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SPECIAL TOPIC: Heterojunction in Photocatalysts

g-C3N4-based S-scheme heterojunction photocatalysts
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ABSTRACT With the vigorous progress of industrialization,
energy shortage and environmental contamination emerge
increasingly serious. Photocatalysis technology is known as a
hopeful approach to resolving the above crises owing to its
numerous prominent advantages and widespread applica-
tions. Among various photocatalysts, graphitic carbon nitride
(g-C3N4) has been broadly applied in fields of fuel production
and environment purification because of its unique electronic
structure, extreme thermal stability, and prominent photo-
electrical activity. However, single-component g-C3N4, similar
to other photocatalysts, usually suffer from low photocatalytic
efficiency due to the fact that single-constituent photocatalysts
cannot synchronously equip with strong redox abilities of
photogenerated charges and high light energy utilization.
Fortunately, constructing Step-scheme (S-scheme) hetero-
junctions between g-C3N4 with other semiconductor photo-
catalysts can simultaneously overcome the typical
shortcomings of low light energy utilization, rapid re-
combination, and weak redox abilities of carriers, thus pro-
minently boosting its catalytic reaction rate. In view of the
currently extensive reports of g-C3N4-based S-scheme hetero-
junctions, this review presents a relatively comprehensive
comment on the latest research progress of the background,
the proposal of conception, fundamental theory, design and
preparation, characterization methods of g-C3N4-based
S-scheme heterojunctions. Additionally, various applications
of g-C3N4-based S-scheme heterojunctions have been detailly
illustrated through example discussion and list comparison,
involving photocatalytic H2 generation, CO2 reduction, H2O2
evolution, pollutant degradation, and others. Finally, the re-
search progress and shortcomings of g-C3N4-based S-scheme
heterojunctions are summarized, and the future research di-
rection is prospected.
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INTRODUCTION
With the vigorous progress of industrialization, energy shortage
and environmental contamination emerge increasingly serious
[1,2]. Photocatalysis is known as a hopeful technology to resolve
the two major energy and environment crises because of its low
cost, mild reaction process, and eco-friendly advantages [3–5].
In other words, photocatalysis technology refers that under the

drive of solar energy, photocatalysts can trigger a series of
reactions to produce fuels and repair the environment involving
H2 production, CO2 reduction, antibiotic removal, and pollution
degradation [6,7]. In the case of identical external conditions,
the efficiency of photocatalysis technology is mainly depended
on the photocatalysts [8,9]. Therefore, it is very necessary to
develop efficient photocatalysts. Graphitic carbon nitride (g-
C3N4), a representative of organic photocatalysts, has drawn
considerable attention since its first application in H2 evolution
because of its unique electronic structure and prominent pho-
toelectrical activity [10]. In recent years, g-C3N4 has been widely
applied in the fields of H2 production, CO2 reduction, H2O2
production, and environment purification [11].

For the pure g-C3N4, similar to other single-constituent
photocatalysts, usually suffers low photocatalytic efficiency
owing to its low light energy utilization, rapid recombination,
and weak redox abilities of photogenerated charges [12]. In this
case, many strategies have been designed to overcome the above
shortcomings to enhance the photocatalytic efficiency of g-C3N4,
such as elemental doping, cocatalyst modification, and
improvement of specific surface areas or crystallization degree
[13,14]. However, none of the above modification strategies can
simultaneously resolve the above typical shortcomings of the
single photocatalyst. Namely, single-constituent photocatalysts
cannot synchronously equip with strong redox abilities of
photogenerated charges and high light energy utilization [15].
Additionally, the drawback of low carrier separation efficiency
has always been the bottleneck hindering the improvement of
photocatalysis efficiency. In view of the above-mentioned facts,
constructing heterojunctions between g-C3N4 with another
semiconductor photocatalyst can simultaneously overcome the
typical shortcomings of low utilization efficiency solar energy,
rapid recombination, and weak redox abilities of carriers [16],
thus prominently improving the catalytic reaction of g-C3N4. In
recent years, numerous g-C3N4-based heterojunctions have been
constructed and aimed at enhancing the photocatalytic activity.

According to the difference in carrier transmission paths, the
previously reported heterojunctions can be divided into Type-II,
Z-scheme, and S-scheme, which will be briefly illustrated as
follows [17]. For the Type-II heterojunction in Fig. 1a, such a
carrier transfer process would not only cause the reduction of
redox ability of photogenerated charges but also generate energy
loss due to the repulsion between the same kind of charges [18].
To resolve the emerged deficiency in the Type-II heterojunction,
a liquid Z-scheme heterojunction concept was put forward [19].
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In contrast to the Type-II heterojunction, the obvious difference
for liquid Z-scheme heterojunction is that the suitable redox
couples were added and served as the charge transport channel
(Fig. 1b). In fact, there is still serval irrationality in the liquid Z-
scheme heterojunction. Firstly, the designed charge migration
direction is not scientific because the reduction capacity of the
photoinduced electrons in the Semiconductor 2 (S2) is stronger
than that of Semiconductor 1 (S1), and it is much easier to
reduce Fe3+ into Fe2+ (Fig. 1b). Secondly, the redox ion pairs
would freely move around in the system and not be exactly fixed
between the two semiconductors. Hence, an all-solid-state Z-
scheme concept was proposed with solid metal conductors
instead of liquid redox ion pairs (Fig. 1c) [20], which could
effectively avoid the problem of random movement of ion pairs
in liquid Z-scheme. However, the proposed all-solid-state Z-
scheme still has the same unscientific carrier migration direction
as the liquid Z-scheme. Consequently, both the Type-II and Z-
scheme heterojunction systems exhibit some unscientific and
illogical aspects, which would promote the birth of a fire-new
scientific and rational heterojunction concept [21].

