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Cu2O as the hole extraction layer modified BiVO4 photoanode to enhance
charge separation and transfer

Ze Tian1, Zhenxia Wang1, Zizai Ma2,3*, Jinping Li3 and Xiaoguang Wang1,3*

ABSTRACT Photoinduced charge separation and transfer
are the core factors affecting the photoelectrochemical per-
formance of BiVO4-based photoanodes. Herein, a hole ex-
traction layer was inserted between a BiVO4 photoanode and
an oxygen evolution cocatalyst (OEC). The introduction of
Cu2O as a hole extraction layer between the OEC layer
(FeOOH/NiOOH) and BiVO4 optimized the migration paths
and extended the lifetimes of the photogenerated holes, thus
enhancing the photoelectrochemical performance of the
photoelectrode. The charge separation efficiency of the opti-
mized BiVO4/Cu2O/FeOOH/NiOOH photoanode was 92.0%
significantly higher than the 70.6% efficiency for pure BiVO4.
As expected, this photoanode also displayed a high photo-
current density of 3.85 mA cm−2 at 1.23 VRHE (under AM 1.5G
illumination), which was 2.77 times greater than that of pure
BiVO4. Our results indicate that electrodepositing a Cu2O hole
extraction layer is a simple and scalable method for increasing
the photoelectrochemical activity of BiVO4 photoanodes for
solar water splitting.

Keywords: BiVO4, Cu2O, hole extraction layer, solar water
splitting

INTRODUCTION
The energy crisis and environmental degradation are becoming
increasingly serious worldwide. Hydrogen energy is clean and
renewable energy, and it has received widespread attention [1,2].
In 1972, Fujishima and Honda [3] discovered that TiO2 elec-
trodes could produce hydrogen via water splitting under irra-
diation. Since then, photoelectrochemical (PEC) water splitting
has attracted increasing interest as a promising and envir-
onmentally friendly method for solar hydrogen production [4,5].
In the PEC reaction, the photoelectrode absorbs light to generate
holes and electrons, which are then separated and transferred,
followed by water oxidation and reduction reactions. The water
splitting reaction is an extremely energy-intensive uphill reac-
tion [6]. In addition, the anodic water oxidation process occurs
at the contact interface between the anode and the electrolyte
solution via a four-electron transfer process (2H2O + 4h+ → O2↑
+ 4H+), which is the main limiting step of the water oxidation
reaction [7]. Therefore, the development of photoanodes with
high efficiencies and low costs is crucial for constructing high-

performance and commercially viable PEC devices.
Through the continuous efforts of researchers in recent years,

several highly efficient semiconductors, such as WO3 [8,9], TiO2
[10,11], Fe2O3 [12,13], Ta3N5 [14,15] and BiVO4 [16–18] have
emerged as photoanodes. To date, monoclinic scheelite BiVO4 is
the ideal candidate for photoanodes [19,20], which has the
advantages of a small band gap (~2.4 eV), suitable edge position,
low initial potential and abundant synthetic elements [21–24].
Under AM 1.5G illumination, the maximum theoretical pho-
tocurrent density of BiVO4 photoanode reached 7.5 mA cm−2

[25], and the theoretical conversion efficiency for solar energy
hydrogen production (STH) reached 9.1% [26]. However, due to
poor electrical conductivities, short carrier diffusion lengths and
slow water oxidation kinetics, BiVO4 photoanodes suffer from
severe charge recombination both in the bulk and at the inter-
face during PEC water splitting, which is the main problem
limiting the use of BiVO4 [27]. The deposition of oxygen evo-
lution cocatalysts (OECs) such as CoPi [28], NiOOH [29],
FeOOH [30], CoOOH [31] and NiFeOx [32] accelerated the
kinetics of aqueous oxidation (surface charge transfer) on the
surface of BiVO4. According to the literature, modification of
the cocatalysts overcomes the sluggish water oxidation kinetics
and thus inhibits the recombination of the photogenerated
charges at the photoanode/electrolyte interface. However, this
strategy generates new recombination centres at the semi-
conductor/cocatalyst interface, which in turn deteriorates the
water oxidation capacities of the PECs [33,34].

