Skip to main content
Log in

Poly(aryl N-methyl quinuclidinium) anion exchange membrane with both ultra-high alkaline stability and dimensional stability

具有超高碱性稳定性和尺寸稳定性的聚芳烃N-甲基奎宁基阴离子交换膜

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Anion exchange membrane (AEM) water electrolyser provides a promising alternative to proton exchange membrane water electrolysis due to the relative cheap of AEM and no-need of expensive platinum group catalysts. However, the development of AEM water electrolyser is hampered by the low alkaline and dimensional stability of AEMs, especially in highly concentrated alkaline solution and at elevated temperatures. Recently we synthesized a poly(triphenyl N-methylquinuclidinium) AEM with excellent alkaline stability. To further improve the mechanical strength and dimensional stability of this kind of AEM, in this work, we added trifluoacetophenone to prepare a poly(triphenyl trifluoacetophenone N-methylquinuclidinium) membrane, which exhibits superior alkaline stability (no degradation of conductivity and mechanical strength for 1600 h in 10 mol L−1 NaOH at 80°C), excellent dimensional stability (swelling ratio: <7%, in pure water, 30–80°C; <2%, in 10 mol L−1 NaOH, 30–80°C), high OH conductivity (134.5 mS cm−1 at 80°C) and high mechanical strength (tensile strength = 43.2 MPa). The assembled water electrolyser, comprising this AEM and nickel-alloy foam electrodes, exhibits outstanding current density (1780 mA cm−2) at 2.0 V with 5 mol L−1 KOH aqueous electrolyte at 80°C, and high durability when assembled with nickel foam electrodes.

摘要

阴离子交换膜水电解槽的阴离子交换膜成本低、无需铂族贵金属催化剂, 有望取代高成本的质子交换膜水电解槽. 然而, 阴离子交换膜的尺寸稳定性差以及在高温、高浓度碱液中的稳定性差, 阻碍了阴离子交换膜水电解槽的发展. 最近, 我们合成了一种具有优异碱性稳定性的聚(三苯基-N-甲基奎宁基)阴离子交换膜, 为了进一步提高这种阴离子交换膜的机械强度和尺寸稳定性, 在本工作中, 我们添加了三氟苯乙酮来制备聚(三苯基-三氟苯乙酮-N-甲基奎宁基)阴离子交换膜. 这种共聚阴离子交换膜具有超高的碱性稳定性(在80°C, 10 mol L−1的NaOH溶液中浸泡1600小时后OH电导率和机械强度不发生衰减), 优异的尺寸稳定性(30–80°C温度下, 纯水中溶胀率不超过7%; 10 mol L−1的NaOH 溶液中溶胀率不超过2%), 高氢氧根电导率(80°C 时达134.5 mS cm−1)和高机械强度(抗拉伸强度达43.2 MPa). 这种阴离子交换膜和镍合金泡沫电极组装的简易水电解槽在80°C 下, 2.0 V 和5 mol L−1的KOH水电解质中具有1780 mA cm−2的优异电流密度, 并且具有高耐久性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang Y, Li P, Zheng X, et al. Anion-exchange membrane water electrolyzers and fuel cells. Chem Soc Rev, 2022, 51: 9620–9693

    CAS  PubMed  Google Scholar 

  2. Du N, Roy C, Peach R, et al. Anion-exchange membrane water electrolyzers. Chem Rev, 2022, 122: 11830–11895

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kusoglu A, Weber AZ. New insights into perfluorinated sulfonic-acid ionomers. Chem Rev, 2017, 117: 987–1104

    CAS  PubMed  Google Scholar 

  4. Cullen DA, Neyerlin KC, Ahluwalia RK, et al. New roads and challenges for fuel cells in heavy-duty transportation. Nat Energy, 2021, 6: 462–474

    ADS  CAS  Google Scholar 

  5. Chen N, Lee YM. Anion exchange polyelectrolytes for membranes and ionomers. Prog Polym Sci, 2021, 113: 101345

    CAS  Google Scholar 

  6. Zhang F, Zhang Y, Sun L, et al. A π-conjugated anion-exchange membrane with an ordered ion-conducting channel via the McMurray coupling reaction. Angew Chem Int Ed, 2023, 62: e202215017

    CAS  Google Scholar 

  7. Chen H, Tao R, Bang KT, et al. Anion exchange membranes for fuel cells: State-of-the-art and perspectives. Adv Energy Mater, 2022, 12: 2200934

    CAS  Google Scholar 

  8. Olsson JS, Pham TH, Jannasch P. Poly(arylene piperidinium) hydroxide ion exchange membranes: Synthesis, alkaline stability, and conductivity. Adv Funct Mater, 2018, 28: 1702758

    Google Scholar 

  9. Bai H, Peng H, Xiang Y, et al. Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells. J Power Sources, 2019, 443: 227219

    CAS  Google Scholar 

  10. Pan D, Bakvand PM, Pham TH, et al. Improving poly(arylene piperidinium) anion exchange membranes by monomer design. J Mater Chem A, 2022, 10: 16478–16489