In 2019, a fire-new concept of Step-scheme (S-scheme) het-
erojunction was put forward by Fu et al. [22]. Specifically, Yu
and co-workers [23,24] constructed a WO3/g-C3N4 heterojunc-
tion photocatalyst and scientifically explained the reason for its
significantly enhanced activity by a novel S-scheme hetero-
junction mechanism. Since then, S-scheme heterojunction has
been extensively and deeply studied by scientific research
workers all over the world. In a S-scheme system, the photo-
excitation charges with powerful redox capacity are retained to
be involved in interfacial catalytic reaction, while the weak ones
are recombined due to the function of a built-in electric field

(Fig. 1d) [25]. Therefore, constructing of S-scheme heterojunc-
tion can not only strengthen the redox ability of photoexcitation
carriers but also effectively promote the separation and trans-
mission of theirs, thus greatly boosting the catalytic reaction
rates of S-scheme heterojunction systems.

In view of the above prominent advantages of the S-scheme
heterojunction, such as reinforced redox ability, separation
efficiency, and optical absorptivity, g-C3N4-based S-scheme
heterojunction photocatalytic systems have been widely
designed to increase the photocatalytic reaction rate of g-C3N4.
Herein, this review presents a relatively comprehensive com-
ment on the latest research progress of g-C3N4-based S-scheme
heterojunctions, involving the background and proposal of
conception for S-scheme heterojunction. Moreover, the funda-
mental theory, design, and preparation, characterization meth-
ods of g-C3N4-based S-scheme heterojunctions are explained by
theory and examples. Then, the various applications of g-C3N4-
based S-scheme heterojunctions have been detailly illustrated
through example discussion and list comparison, including the
photocatalytic H2 evolution, CO2 reduction, H2O2 production
pollutant degradation, and others. Finally, the research progress
and shortcomings of g-C3N4-based S-scheme heterojunctions are
summarized, and the future research direction is prospected.

g-C3N4-BASED S-SCHEME HETEROJUNCTIONS

Fundamental theory
The S-scheme heterojunction charge transfer mechanism has
been widely recognized and used by numerous scientists, mainly
because of its rationality and scientificity, which is completely
different from traditional Type II and Z-scheme heterojunctions.

Figure 1 Possible charges migration ways for (a) Type-II, (b) liquid Z-scheme, (c) all-solid-state Z-scheme, and (d) S-scheme heterojunctions.

SCIENCE CHINA Materials REVIEWS

February 2024 | Vol. 67 No. 2 445© Science China Press 2024



In an S-scheme heterojunction system (Fig. 2a), it is generally
made up of an oxidation photocatalyst (OP) and a reduction
photocatalyst (RP). When the OP and RP establish contact, the
free electrons on the conductive band (CB) of RP will be driven
to transfer to the CB of OP by Fermi level matching balance,
thereby building an interfacial electric field from RP to OP
(Fig. 2b) [21]. Moreover, the energy bands of OP will bend
downward at the heterogeneous interface, while the RP will
reverse. Upon light irradiation, the photoexcited holes and
electrons with weak redox ability on the valence band (VB) of
RP and CB of OP will occur recombination owing to the
attraction of interfacial electric field, while the photogenerated
charges with powerful redox capacity will be retained onto the
CB of RP and VB of OP by the repulsion of interfacial electric
field, respectively. Finally, the charges with powerful redox
capacity will take part in the following photocatalytic reaction
(Fig. 2c) [26]. Consequently, the charge transmission path of S-
scheme heterojunction follows the scientific principle, and its
migration mechanism not only ensures efficient carrier separa-
tion but also enhances the redox capacity of the photocatalytic
system.