In this case, it is imperative to modulate the interface of the
photoanode by introducing a hole extraction layer. It serves as a
hole reservoir and/or hole mediator at the interface, thus
reducing undesirable interfacial charge recombination. For
example, Domen and coworkers [35] constructed a p-n junction
by loading p-NiO on the OEC/BiVO4 surface, which facilitated
rapid transfer of the holes and increased the rate of water oxi-
dation. In addition, other p-type semiconductors, such as Co3O4
[36], MoS2 [37], and BiFeO3 [38], also provided hole extraction
and water oxidation in various photoanodes. As a narrow-band-
gap (2.0 eV) p-type semiconductor, the valence band (VB) of
Cu2O is located between the conduction band (CB) and the VB
of bare BiVO4, and its CB is more negative than that of BiVO4
[39]. Therefore, the development of Cu2O as a hole extraction
layer for BiVO4 photoanodes is desirable.

Herein, we proposed a feasible method for synthezing a BiVO4
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photoanode with a Cu2O hole extraction layer for PEC water
oxidation. A Cu2O layer was introduced by facile electro-
deposition, which was expected to ensure rapid separation and
transport of the photogenerated carriers. Finally, after loading
the water oxidation cocatalyst, the BiVO4/Cu2O/FeOOH/
NiOOH photoanode exhibited a photocurrent density of
3.85 mA cm−2 at 1.23 VRHE, which was 2.77 times greater than
that of pure BiVO4.

EXPERIMENTAL SECTION

Chemicals and reagents
Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O, ≥99.0%), potas-
sium iodide (KI, ≥99.0%), p-benzoquinone (C6H4O2, 97.0%),
vanadyl(IV)-acetylacetonate (C10H14O5V, 98.0%), methyl sulf-
oxide (C2H6OS, >99.0%), copper(II) sulfate (CuSO4, 99.0%), iron
(II) sulfate hydrate (FeSO4·7H2O, ≥99.0%), ethyl alcohol
(C2H6O, 99.5%), and sodium hydroxide (NaOH, 97.0%) were
obtained from Shanghai Aladdin Biochemical Technology Co.,
Ltd.

Preparation of photoanodes
BiVO4 photoanodes were prepared by electrodeposition and
annealing methods [40]. BiVO4/Cu2O photoanodes were
obtained by electrodeposition of Cu2O with varying composite
quantities on the surface of BiVO4. The 0.4 M CuSO4, 3 M lactic
acid and 4 M NaOH were dissolved in deionized water as elec-
trolytes. The solution is kept at 35°C to generate single-phase
Cu2O [41]. The three-electrode system was adopted, with the
prepared BiVO4 as the working electrode, the Pt sheet as the
counter electrode, and Ag/AgCl as the reference electrode, and
the potential was deposited at −0.5 VAg/AgCl, with charges of
0.015, 0.02, and 0.025 C cm−2, respectively. The FeOOH/NiOOH
OEC layer was prepared using photo-assisted electrodeposition,
which was deposited separately for 6 min [42].

Characterization
The crystal structure of the photoanodes was characterized by an
X-ray diffractometer (XRD, DX-2700) at 40 kV and 30 mA with
a Cu Kα radiation source (λ = 0.15406 nm). Scanning electron
microscopy (SEM, FEI QUANTA FEG250), transmission elec-
tron microscopy (TEM, FEI Tecnai G2 F30), and energy dis-
persion X-ray analyzer (EDX) were used to characterize the
morphology of the photoanodes and the elemental distribution
of the photoanodes. The optical property measurements were
conducted on an ultraviolet-visible (UV-vis) spectra photometer
(UV-9000S). The surface composition and elemental chemical
state of the photoanodes were detected by X-ray photoelectron
spectroscopy (XPS, Thermo Scientific ESCALAB 250Xi) with Al
Kα radiation at 12.5 kV and 16 mA. All binding energies were
calibrated according to reference energy of C 1s (284.8 eV).