    CAS  Google Scholar 

  11. Chen N, Jin Y, Liu H, et al. Insight into the alkaline stability of N-heterocyclic ammonium groups for anion-exchange polyelectrolytes. Angew Chem Int Ed, 2021, 60: 19272–19280

    CAS  Google Scholar 

  12. Wu X, Chen N, Klok H, et al. Branched poly(aryl piperidinium) membranes for anion-exchange membrane fuel cells. Angew Chem Int Ed, 2022, 61: e202114892

    ADS  CAS  Google Scholar 

  13. Allushi A, Pham TH, Olsson JS, et al. Ether-free polyfluorenes tethered with quinuclidinium cations as hydroxide exchange membranes. J Mater Chem A, 2019, 7: 27164–27174

    CAS  Google Scholar 

  14. You W, Ganley JM, Ernst BG, et al. Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes. Chem Sci, 2021, 12: 3898–3910

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeng M, He X, Wen J, et al. N-methylquinuclidinium-based anion exchange membrane with ultrahigh alkaline stability. Adv Mater, 2023, 35: 2306675

    CAS  Google Scholar 

  16. Yang Z, Guo R, Malpass-Evans R, et al. Highly conductive anion-exchange membranes from microporous Tröger’s base polymers. Angew Chem Int Ed, 2016, 55: 11499–11502

    CAS  Google Scholar 

  17. Liu G, Wang A, Ji W, et al. In-situ crosslinked, side chain polybenzimidazole-based anion exchange membranes for alkaline direct methanol fuel cells. Chem Eng J, 2023, 454: 140046

    CAS  Google Scholar 

  18. Zhang X, Guo J, Chu X, et al. Mechanically flexible bulky imidazolium-based anion exchange membranes by grafting PEG pendants for alkaline fuel cells. J Membrane Sci, 2022, 659: 120820

    CAS  Google Scholar 

  19. Wu X, Chen N, Hu C, et al. Fluorinated poly(aryl piperidinium) membranes for anion exchange membrane fuel cells. Adv Mater, 2023, 35: 2210432

    CAS  Google Scholar 

  20. Joshi T, Chen C, Li H, et al. Local electronic structure of molecular heterojunctions in a single-layer 2D covalent organic framework. Adv Mater, 2019, 31: 1805941

    Google Scholar 

  21. Besidsky Y, Luthman K, Claesson A, et al. Synthesis and reactivity of 6-carbamoyl-5-phenyl-2,3,5,6-tetrahydro-1H-1,4-ethanobenzo[f]quinoline. X-ray molecular structure of (4aR,5S,6R,10bR)-5-phenyl-2,3,4a,5,6,10b-hexahydro-1H-1,4-ethanobenzo[f]quinolin-6-yl acetate. J Chem Soc Perkin Trans 1, 1995, 4: 475–480

    Google Scholar 

  22. Chen N, Hu C, Wang HH, et al. Poly(alkyl-terphenyl piperidinium) ionomers and membranes with an outstanding alkaline-membrane fuel-cell performance of 2.58 Wcm−2. Angew Chem Int Ed, 2021, 60: 7710–7718

    ADS  CAS  Google Scholar 

  23. Chen N, Wang HH, Kim SP, et al. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nat Commun, 2021, 12: 2367

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song W, Peng K, Xu W, et al. Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices. Nat Commun, 2023, 14: 2732

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu G, Pan J, Zou X, et al. High-performance poly(biphenyl piperidinium) type anion exchange membranes with interconnected ion transfer channels: Cooperativity of dual cations and fluorinated side chains. Adv Funct Mater, 2023, 33: 2302364

    CAS  Google Scholar 

  26. Zou X, Xu G, Fang P, et al. Unsupervised learning-guided accelerated discovery of alkaline anion exchange membranes for fuel cells. Angew Chem Int Ed, 2023, 62: e202300388

    CAS  Google Scholar 

  27. Zhang M, Liu J, Wang Y, et al. Highly stable anion exchange membranes based on quaternized polypropylene. J Mater Chem A, 2015, 3: 12284–12296

    CAS  Google Scholar 

  28. Zhang M, Shan C, Liu L, et al. Facilitating anion transport in polyolefin-based anion exchange membranes via bulky side chains. ACS Appl Mater Interfaces, 2016, 8: 23321–23330

    CAS  PubMed  Google Scholar 

  29. Liu M, Hu X, Hu B, et al. Soluble poly(aryl piperidinium) with extended aromatic segments as anion exchange membranes for alkaline fuel cells and water electrolysis. J Membrane Sci, 2022, 642: 119966

    CAS  Google Scholar 

  30. Yang K, Li X, Guo J, et al. Preparation and properties of anion exchange membranes with exceptional alkaline stable polymer backbone and cation groups. J Membrane Sci, 2020, 596: 117720