Design and preparation
As is well known, the conduction and valence-band potentials of
semiconductors are the primary parameters to be considered for
designing and preparing heterojunctions. For instance, an S-
scheme heterojunction system usually involves a reduction and
an OP [27]. Specifically, a semiconductor with a very negative
conduction potential is commonly used as an RP, while the

positive one is generally served as an OP [28]. g-C3N4, one of the
representatives of organic polymer photocatalysts, exhibits a
relatively moderate band structure and small bandgap (2.7 eV),
has been broadly combined with other photocatalysts to estab-
lish heterojunctions [29]. Due to its comparatively negative
reduction potential, g-C3N4 is generally used as an RP to con-
struct S-scheme heterojunctions with some OPs such as WO3,
TiO2, and Fe2O3 in Fig. 3 [30]. Additionally, g-C3N4 is also
combined with some more reductive semiconductors (such as
CuInS2 and ZnCoS) to form S-scheme heterojunctions, where g-
C3N4 acts as the OP [31]. Consequently, g-C3N4-based S-scheme
heterojunctions have been abundantly established due to the
prominent electronic structure and photoelectrical properties of
g-C3N4.

According to the above design regulations, varieties of pre-
paration methods have been explored to synthesize g-C3N4-
based S-scheme heterojunctions, such as electrostatic self-
assembly, hydrothermal, high-temperature calcination, vapour
deposition, solvothermal, and thermal polymerization methods
[30]. For instance, Fu et al. [22] constructed a two-dimensiaonal
(2D)/2D WO3/g-C3N4 heterojunction by an electrostatic self-
assembly strategy (Fig. 4a), which involves the initial exfoliation
of bulk g-C3N4 and WO3 into nanosheet structure and the fol-
lowing surface treatment making them with positive and nega-
tive charges, respectively, resulting in the final combination of
WO3 and g-C3N4 nanosheets via Coulomb attraction. Moreover,
correlation test reports suggested that the WO3/g-C3N4 hetero-
junction formed by Coulomb force attraction had good contact,
high stability, and significantly enhanced photocatalytic activity,

Figure 2 Fundamental theory of carrier-transfer for S-scheme heterojunction.

Figure 3 Band gaps and positions of some representative photocatalysts.
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and its carrier migration mode followed the S-scheme hetero-
junction mechanism. Additionally, Gong et al. [32] fabricated a
InVO4/g-C3N4 heterojunction via a facile hydrothermal method,
including primarily premixing the raw materials formed InVO4
and subsequently mixing with g-C3N4, finally undergoing a
hydrothermal treatment (Fig. 4). In fact, during the finally
hydrothermal treatment, InVO4 was in-situ generated onto the
g-C3N4 surface to form the InVO4/g-C3N4 S-scheme hetero-
junction. Similarly, the resulting InVO4/g-C3N4 S-scheme het-
erojunction also possessed well-contact heterojunction interfaces
and prominent photocatalytic activities. On the whole, most
g-C3N4-based S-scheme heterojunctions produced by the cur-
rently reported methods have good contact and stability because
of the unique interface structure and thermal polycondensation
of g-C3N4.

Characterization method
Until now, a variety of advanced characterization techniques
have been developed to investigate the charge transfer path of
g-C3N4-based S-scheme heterojunctions, such as in-situ irra-
diated X-ray photoelectron spectroscopy (ISIXPS), density
functional theory (DFT) calculation, electron paramagnetic
resonance (EPR), femtosecond transient absorption spectro-
scopy (FT-AS), and Kelvin probe force microscopy (KPFM)
[33,34]. In the above characterization techniques, the ISIXPS
and EPR spectra were widely applied to verify the carrier
transmission mechanism of S-scheme heterojunction [35],
which will be successively introduced by the examples below.

XPS is a progressive technique that can accurately measure the
chemical shift and binding energy. Generally, for a specific
semiconductor, if it receives electrons, the corresponding bind-

ing energy will shift toward higher potential; on the contrary, the
binding energy will conversely shift [36]. For example, Qaraah
and co-workers [37] scientifically revealed the S-scheme het-
erojunction charge migration mechanism between O-doped
g-C3N4 (OCN) and N-doped Nb2O5 (NNBO) by an ISIXPS
characterization. As presented in Fig. 5, compared with the pure
NNBO, the binding energy of Nb 3d and O 1s for the OCNNb
composite (without light irradiation) exhibited a shift towards
lower binding energy (Fig. 5a, b), while the corresponding
binding energy changes of N 1s and C 1s were opposite
(Fig. 5c, d). The above changes could be mainly because when
OCN and NNBO came into contact (formed heterojunction),
the free electrons in OCN would transfer to the NNBO owing to
their different Fermi levels, which would cause accumulations of
electrons and holes onto the NNBO and OCN sides, respectively,
thus generating a built-in electric field orientation from OCN to
NNBO. Under light irradiation, the binding energy of Nb 3d and
O 1s for the OCNNb composite exhibited a shift towards higher
binding energy, whereas the corresponding changes for OCN
were reversal, which primarily because under the influence of
built-in electric field, the photogenerated electrons on NNBO
would migrate to the OCN and occur recombination with the
holes (Fig. 5e), thus retaining the carriers with powerful redox
capacity to involve in interfacial catalytic reaction. Conse-
quently, the above ISIXPS results accurately and comprehen-
sively demonstrated that the charge migration path between
NNBO and OCN obeyed S-scheme heterojunction rather than
Type-II heterojunction.