PEC performance measurement
The measurement and analysis of PEC performance was per-
formed on the VSP-3e electrochemical workstation. The pre-
pared photoanodes were used as the working electrode, a Pt
plate and an Ag/AgCl electrode were used as the counter and the
reference electrodes, respectively. Illumination was offered by a
xenon lamp (MC-X301B) equipped with AM 1.5G filter, the
intensity was calibrated to 100 mW cm−2 by standard reference
of a Newport 91150 silicon solar cell, and the irradiation area of

all measurements was 1 cm2. Most experiments were performed
in 0.5 M potassium borate buffer solution, and some with 1 M
Na2SO3 was added into the electrolyte to compare photocurrents
obtained from sulfite and water oxidation. All potentials are
given versus reversible hydrogen electrode (RHE) using the RHE
calibration: ERHE = EAg/AgCl + 0.059pH + 0.197, where pH is 9.3 in
the electrolyte measured by the pH meter (Fig. S1). The scanning
rate measured by linear scanning voltammetry was 10 mV s−1.
The incident photon-to-electron conversion efficiency (IPCE)
was also tested at 1.23 VRHE under the three-electrode system
described above. Electrochemical impedance spectroscopy (EIS)
was performed at 0.8 VRHE in the frequency range of 10−1–105 Hz
with an amplitude of 10 mV. The Mott–Schottky plots were
measured in the dark state at the frequency of 1 kHz.

RESULTS AND DISCUSSION

Structure and morphology of photoanodes
The XRD patterns of BiVO4, Cu2O, BiVO4/Cu2O, and BiVO4/
Cu2O/FeOOH/NiOOH were shown in Fig. 1. The main dif-
fraction peaks of pure BiVO4 were 18.9°, 28.9°, 30.5°, 40.0°, and
47.3°, corresponding to (001), (112), (004), (−121), and (024)
crystal planes, respectively. It indicated that the prepared BiVO4
was the monoclinic phase with scheelite structure (PDF#97-003-
3243), which had a unique Bi 6s electronic structure with O 2p
hybridization and the asymmetry of BiO8 polyhedral [43]. The
peaks at 36.8° and 42.8° were indexed to the (111) and (200)
crystal planes of the Cu2O (PDF#97-062-8619) [41]. Likewise,
the corresponding peak of BiVO4/Cu2O indicated that Cu2O was
successfully deposited on the surface of BiVO4 photoanode. In
addition, the XRD pattern of BiVO4/Cu2O/FeOOH/NiOOH was
quite similar to the prepared BiVO4/Cu2O, and no diffraction
peaks corresponding to FeOOH and NiOOH were observed,
which may be due to the fact that FeOOH and NiOOH are thin
and amorphous.

Fig. 2a, b show the SEM images of BiVO4, which exhibited a
wormlike structure uniformly grown on the fluorine-doped tin
oxide substrate (FTO). Furthermore, Cu2O nanoparticles
anchored on the BiVO4 via electrodeposition were clearly
observed as shown in Fig. 2c, d, and the sizes of the Cu2O

Figure 1 XRD patterns of Cu2O, BiVO4, BiVO4/Cu2O, and BiVO4/Cu2O/
FeOOH/NiOOH photoanodes.
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particles ranged from 100 to 200 nm [44]. Fig. 2e, f display the
electrode after deposition of the FeOOH/NiOOH OEC layer,
and there were obvious particles on the surface of the electrode,
with almost no significant change in the sizes of the particles.
However, these particles became relatively rough, which proved
that the FeOOH/NiOOH OEC layer was deposited on the sur-
face of BiVO4/Cu2O [45].

