across both temporal and spatial scales in fields such as materials
science, biology, and electrochemistry. This has unveiled
numerous previously unobservable phenomena and introduced
entirely new research methodologies. These innovative approa-
ches and technologies provide powerful tools for gaining a
deeper understanding of material behavior, materials design,
and the functionality of biomolecules, and they hold significant
promise for shaping the future of scientific research and appli-
cations.

CHALLENGES OF ML-IPs

Challenges for structure sampling
Based on my existing level of knowledge, I can summarize the
challenges in the structural sampling section as follows: (1) the
accuracy of ML-IPs largely depends on the accuracy and
diversity of the training dataset. Training errors increase with
increasing sampling temperature and with an increase in
structural disorder [110,136,137]. Currently, active learning
methods that select different data from MD trajectories and
adaptively update active learning divergence thresholds have
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significantly accelerated and improved structural sampling
[99,138,139]. However, there are still challenges in balancing the
proportion of transition state structures and equilibrium struc-
tures in chemical reactions to achieve global PES sampling.
Developing an integrated approach combining active learning,
crystal structure sampling, materials enhancement, and twin
neural networks holds promise for rapidly sampling the global
PESs in complex material systems and chemical reactions. (2) In
accelerating PES exploration through unsupervised learning,
research into designing unsupervised generative models for
inorganic crystal structures is still in its exploratory stage. Fur-
ther increasing the effective rate of crystal structure generation
and enhancing structural diversity are important directions for
the field. Additionally, existing models’ structure generation

processes are stochastic and often challenging to control in
terms of the number of atoms and stoichiometry. Developing
conditional generative models offers the potential for controlled
crystal structure generation, providing new means for designing
function-oriented materials. (3) Currently, there is a lack of
systematic comparisons of ML methods for modeling atomic
interactions in terms of both accuracy and efficiency. One of the
main reasons is the absence of widely accepted and challenging
efficiency. Existing datasets that are widely used, such as QM-9
[140], have relatively low difficulty levels and do not fully reflect
the differences in the capabilities of different methods. The field
urgently needs to establish datasets with a significant impact on
the domain, similar to ImageNet [141]. In summary, the field of
structural sampling needs to overcome challenges related to

Figure 5 Applications of ML-IPs: (a) direction projected MSD curves of Li ion at 300 K of Li7P3S11. Reprinted with permission from Ref. [129]. Copyright
2023, the Author(s). (b) Nonadiabatic MD simulations using DNNs for 1 ns. After excitation to the S2 state, ultrafast internal conversion to the S1 state takes
place, followed by recovery of the S0 state within 300 fs. Until 10 ps, an ensemble of 200 trajectories is analyzed, followed by the population averaged from 2
trajectories. Reprinted with permission from Ref. [130]. Copyright 2019, the Royal Society of Chemistry. (c) Morphology changes of cuboid configurations
with different exposed surfaces, top view of cuboid configuration with [98] exposed plane and [108] exposed plane, and statistics changes of surface atoms and
mean displacement of configurations during MLFF-MD simulation. Reprinted with permission from Ref. [131]. Copyright 2022, Wiley-VCH GmbH.
(d) 10,401,218-atom nanocrystalline copper consisting of 64 randomly oriented crystals with 15-nm averaged grain diameter, and the nanocrystalline copper
after 10% tensile deformation along the z axis. Purple, yellow, and cyan denote the atoms in the grains, atoms in the grain boundaries, and atoms in the
stacking faults. Reprinted with permission from Ref. [132]. Copyright 2020, IEEE. (e) Folded structures of 9 evaluated proteins. For these proteins, the number
of atoms ranges from 175 to 13,728, and time consumption of energy calculation for 9 proteins. Reprinted with permission from Ref. [133]. Copyright 2023,
the Authors. (f) Li homogeneous deposition on the Cu surfaces with different indices and the results of SSA, and snapshots of Li homogeneous deposition and
the curve of SSA results of the first 10 Li monolayers on the Cu (110) surfaces. Reprinted with permission from Ref. [134]. Copyright 2022, Wiley-VCH
GmbH.
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datasets, accuracy, and diversity to enhance the efficiency and
accuracy of materials design and PES exploration.