Additionally, EPR spectra have also been broadly applied to
reveal the carrier transmission mechanism of g-C3N4-based S-
scheme heterojunctions. For example, Fu et al. [22] properly

Figure 4 Graphic illustration of (a) WO3/g-C3N4 heterojunctions by an electrostatic self-assembly strategy. Reprinted with permission from Ref. [22].
Copyright 2019, Elsevier. (b) InVO4/g-C3N4 heterojunctions via a hydrothermal method. Reprinted with permission from Ref. [32]. Copyright 2021, Elsevier.
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revealed that the carrier transfer path between WO3 and g-C3N4
followed S-scheme mechanism via EPR spectra, as exhibited in
Fig. 6. Evidently, the DMPO-·OH signals were sensitively cap-
tured in pure WO3 and WO3/g-C3N4 composites, while that
could not be observed for pure g-C3N4 (Fig. 6a), mainly indi-
cating that photogenerated holes tended to stay on the VB of
WO3 and did not migrate to the VB of g-C3N4. Simultaneously,
the DMPO-·O2

− signals could be clearly observed in pure g-C3N4
and WO3/g-C3N4 composites, whereas a much weaker signal
could be detected from pure WO3 (Fig. 6b), suggesting that
photoinduced electrons on g-C3N4 possessed enough reducing
capacity to reduce O2 to ·O2

− and did not transmit to the CB of
WO3. As a consequence, the photoinduced carriers with pow-

erful redox capacity tended to remain on the VB of WO3 and CB
of g-C3N4, respectively. In other words, the carrier transmission
path between WO3 and g-C3N4 followed the S-scheme hetero-
junction mechanism (Fig. 6c) rather than Type-II heterojunc-
tions.

In addition to the above ISIXPS and EPR characterization
means, KPFM, DFT calculations, and FT-AS spectrum can also
afford strong data to investigate the charge migration mechan-
ism of g-C3N4-based S-scheme heterojunctions [38]. For exam-
ple, KPFM can receive the variations of heterojunction surface
potential with and without illumination, thus judging the carrier
migration mode; FT-AS can detect the differences in absorption
spectra between single components and complexes to deduce the

Figure 5 High-resolution XPS spectra of (a) Nb 3d, (b) O 1s, (c) N 1s, and (d) C 1s. (e) Mechanism inference and analysis. Reprinted with permission from
Ref. [37]. Copyright 2022, Elsevier.
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carrier migration mechanism. In general, the above-advanced
characterizations can provide sufficient and powerful evidence
for the S-scheme heterojunction carrier transmission mechan-
ism. Furthermore, more advanced characterizations need to be
exploited to demonstrate the S-scheme heterojunction
mechanism.

APPLICATIONS
Nowadays, g-C3N4-based S-scheme heterojunction photo-
catalytic systems have been abundantly constructed and used in
numerous fields because of their effective charge transmission
and strong redox capability [39]. The previous reports on g-
C3N4-based S-scheme heterojunctions are mainly concentrated
in the field of energy and environment involving H2 production,
CO2 reduction, H2O2 production, and pollutant degradation
[30].

H2 evolution
Hydrogen (H2) energy is a secondary clean energy, with high
combustion value, green and clean, zero emissions, and other
advantages, known as the “ultimate energy in the 21st century”,
but also in the context of carbon peak and carbon neutral, need
to accelerate the exploitation of clean energy. Among many new
technologies, photocatalytic H2 generation refers that photo-
catalysts can split water into H2 under the drive of solar energy
[40]. g-C3N4 has been a star material in the field of hydrogen
production in the past decade due to its prominent photoelectric

property and suitable band structure [41]. However, the severe
recombination and limited reduction ability of carriers for sin-
gle-component g-C3N4 lead to its weak H2 production perfor-
mance. Among a variety of modification methods, the
construction of g-C3N4-based S-scheme heterojunctions can
prominently reinforce the separation efficiency and redox
capacity of carriers, thus significantly enhancing their photo-
catalytic activity.

Due to the relatively negative reduction potential, g-C3N4 is
usually coupled with some oxidizing semiconductors to con-
struct S-scheme heterojunctions, such as metal oxides, oxysalts,
and organic polymers [30]. For example, Li et al. [42] fabricated
a C/O doped g-C3N4 (COCN)/W18O49 heterojunction by an
in-situ solvothermal method. During the solvothermal process,
the nanowire-like W18O49 would form and in-situ generate onto
the COCN nanosheet surface (Fig. 7a). Transmission electron
microscope (TEM) images of COCN/W18O49 heterojunction
clearly presented a typically translucent and flaky structure with
several nanowire-like structures lying flat on its surfaces
(Fig. 7b, c), visually proving the formation of COCN nanosheet/
W18O49 nanowire heterojunction. The as-prepared COCN/
W18O49 heterojunction displayed a prominent H2 production
rate of ca. 3908.2 μmol h−1 g−1 under simulated sunlight, which
is nearly 12 times higher than that of conventional g-C3N4
(Fig. 7d). To reveal the mechanism of performance enhance-
ment, the EPR spectra were carried out in Fig. 7e, f. The DMPO-
·O2