In addition, more detailed microstructural information was
obtained with TEM. As shown in Fig. 2g, a typical wormlike
morphology was identified, and it was clear that the nano-
particles were attached to the BiVO4, which was consistent with
the SEM. The high-resolution TEM (HRTEM) image (Fig. 2h)
clearly depicted lattice fringes with different orientations. The
spacings of 0.209 and 0.292 nm corresponded to the (200) lattice
plane of Cu2O in the cubic structure and the (004) lattice plane
of BiVO4 in the monoclinic phase, respectively. The selected area
electron diffraction (SAED) images also indicated the presence
of BiVO4 and Cu2O. The close contact between BiVO4 and Cu2O
was very important in accelerating charge separation and
transmission [46]. As shown in Fig. S2, the deposited FeOOH/
NiOOH OEC layer was amorphous and had thicknesses of
approximately 20–30 nm. The elemental mappings (Fig. 2j–p)
demonstrated the presence of Bi, V, Cu, O, Fe, and Ni in the
BiVO4/Cu2O/FeOOH/NiOOH photoanode, and their spatial
distributions were uniform.

XPS was used to determine the chemical states of the elements
contained in the photoanodes. The XPS survey spectrum
(Fig. 3a) showed the presence of Bi, V, O, Cu, Fe and Ni in the

prepared BiVO4/Cu2O/FeOOH/NiOOH photoanode. The high-
resolution Bi 4f XPS data (Fig. 3b) displayed two peaks centred
at 159.0 and 164.3 eV, which corresponded to the Bi 4f7/2 and
Bi 4f5/2 binding energies, respectively, indicating that Bi was
present in the Bi3+ oxidation state [47]. Fig. 3c shows the V 2p
high-resolution spectrum. Two peaks were located at 516.7 eV
(V 2p3/2) and 524.0 eV (V 2p1/2), which indicated the V5+ oxi-
dation state [48]. In the O 1s XPS spectrum displayed in Fig. 3d,
three peaks at 530.0, 531.6 and 532.8 eV were attributed to lattice
oxygen (OL), oxygen vacancies or defects (Ov) and chemically
adsorbed or dissociated oxygen (Oc), respectively [49]. Fig. 3e
shows that Cu exhibited two peaks at 932.5 and 952.2 eV,
indicating the presence of the Cu1+ oxidation state [50]. The
peaks located at 710.8 and 723.9 eV in the Fe 2p XPS spectrum
(Fig. 3f) were assigned to Fe2+, and the other peaks located at
713.1 and 726.2 eV were assigned to Fe3+ [51]. In the Ni 2p XPS
spectrum in Fig. 3g, the peaks at 855.6 and 873.0 eV were
assigned to Ni2+, and the peaks at 856.4 and 873.8 eV were those
of Ni3+ [52]. Therefore, Cu2O, FeOOH and NiOOH were
deposited on the surface of the BiVO4 photoanode. Notably, the
high-resolution XPS spectra of BiVO4 and BiVO4/Cu2O exhib-
ited shifts to lower Bi 4f, V 2p and O 1s binding energies
(Fig. S3a–c) relative to those for BiVO4/Cu2O/FeOOH/NiOOH.
In contrast, the Cu 2p (Fig. S3d) peaks moved to higher binding
energies. These changes indicated interactions between the
semiconductors [53].

To reveal the absorption characteristics of the prepared pho-
toanodes, Fig. 4a shows the UV-vis absorption spectra of pure

Figure 2 SEM images of (a, b) pure BiVO4, (c, d) BiVO4/Cu2O, and (e, f) BiVO4/Cu2O/FeOOH/NiOOH photoanodes; (g) TEM, (h) HRTEM, and (i) SAED
images of BiVO4/Cu2O/FeOOH/NiOOH photoanode; (j) STEM image and (k–p) elemental mappings of Bi, V, Cu, O, Fe, and Ni, respectively.
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BiVO4, BiVO4/Cu2O and BiVO4/Cu2O/FeOOH/NiOOH. The
peak for BiVO4 in the visible spectrum corresponded to its
intrinsic bandgap energy [54]. The band gaps (Eg) of the pho-
toanode were derived with the Tauc equation:

h A h E=  ( ) , (1)n
g

/2

where α is the absorption coefficient, hν is the photon energy,
and A is a constant related to the material properties. Mono-
clinic BiVO4 and cubic Cu2O are direct semiconductors and thus
the n value is 1 [55].