Challenges for descriptors
The current state of structural descriptors presents several cri-
tical challenges. (1) Most descriptors tend to focus on mathe-
matically complete forms, leading to the neglect of key physical
effects such as quantum fluctuations, electronic correlations, and
spin-orbit interactions [71,84]. This issue may be solved by
developing more advanced descriptor models that integrate
additional physical principles, extending current atomic
descriptors into “atom + electron” descriptors. (2) Since the
training of potential functions relies on a large number of
microscopic structural configurations, current descriptors face
challenges in handling complex material systems with hetero-
geneous interfaces, nanoscale effects, or topological structures.
Developing specific descriptors tailored to complex structures,
such as novel descriptors combining short-range local environ-
ments with long-range interactions, could help address this
challenge [1,142]. (3) Descriptors involving many-body inter-
actions often suffer from computational inefficiency. Employing
approximation algorithms, such as deep learning and graph
neural networks, may facilitate the optimization of current
descriptors with large to-be-fitted coefficients [47,68,76,143–
145]. (4) Current structural descriptors might only reflect the
static structural features, without considering the dynamic
influence of external field conditions, such as temperature,
pressure, and chemical environments on structural descriptors
[19]. Therefore, integrating intrinsic structural parameters with
experimental condition data is an important direction for con-
structing novel descriptors.

In general, the future of structural descriptors will encompass
various developments, including better incorporation of physical
effects, handling complex material systems, and improving
computational efficiency. We can foresee that with continuous
refinement of physical connotations, mathematical methods,
and computational techniques, the emergence of accurate and
efficient descriptors is on the horizon, providing powerful tools
for cross-scale computational design of materials.

Challenges for fitting methods
When it comes to fitting methods for ML-IP, several primary
challenges emerge: (1) harnessing the robust fitting capabilities
of ML based on high-dimensional atomic environment
descriptors and tensor features has led to a series of ML-IPs
models using neural networks. These models approach chemical
accuracy in small-scale benchmark tests. However, they have
predominantly been tailored to specific material systems, and
achieving a genuine universal model remains a challenge. While
general potential function models like PFP and DPA-1 have
been introduced, they still lack the vast datasets available in
natural language processing. High-precision DFT datasets cur-
rently cover only a fraction of the entire materials landscape.
Therefore, further research is needed to enhance the accuracy
and generalization of such universal models. This can be
accomplished by leveraging higher-precision quantum compu-
tations to provide training data and expanding the sample space
through parallel high-throughput calculations, reinforcing sup-
port for rare cases. (2) Interpretability: in contrast to the high
interpretability of DFT, ML-IP models exhibit relatively limited
interpretability. While techniques such as SHAP and class acti-

vation maps offer some level of model interpretation, true
interpretability, which encompasses rigorous physical founda-
tions and the precise disclosure of atomic interactions, remains
elusive. Developing model interpretation methods and inte-
grating domain knowledge with ML model interpretations will
enhance the quality and applicability of explanations.

In summary, the advancement of high-precision, fast, and
universally applicable ML-IP simulation methods, coupled with
substantial progress in model interpretability, will accelerate the
widespread adoption of ML-IPs across various temporal and
spatial scales in disciplines including biology, chemistry, and
materials science.

CONCLUSIONS
The existing ML atomic potentials have significantly expanded
the temporal and spatial scales of atomic simulations. This
review provides an overview of three crucial aspects that are
paramount to ML atomic potentials: (1) structure sampling,
(2) structure descriptors, and (3) potential energy fitting meth-
ods. Atomic simulations based on ML atomic potentials could be
broadly applied in fields such as materials science, chemistry,
and biology. Leveraging the cross-temporal and cross-spatial
scale characteristics of ML atomic potentials enables the pre-
diction of new material structures and automatic exploration of
chemical reaction mechanisms.

In the future, through further optimization of ML models and
simulation methods, along with the construction of a large-scale,
high-precision dataset, it is possible to develop a universal ML
atomic potential model that spans the entire materials domain.
This advancement will further expand the application scenarios
of ML atomic potentials, accelerate the research cycle in theo-
retical simulations, and push over the boundaries of atomic
simulations in terms of both time and spatial scales.
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机器学习原子间势在材料跨尺度计算模拟中的最新
进展
冉念1,2, 殷亮1,2,3, 邱吴劼1,2,4*, 刘建军1,2,3*

摘要 近年来, 机器学习原子势(ML-IP)因其兼顾高精度和高效率的优
势, 在材料科学、化学、生物学等领域的大尺度原子模拟研究中引起
了广泛关注. 本文聚焦于ML-IP在材料跨尺度计算模型中的应用, 全面
介绍了ML-IP的结构采样、结构描述符和拟合方法. 这些方法使ML-IP
能够以高精度和高效率模拟分子和晶体的动力学和热力学特性. 跨学
科研究领域中更高效、先进的技术在开拓覆盖不同时间和空间尺度的
广泛应用方面发挥着重要作用. 因此, ML-IP方法为未来的研究和创新
铺平了道路, 为多个领域带来了革命性的机会.
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