− signals were obviously detected in COCN and COCN/

Figure 6 EPR signals of (a) DMPO-·OH and (b) DMPO-·O2
−. (c) Charge migration mechanism. Reprinted with permission from Ref. [22]. Copyright 2019,

Elsevier.
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W18O49 samples, while that could not be detected from W18O49
(Fig. 7e), powerfully indicating that photoinduced electrons of
COCN possessed enough reducing capacity to reduce O2 to ·O2

−

and did not transfer to the CB of W18O49. However, the DMPO-
·OH signals were reversed (Fig. 7f), owing to that photoinduced
holes tended to stay on the VB of W18O49. Evidently, the EPR
results directly demonstrated that the carrier transmission path
obeyed the S-scheme mechanism (Fig. 7g), which cooperated
with the SPR effect to synergistically promote the enhancement
of H2-production performance.

In addition to the above combinations with oxidizing photo-
catalysts, g-C3N4 occasionally served as an oxidized semi-
conductor to design S-scheme heterojunctions with some metal
sulfides. For example, Shi et al. [43] constructed a cobalt
phthalocyanine/oxygen-doped g-C3N4 (CoPc/OCN) hetero-
junction photocatalyst via an ultrasonic method. It was found
that CoPc particles were dispersedly loaded on the surface of g-
C3N4 nanosheets (Fig. 8a). Moreover, the heterojunction inter-
face between CoPc and OCN could be clearly observed from
their HRTEM image in Fig. 8b. Additionally, the optimized H2-
evolution rate of the resultant CoPc/OCN heterojunction
reached 9560 μmol h−1 g−1, over 2.6-fold superior to the pure
g-C3N4 (Fig. 8c). To investigate the charge transfer route of
CoPc/OCN heterojunction, the KPFM potential images and

their corresponding surface potential curves were supplied in
Fig. 8d–f. In the dark, the surface potential of CoPc was larger
than that of OCN. However, with light irradiation, the surface
potential of CoPc emerged an obvious decrease, while that of
OCN increased, indicating that the photoinduced electrons
tended to stay on the CoPc, while the photoinduced holes stayed
on the OCN. Apparently, the above KPFM results strongly
suggested that the carrier transfer way between CoPc and OCN
followed S-scheme heterojunction (Fig. 8g). Therefore, the
greatly enhanced activity of CoPc/OCN principally profited
from their generated S-scheme heterojunction.

According to the above reports and S-scheme heterojunction
mechanism, it is not difficult to conclude that the interfacial
electric field is the key factor driving the transmission of pho-
toexcitation charges in S-scheme heterojunctions. Therefore, it is
extremely indispensable to investigate the relationship between
heterojunction electric field intensity and its corresponding
photocatalytic activity. For this purpose, Zhu et al. [44] adopted
nonmetal doping to regulate the interfacial electric field intensity
of g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions and
investigated the structure-activity relationship between the
electric field intensity and photocatalytic activity. Specifically,
compared with pristine g-C3N4, when oxygen atoms were doped
into g-C3N4, the work function of resultant O-C3N4 would

Figure 7 (a) Synthetic process and (b, c) TEM images of COCN-W18O49 heterojunction. (d) H2 evolution rates, (e, f) EPR spectra, and (g) photocatalytic
mechanism in COCN-W18O49 heterojunction. Reprinted with permission from Ref. [42]. Copyright 2023, Elsevier.
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decrease (Fermi energy level would shift up) (Fig. 9a), which
would increase the Fermi energy level difference between C3N4
and SnS2, resulting in an obviously increased in the number of
transferred charges (Fig. 9a), thus increasing the intensity of the
interface electric field (Fig. 9b, c). Moreover, the electric field
strengths of g-C3N4 doped with other elements (P, S) were also
calculated when constructing heterojunction with SnS2 and ZrS2,
as exhibited in Fig. 9d. Apparently, the electric field intensities of
oxygen-doped g-C3N4 when forming heterojunction with other
semiconductors were much higher than that of pristine g-C3N4,
P-doped g-C3N4, and S-doped g-C3N4. Finally, experimental
validation results indicated that the H2-evolution rate of O-
C3N4/SnS2 heterojunction (154 μmol h−1 g−1) was significantly
higher than that of g-C3N4/SnS2 heterojunction
(38 μmol h−1 g−1), which was consistent with the calculated
results of electric field strength in Fig. 9d. Consequently,
enhancing the interfacial electric field intensity of S-scheme
heterojunction is an effective strategy to further enhance its
photocatalytic activity, which provides a new direction for the
subsequent construction of S-scheme heterojunctions.