Fig. 4b shows a bandgap of approximately 2.56 eV for bare
BiVO4, which was consistent with that of monoclinic BiVO4
[56]. The bandgaps of the BiVO4/Cu2O and BiVO4/Cu2O/
FeOOH/NiOOH photoanodes remained almost unchanged
(approximately 2.55 eV), indicating that Cu2O, FeOOH and
NiOOH made almost no contribution to light adsorption.

Photoanode photoelectric chemical properties
The activities of the photoanodes fabricated for PEC water
oxidation were examined by generating the current-potential
curves in 0.5 M KBi. The loading of Cu2O on the BiVO4
nanoarray was preliminarily optimized, as shown in Fig. S4.

Fig. 5a shows typical linear sweep voltammetry (LSV) plots for
the BiVO4, BiVO4/Cu2O, and BiVO4/Cu2O/FeOOH/NiOOH
photoanodes (Cu2O deposition charge was 0.02 C cm−2). The
photocurrent density of the BiVO4/Cu2O/FeOOH/NiOOH
photoanode reached 3.85 mA cm−2 at 1.23 VRHE, which was 2.77
times greater than that for pure BiVO4 (1.39 mA cm−2) and 1.67
times greater than that for BiVO4/Cu2O (2.30 mA cm−2).
Moreover, compared with those reported previously, the pho-
tocurrent density of the BiVO4/Cu2O/FeOOH/NiOOH photo-
anode was relatively high, as shown in Table S1. In addition, the
onset potentials of the BiVO4/Cu2O/FeOOH/NiOOH and
BiVO4/Cu2O photoelectrodes were 270 and 411 mV, respec-
tively, which showed considerable negative shifts compared with
the 529 mV potential for the BiVO4 photoelectrode. The nega-
tive shift in the onset potential was attributed to loading of the
surface OEC, which substantially increased the water oxidation
capacity of the photoelectrode. More importantly, after depos-
iting the Cu2O hole extraction layer, it served as a bridge to the
surface OEC, increased the charge transfer and separation effi-
ciencies, and thus reduced the overpotential of the PEC reaction.

Furthermore, the IPCEs of the BiVO4, BiVO4/Cu2O and
BiVO4/Cu2O/FeOOH/NiOOH photoanodes were calculated

Figure 3 XPS spectra of BiVO4/Cu2O/FeOOH/NiOOH: (a) survey, (b) Bi 4f, (c) V 2p, (d) O 1s, (e) Cu 2p, (f) Fe 2p, and (g) Ni 2p region.
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Figure 4 (a) UV-vis absorption spectra and (b) band gap energy of BiVO4, BiVO4/Cu2O and BiVO4/Cu2O/FeOOH/NiOOH photoanodes.

Figure 5 (a) Linear sweep curves, (b) IPCE spectra collected at 1.23 VRHE in 0.5 M KBi, (c) transient photocurrent responses, (d) transient decay time,
(e) Nyquist plot at 0.8 VRHE in 0.5 M KBi, and fitted plots (inset is the equivalent circuit used for fitting), and (f) photocurrent stability curves measured in
0.5 M KBi at 1.23 VRHE.
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with the following equation:

( )J PIPCE =  1240 × / × , (2)ph light

where Jph is the optical current density measured at a specific
incident wavelength, λ is the wavelength of the incident light,
and Plight is the power density measured at a specific wavelength
[57]. IPCE considers three main processes in PEC cells: light
absorption, separation of carriers in semiconductors, and carrier
transfer at the semiconductor/electrolyte interface.