    CAS  Google Scholar 

  31. Lu C, Long C, Li Y, et al. Chemically stable poly(meta-terphenyl piperidinium) with highly conductive side chain for alkaline fuel cell membranes. J Membrane Sci, 2020, 598: 117797

    CAS  Google Scholar 

  32. Xu S, Wei W, Su X, et al. Crown-ether block copolymer based poly (isatin terphenyl) anion exchange membranes for electrochemical energy conversion devices. Chem Eng J, 2023, 455: 140776

    CAS  Google Scholar 

  33. Gao XL, Sun LX, Wu HY, et al. Highly conductive fluorine-based anion exchange membranes with robust alkaline durability. J Mater Chem A, 2020, 8: 13065–13076

    CAS  Google Scholar 

  34. Song W, Liang X, Zhang H, et al. Ultrathin anion exchange membranes with an improved OH transfer rate for high-performance AEMFCs. J Mater Chem A, 2022, 10: 21503–21511

    CAS  Google Scholar 

  35. Jiang T, Wu C, Zhou Y, et al. Highly stable poly(p-quaterphenylene alkylene)-based anion exchange membranes. J Membrane Sci, 2022, 647: 120342

    CAS  Google Scholar 

  36. Jiang T, Wang C, Wang T, et al. Imidazolium structural isomer pyrazolium: A better alkali-stable anion conductor for anion exchange membranes. J Membrane Sci, 2022, 660: 120843

    CAS  Google Scholar 

  37. Hsu JH, Peltier CR, Treichel M, et al. Direct insertion polymerization of ionic monomers: Rapid production of anion exchange membranes. Angew Chem Int Ed, 2023, 62: e202304778

    CAS  Google Scholar 

  38. Zhang W, Liu M, Gu X, et al. Water electrolysis toward elevated temperature: Advances, challenges and frontiers. Chem Rev, 2023, 123: 7119–7192

    CAS  PubMed  Google Scholar 

  39. Chung DY, Lopes PP, Farinazzo Bergamo Dias Martins P, et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat Energy, 2020, 5: 222–230

    ADS  Google Scholar 

  40. Chen P, Hu X. High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts. Adv Energy Mater, 2020, 10: 2002285

    ADS  CAS  Google Scholar 

  41. Chen N, Paek SY, Lee JY, et al. High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm−2 and a durability of 1000 hours. Energy Environ Sci, 2021, 14: 6338–6348

    CAS  Google Scholar 

  42. Razmjooei F, Morawietz T, Taghizadeh E, et al. Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer. Joule, 2021, 5: 1776–1799

    CAS  Google Scholar 

  43. Motealleh B, Liu Z, Masel RI, et al. Next-generation anion exchange membrane water electrolyzers operating for commercially relevant lifetimes. Int J Hydrogen Energy, 2021, 46: 3379–3386

    CAS  Google Scholar 

  44. Kraglund MR, Carmo M, Schiller G, et al. Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers. Energy Environ Sci, 2019, 12: 3313–3318

    CAS  Google Scholar 

  45. Li H, Yu N, Gellrich F, et al. Diamine crosslinked anion exchange membranes based on poly(vinyl benzyl methylpyrrolidinium) for alkaline water electrolysis. J Membrane Sci, 2021, 633: 119418

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Knowledge Innovation Program of Wuhan-Basic Research (2022010801010321) and Wuhan Limo Technology Limited Company (2022420111000256 and 2023420111000277).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Li M designed the experiments; Wen J and He X performed the experiments; Li M and Wen J analyzed the data and wrote the paper. All authors contributed to the general discussion.

Corresponding author

Correspondence to Ming Li  (黎明).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Ju Wen received her Bachelor’s degree in chemistry from Hubei University in 2018 and is currently pursuing her PhD degree under the supervision of Prof. Ming Li at Hubei University. Her research interests focus on ion exchange membranes and their applications in water splitting for hydrogen production.

Xianying He received his Bachelor’s degree in applied chemistry from Hubei University in 2021. Currently, he is pursuing a Master’s degree under the guidance of Prof. Ming Li. His current research interests focus on the synthesis of advanced anion exchange membranes and their applications in water electrolysis and fuel cells.

Ming Li is a professor at Hubei University. He received a Doctor degree from ETH Zurich, a Master’s degree from Tsinghua University and a Bachelor’s degree from Huazhong University of Science and technology. His research interests mainly focus on proton exchange membranes, anion exchange membranes, nanofiltration membranes, porous polymer materials and their applications in fuel cells, water splitting for hydrogen production, CO2 capture, solvent separation and so on.

Supporting Information

40843_2023_2761_MOESM1_ESM.pdf

Poly(aryl N-methyl quinuclidinium) anion exchange membrane with both ultra-high alkaline stability and dimensional stability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., He, X., Zhang, G. et al. Poly(aryl N-methyl quinuclidinium) anion exchange membrane with both ultra-high alkaline stability and dimensional stability. Sci. China Mater. 67, 965–973 (2024). https://doi.org/10.1007/s40843-023-2761-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2761-9

Keywords

Navigation