Additionally, the most recently reported S-scheme g-C3N4-
based heterojunction systems for H2 production have been dis-

played in Table 1 [22,42–84]. On the whole, all the constructed
g-C3N4-based S-scheme heterojunctions presented highly
improved photocatalytic H2 production performance, even some
of the works have achieved an order of magnitude improvement
for hydrogen production. For example, Hafeez et al. [45] pre-
pared a rGO/NiFe2O4-g-C3N4 S-scheme heterojunction to
achieve efficient hydrogen production. The as-prepared rGO/
NiFe2O4-g-C3N4 heterojunction showed an extremely prominent
photocatalytic hydrogen-production rate of ca.
11,817 μmol h−1 g−1, over 70 times higher than that of the
g-C3N4 nanosheets, which was mainly owing to the fact that the
formation of S-scheme heterojunction between NiFe2O4 and
g-C3N4 could significantly accelerate charge transmission and
reinforce its redox power. Moreover, the rGO/NiFe2O4-g-C3N4
was magnetic, which could be easily recovered and reused.
Hassan et al. [46] fabricated a novel V2O5/N-deficient g-C3N4 S-
scheme heterojunction photocatalyst by ultrasonic treatment
and high-temperature calcination. The as-fabricated V2O5/N-
deficient g-C3N4 exhibited a prominent H2 production rate of ca.
5892 μmol h−1 g−1, which was over 13-fold superior to the
g-C3N4. The enhanced performance could be principally attrib-
uted to the fact that the fabricated S-scheme heterojunction

Figure 8 (a, b) TEM images of CoPc/OCN. (c) H2 evolution rates. (d, e) KPEM images and (f) the corresponding surface potential curves. (g) Photocatalytic
charge migration mechanism. Reprinted with permission from Ref. [43]. Copyright 2023, Springer.
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could reinforce the carrier transmission and light absorption.

CO2 reduction
In order to cope with the great threat to the living environment
posed by rapid global climate change, developing effective CO2
removal technologies to achieve a balanced CO2 content in the
atmosphere is desperately needed. Of all the new CO2 removal
technologies, photocatalytic CO2 reduction can use the solar
drive to reduce CO2 into CO, CH3OH, CH4, and other valuable
fuels, which can not only effectively remove the CO2 but also
reduce CO2 into valuable fuels, concurrently solving the energy
and environmental crises [85]. Compared with photocatalytic H2
production, photocatalytic CO2 reduction requires a photo-
catalyst with a stronger reducing capacity. In this case, g-C3N4
has been widely investigated for photocatalytic CO2 reduction
due to its strong reducing ability, visible-light reaction, and
prominent photochemical property [30]. Usually, single-con-
stituent g-C3N4 always suffers from serious recombination of

photogenerated carriers, restricted light absorption, and redox
capacity, causing its weak CO2 reduction activity. In this case, a
large number of researchers solve the above defects of single g-
C3N4 by constructing S-scheme heterojunction, so as to effec-
tively reinforce the photocatalytic CO2 reduction performance of
g-C3N4.

For instance, Wang et al. [86] successfully constructed a TiO2/
g-C3N4 nanowire array heterojunction via an interesting vapour
deposition method. During the vapour deposition process, the
generated g-C3N4 thin film would in-situ produce onto the
surface of TiO2 nanowire array (Fig. 10a). The as-constructed
TiO2/g-C3N4 heterojunction displayed an excellent CO2 reduc-
tion rate of ca. 785.3 μmol h−1 g−1, about 5.9 times superior to
the g-C3N4 photocatalyst (Fig. 10b). To reveal the above per-
formance enhancement mechanism, ISIXPS spectra were per-
formed to demonstrate the carrier transmission route between
TiO2 and g-C3N4. As exhibited in Fig. 10c–f, compared to the
pure g-C3N4, the binding energy of C 1s and N 1s for TiO2/

Figure 9 (a) Electron migration under different Fermi levels. Photocatalytic mechanisms of (b) g-C3N4/SnS2 and (c) O-C3N4/SnS2 heterojunction.
(d) Strength of interfacial electric field (IEF) in g-C3N4/MS2 heterojunctions. Reprinted with permission from Ref. [44]. Copyright 2021, Elsevier.
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Table 1 Recently reported g-C3N4-based S-scheme heterojunctions for H2 production

S-scheme
heterojunction Cocatalyst (wt%) Light source

(wavelength/nm)
H2 production rate

(μmol h−1 g−1)
Enhancement factor

versus g-C3N4

Apparent quantum
yield (%) Ref.