As shown in Fig. 5b, after decoration with Cu2O, FeOOH and
NiOOH, the IPCE of the BiVO4 photoanode increased sig-
nificantly in the absorption wavelength range. The IPCE of the
BiVO4/Cu2O/FeOOH/NiOOH photoanode reached ~23.5%,
which was nearly ~1.5 and ~4.2 times greater than those of
BiVO4/Cu2O (15.2% at 420 nm) and BiVO4 (5.6% at 420 nm),
respectively. To investigate the photo responses of the photo-
anodes over time, typical curves of the chopped transient pho-
tocurrent density over time were measured at 1.23 VRHE. During
irradiation, the photocurrent increased sharply for all the sam-
ples, and once the light was removed, the photocurrent quickly
quenched to zero (Fig. 5c). As expected, the photocurrent of the
BiVO4/Cu2O/FeOOH/NiOOH photoanode was significantly
increased. In addition, fitting of the carrier decay time to the
logarithmic plot of the photocurrent transient response para-
meter D (lnD) revealed the electron-hole pair recombination
rate [58]. These results showed that the carrier recombination
rate of BiVO4/Cu2O/FeOOH/NiOOH was relatively low
(Fig. 5d), and the transient time of BiVO4/Cu2O/FeOOH/
NiOOH (7.8 s) was 1.2 times longer than that of BiVO4/Cu2O
(6.4 s) and 1.95 times longer than that of pure BiVO4 (4 s). The
synergistic effect of the Cu2O hole extraction layer and the
FeOOH/NiOOH OEC layer slowed charge recombination. The
EIS of the three photoanodes tested at 0.8 VRHE in 0.5 M KBi
electrolyte are shown in Fig. 5e. The arc radius is related to the
charge transfer resistance at the electrode/electrolyte interface;
the smaller the radius is, the lower the charge transfer resistance
[48]. The parameters extracted from the EIS Nyquist plots are
summarized in Table S2. The results showed that the Rct of the
BiVO4/Cu2O/FeOOH/NiOOH photoanode was 200 Ω, which
was much smaller than those of BiVO4/Cu2O (294 Ω) and BiVO4
(602 Ω). This confirmed that the BiVO4/Cu2O/FeOOH/NiOOH
photoanode provided fast interfacial charge transfer and pho-
toinduced electron-hole pair separation, which were responsible
for the significant enhancement in the PEC activity.

The stability of the photoelectrode in water splitting is very
important for practical application. An attenuation of the pho-
tocurrent densites for the BiVO4/Cu2O/FeOOH/NiOOH,
BiVO4/Cu2O, and bare BiVO4 photoanodes was measured over
time at 1.23 VRHE during AM 1.5G illumination (Fig. 5f). For the
bare BiVO4, the photocurrent density decreased from 1.35 to
0.8 mA cm−2, and the steady-state photocurrent was only 59% of
the initial value. After 900 s, the photocurrent density-time curve
of the BiVO4 photoanode rebounded slightly, indicating that the
photoanode may have been corroded during the long reaction.
For the BiVO4/Cu2O photoanode, the photocurrent decayed by
approximately 37.6%, whereas the photocurrent density of the
BiVO4/Cu2O/FeOOH/NiOOH photoanode basically remained at
3.3 mA cm−2 after 900 s, and the decay rate was only 13.7%.
These results showed that pure BiVO4 was easily corroded by
electrolyte, while deposition of the Cu2O hole-extracted layer
promoted charge separation but may have led to the accumu-

lation of holes on the surface, which negatively affected the
electrode. With the addition of the FeOOH/NiOOH OEC layer,
the hydro-oxygen dynamics were improved, and the holes
extracted from Cu2O were transferred rapidly, thus improving
the stability of the photoanode.

To reveal the mechanism for the enhanced PEC performance,
we investigated the photoelectric properties and charge transfer
kinetics of the BiVO4, BiVO4/Cu2O, and BiVO4/Cu2O/FeOOH/
NiOOH photoanodes. The light harvesting efficiency (LHE)
curves were determined with the following equation:

LHE = 1 10 , (3)A( )

where A(λ) is the measured absorbance form the UV-vis
absorbance spectra and λ is the wavelength of incident light [8].

The trends for the three electrodes in the wavelength range of
350–550 nm were consistent with the UV-vis absorption spectra
(Fig. S5a). The photocurrent densities were measured in the
presence of a hole scavenger to rule out surface charge recom-
bination (Fig. S5b). The photocurrent densities of the BiVO4,
BiVO4/Cu2O, and BiVO4/Cu2O/FeOOH/NiOOH photoanodes
at 1.23 VRHE were 3.95, 5.2, and 5.4 mA cm−2, respectively.

To evaluate their interfacial processes, the charge separation
efficiency (ηsep) and transfer efficiency (ηtrans) of the BiVO4/Cu2
O/FeOOH/NiOOH, BiVO4/Cu2O, and BiVO4 photoanodes were
obtained from Jmax (Fig. S6) and the following equations:

( )J J= / × LHE , (4)
sep sul max

J J= / , (5)
trans H O sul2

where Jsul is the photocurrent density in an electrolyte containing
a hole scavenger (Na2SO3), Jmax is the maximum photocurrent
density, LHE is the light capture efficiency, and JH O2

is the
photocurrent density in an electrolyte without a hole scavenger
[59].

As shown in Fig. 6a, the addition of a Cu2O layer significantly
increased the ηsep of BiVO4 from 70.6% to 88.3%, which was
close to that of BiVO4/Cu2O/FeOOH/NiOOH (92.0%). This
indicated that the holes in the BiVO4 nanoparticles were
extracted into the Cu2O layer, resulting in improved charge
separation. BiVO4/Cu2O/FeOOH/NiOOH (Fig. 6b) had a higher
charge transport capacity (at 0.87 VRHE, 90.6%) at a relatively low
potential than BiVO4/Cu2O (at 0.97 VRHE, 54.2%) and BiVO4 (at
1.13 VRHE, 37.4%). This was consistent with the higher onset
potential of the electrode, and indicated that the Cu2O layer
facilitated charge separation. However, the water oxidation
capacities of these materials were inferior, and charge transfer at
the electrode-electrolyte interface was limited. Loading of the
FeOOH/NiOOH OEC layer greatly improved charge transport
at the interface. As the potential was increased, the transmission
efficiency levelled off and no longer increased significantly,
proving that the water oxidation reaction was close to saturation.
Therefore, these results verified that the use of Cu2O as the hole
extraction layer and the FeOOH/NiOOH OEC layer in the
BiVO4/Cu2O/FeOOH/NiOOH system synergistically promoted
charge separation and transport, thus improving the PEC per-
formance.

Additionally, the Mott–Schottky diagram enabled determina-
tion of the type of semiconductor and verified the presence of an
internal electric field. As shown in Fig. S7a, b, BiVO4 had a
positive slope, indicating that it is a typical n-type semi-
conductor, while Cu2O had a negative slope, indicating that it is

ARTICLES SCIENCE CHINA Materials

6 © Science China Press 2024



a typical p-type semiconductor. Similarly, the flat band potential
(EFB) and carrier density (ND) were obtained from the Mott–
Schottky equation:

( ) ( )C e N E E KT e1 / =  2 / × / , (6)2
0 D FB

where C is the space charge region capacitance (F cm−2), ε is the
relative dielectric constant (for BiVO4 is 68), ε0 is the absolute
dielectric constant (8.85 × 10−12 F m−1), K is the Boltzmann
constant (1.38 × 10−23 F m−1), and T is the absolute temperature
(K) [43].

Notably, compared with those of the pure BiVO4 photoanode
(Fig. S7b), the flat band potentials of BiVO4/Cu2O (Fig. 6c) and
BiVO4/Cu2O/FeOOH/NiOOH (Fig. 6d) were significantly shif-
ted in the negative direction, implying that photoexcited elec-
tron–hole recombination was suppressed. The calculated carrier
densities of the BiVO4, BiVO4/Cu2O and BiVO4/Cu2O/FeOOH/
NiOOH photoanodes were 1.1 × 1022, 2.0 × 1022 and 4.5×
1022 cm−3, respectively. These results showed that the Cu2O layer
separated the photogenerated electrons and holes and prolonged
the carrier lifetime. In addition, the holes on the electrode/
electrolyte surface were transferred and consumed in time after
addition of the cocatalyst FeOOH/NiOOH, which suppressed
recombination of the electron–hole pairs [60].