WO3/g-C3N4 Pt (2 wt%) 350 W Xe lamp 982 1.7 − [22]

g-C3N4/W18O49 Pt (x wt%) Simulated solar light 3908.2 11.9 13.3 [42]

CoPc/OCN Pt (1 wt%) 300 W Xe lamp 9560 2.7 6.9 [43]

O-C3N4/SnS2 Pt (x wt%) 350 W Xe lamp (λ ≥ 420 nm) 154 4.1 − [44]

rGO/NiFe2O4-g-C3N4 − Solar light 11,817 76 − [45]

V2O5/g-C3N4 Pt (5 wt%) 300 W Xe lamp (λ > 420 nm) 5892 13.1 6.5 [46]

CuInS2/g-C3N4 − 350 W Xe lamp (λ > 350 nm) 102.4 48.1 − [47]

Ce-TiO2/GO/g-C3N4 Pt (x wt%) 300 W Xe lamp 3050 38.7 − [48]

MnCo2S4/g-C3N4 − 300 W Xe lamp 2979 26.4 0.8 [49]

WO3/g-C3N4 Pt (2 wt%) 300 W Xe lamp 2971 − 13.1 [50]

BixY1−xVO4/g-C3N4 Pt (1 wt%) Xe lamp − − − [51]

In2.77S4/NiS2/g-C3N4 − 300 W Xe lamp (λ > 390 nm) 7481.7 52.5 0.3 [52]

NiTiO3/g-C3N4 Pt (x wt%) 2×250 W Tungsten-halogen
lamp 576 1.4 − [53]

AgI/g-C3N4 Pt (0.6 wt%) Xe lamp (λ ≥ 420 nm) 4562 10.6 3.2 [54]

In2S3/g-C3N4/CoZnAl-
LDH − 300 W Xe lamp 50.6 − − [55]

Co3O4/g-C3N4 − 300 W Xe lamp 105.1 41 0.05 [56]

Co-Sn3O4/g-C3N4 Pt (3 wt%) 300 W Xe lamp (λ > 420 nm) 1793.9 1.6 − [57]

TiO2/g-C3N4 Pt (1 wt%) 4 × LEDa lamp (λ = 420 nm) 3211 7.5 1.6 [58]

g-C3N4/BiO1.2I0.6 − 500 W Xe lamp (λ > 420 nm) 1402.7 3.5 11.8 [59]

S-g-C3N4/g-C3N4 Pt (3 wt%) 300 W Xe lamp (λ ≥ 420 nm) 5548.1 60.8 0.4 [60]

Mn0.2Cd0.8S-D/g-C3N4 Pt (x wt%) 300 W Xe lamp (λ > 420 nm) 11,420 30 − [61]

Bi3TaO7/g-C3N4 Pt (1 wt%) 300 W Xe lamp (λ > 420 nm) 4891 3 4.1 [62]

Ni0.85Se/g-C3N4 − 300 W Xe lamp 8780.3 92.9 − [63]

MnWO4/g-C3N4 Pt (0.5 wt%) 200 W Xe lamp 871.4 3.7 16.5 [64]

NiTe2/g-C3N4 Pt (1 wt%) 300 W Xe lamp 2540.4 23.4 − [65]

TiO2-OV/g-C3N4 Pt (1.2 wt%) 300 W Xe lamp (λ > 400 nm) 1096 10.9 − [66]

g-C3N4/CdSe-D Pt (x wt%) 300 W Xe lamp (λ > 420 nm) 18,800 1446 38.4 [67]

Cu2O/g-C3N4 − 500 W Xe lamp (λ > 400 nm) 480.6 4.6 − [69]

g-C3N4/CdS Pt (3 wt%) 300 W Xe lamp 3370 3.8 − [70]

SbVO4/g-C3N4 − 300 W Xe lamp 752 4.1 − [71]

Ni-Sn3O4/g-C3N4 Pt (3 wt%) 300 W Xe lamp (λ > 420 nm) 1961 1.4 − [72]

Mn0.5Cd0.5Se/g-C3N4 − 280 W Xe lamp 5908.3 126.6 − [73]

Ni2P/g-C3N4/Cd0.5Zn0.5

Se-D Pt (1 wt%) 300 W Xe lamp (λ ≥ 420 nm) 12,627 − 37.7 [74]

N-MoS2/S-g-C3N4 − 300 W Xe lamp 658.5 23 − [75]

S-g-C3N4/WO2.72 − 300 W Xe lamp (λ > 420 nm) 786 − 7.6 [76]

CdS/g-C3N4 − 300 W Xe lamp 15,300 3060 6.9 [77]

CdS/g-C3N4-GA − 300 W Xe lamp (λ > 420 nm) 86.4 3.5 − [78]

g-C3N4/CdS-DETA Pt (0.6 wt%) 300 W Xe lamp (λ > 400 nm) 9738 12.2 10.2 [79]

MCN/UCN Pt (1 wt%) 300 W Xe lamp (λ > 420 nm) 598 − 1.1 [80]

W18O49/g-C3N4 Pt (3 wt%) 300 W Xe lamp (λ > 420 nm) 4670 15.1 9.8 [81]

ZnCdS/DBTCN Pt (1 wt%) 300 W Xe lamp 8870 6.6 14.9 [82]

NiCo2O4/g-C3N4 Pt (0.5 wt%) 300 W Xe lamp 424 4.2 − [83]