The mechanism proposed for charge transfer on the BiVO4/
Cu2O/FeOOH/NiOOH photoanode is show in Fig. 7. From the
UV-vis absorption spectra of BiVO4 and Cu2O (Fig. S8a, b), the
bandgaps of BiVO4 and Cu2O were estimated to be 2.56 and
2.00 eV, respectively (insets in Fig. S8c, d). The positions of the
VB of BiVO4 and Cu2O were calculated with the following
equations:

E X E E= – +  0.5 , (7)VB e g

E E E= – , (8)CB VB g

where Ee is the energy of free electrons on the hydrogen scale
(∼4.5 eV), Eg is the bandgap and X is the absolute electro-
negativity of the semiconductor. The X values for Cu2O and
BiVO4 are ~4.840 and 6.035 eV [61], respectively. The Eg values
for Cu2O and BiVO4 are ~2.00 and 2.56 eV, respectively.

The calculated VB and CB energies for n-type BiVO4 were
2.82 and 0.26 eV, respectively, while the calculated VB and CB
energies for p-type Cu2O were 1.34 and −0.66 eV, respectively.
Under illumination, BiVO4 absorbed photons to generate elec-
trons and holes, but the photoinduced charge recombined
rapidly. When the p-type Cu2O coupled with n-type BiVO4
formed an internal electric field, BiVO4 was excited to produce
hole and electron pairs, and the photogenerated electrons were

Figure 6 (a) ηsep and (b) ηtrans of BiVO4, BiVO4/Cu2O and BiVO4/Cu2O/FeOOH/NiOOH photoanodes. Mott-Schottky plots of (c) BiVO4/Cu2O and
(d) BiVO4/Cu2O/FeOOH/NiOOH photoanodes.

Figure 7 Mechanism of charge transfer on the BiVO4/Cu2O/FeOOH/
NiOOH photoanode.
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isolated by the Cu2O layer; this led to rapid transfer of the
extracted photogenerated holes to the FeOOH/NiOOH OEC
layer, thus accelerating the rate of water oxidation. Therefore, in
this device, Cu2O served as a hole extraction layer that trans-
ferred holes from the BiVO4 photoanode to the OEC layer.

CONCLUSIONS
In summary, we synthesized an efficient BiVO4 photoanode by
introducing a Cu2O hole extraction layer. The influence of the
Cu2O layer thickness on the hole extraction was explored and
optimized. The photocurrent densities of the BiVO4/Cu2O/
FeOOH/NiOOH photoanodes (3.85 mA cm−2 at 1.23 VRHE) were
2.77 times greater than that of pure BiVO4 (1.39 mA cm−2). At
1.23 VRHE (420 nm), the IPCE reached 23.5%, which was
4.2 times greater than that of pure BiVO4 (5.6%). The hole
extraction capability of the Cu2O layer and the strong synergistic
interaction between Cu2O and the FeOOH/NiOOH OEC layer
were the main reasons for the excellent PEC performance. Our
work reveals the potential of applying Cu2O in the photoanodes
for solar conversion devices with strongly coupled interfaces.
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Cu2O作为空穴提取层修饰BiVO4光阳极以增强电荷
分离和转移
田泽1, 王振霞1, 马自在2,3*, 李晋平3, 王孝广1,3*

摘要 光生电荷的分离和转移被认为是影响BiVO4基光阳极光电性能
的核心因素之一. 本文设计了在BiVO4光阳极与析氧助催化剂之间插入
空穴提取层的方法. Cu2O作为空穴提取层引入到助催化剂层(FeOOH/
NiOOH)和BiVO4之间, 可以有效优化空穴的迁移路径, 延长光生空穴
的寿命, 从而提高电极的光电化学性能. 与BiVO4相比, 调整后的BiVO4/
Cu2O/FeOOH/NiOOH光阳极的电荷分离效率从70.6%提高到了92.0%.
此外 , 该光阳极在1.23 VR H E (AM 1.5G 照明下)下 , 还显示出了
3.85 mA cm−2的高光电流密度, 是BiVO4的2.77倍. 我们的研究结果表
明, 电沉积Cu2O空穴提取层是一种简单且可扩展的方法, 能够有效提
高BiVO4的光电活性, 可用于太阳能驱动水分解领域.
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