Bi2MoO6 SOVs/g-C3N4 − 300 W Xe lamp (λ ≥ 420 nm) 2290 12.1 − [84]

a) LED: light-emitting diode.
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g-C3N4 heterojunction (without light irradiation) exhibited a
shift towards higher binding energy (Fig. 10c, d), while the
corresponding binding energy changes of Ti 2p and O 1s were
opposite (Fig. 10e, f). The above shifts mainly because when
TiO2 and g-C3N4 came into contact (formed heterojunction), the
free electrons in g-C3N4 would transfer to the TiO2 because of
their different work function, which would cause accumulations
of electrons and holes onto the TiO2 and g-C3N4 sides, respec-
tively, thus generating a built-in electric field orientation from
g-C3N4 to TiO2 (Fig. 10g). Under light irradiation, the binding
energy of C 1s and N 1s for the TiO2/g-C3N4 composite exhib-

ited a shift towards higher binding energy, whereas the corre-
sponding changes for TiO2 were reversal, primarily because that
with the action of a built-in electric field, the photogenerated
electrons on TiO2 would migrate to the g-C3N4 and occur
recombination with the holes (Fig. 10g), thus retaining the
carriers with powerful redox capacity to involve in interfacial
catalytic reaction. Therefore, the generated TiO2/g-C3N4 S-
scheme heterojunction greatly contributed to their reinforced
catalytic activity.

Apart from TiO2, g-C3N4 is also formed S-scheme hetero-
junctions with other oxides. For example, Dai et al. [87] pre-

Figure 10 (a) Structure diagram of TiO2/g-C3N4 heterojunction. (b) CO2 reduction activity. (c–f) In-situ XPS spectra and (g) graphic illustration for the
S-scheme mechanism of TiO2/g-C3N4. Reprinted with permission from Ref. [86]. Copyright 2022, Elsevier.
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pared a Cu plasmonic-modified g-C3N4/Cu2O S-scheme het-
erojunction photocatalyst by a two-step procedure, involving the
initial wet chemistry process and the following in-situ chemical
reduction. The g-C3N4, Cu2O, and Cu could be clearly identified
from the TEM and high resolution TEM (HRTEM) images of g-
C3N4/Cu2O@Cu composite (Fig. 11a–c). Moreover, the as-
obtained g-C3N4/Cu2O@Cu sample emerged with a prominent
CO2 reduction rate of about 18.9 μmol h−1 g−1, which was
obviously higher than that of pure g-C3N4 and Cu2O
(Fig. 11d), respectively. To disclose the charge transfer way, the
EPR spectra were conducted, and the results were presented in
Fig. 11e. Evidently, the DMPO-·O2

− signals could be easily tested
for the pure g-C3N4 and g-C3N4/Cu2O@Cu composites, whereas

a much weaker signal could be detected from pure Cu2O,
indicating that photoinduced electrons on g-C3N4 possessed
enough reducing capacity and did not transport to the CB of
Cu2O. Namely, the charge transfer path between Cu2O and g-
C3N4 followed S-scheme heterojunction mechanism (Fig. 11f)
rather than Type-II heterojunctions. Consequently, the above
significantly enhanced CO2 reduction activity could be mainly
due to the synergistic promotion effects of the plasma resonance
effect of Cu and the formed g-C3N4/Cu2O S-scheme hetero-
junction (Fig. 11f).

In addition to the above combinations with oxidizing photo-
catalysts, g-C3N4 occasionally served as an oxidized semi-
conductor to construct S-scheme heterojunctions with some

Figure 11 (a) TEM and (b, c) HRTEM images of g-C3N4/Cu2O@Cu. (d) CO2 reduction activity. (e) EPR spectra and (f) photocatalytic mechanism.
Reprinted with permission from Ref. [87]. Copyright 2022, Elsevier.
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metal sulfides. For instance, Lee and co-workers [88] designed a
S-doped Cu3P/g-C3N4 S-scheme heterojunction through a facile
liquid-phase mixing method. Apparently, the Cu3P emerged as
an ultra-small nanoparticle structure with a size of less than
10 nm and attached to g-C3N4 surface (Fig. 12a). Moreover, the
as-prepared Cu3P/g-C3N4 composite showed an evidently
enhanced CO2 reduction rate of around 137 μmol h−1 g−1, which
is nine times superior to the pure g-C3N4 (Fig. 12b). To analyze
the above performance enhancement mechanism, the EPR
spectra were carried out and presented in Fig. 12c. In contrast to
the pure g-C3N4, the Cu3P and Cu3P/g-C3N4 samples exhibited
much stronger DMPO-·O2

− signals, revealing that photoinduced
electrons on Cu3P possessed enough reducing capacity to
involve in reduction reaction and did not migrate to the CB of
g-C3N4. In other words, the carrier transmission way between
Cu3P and g-C3N4 followed the S-scheme heterojunction
mechanism (Fig. 12d), contributing to their significantly
improved CO2 reduction performance.

In addition, the most recently reported g-C3N4-based
S-scheme heterojunctions for CO2 reduction have been dis-
played in Table 2 [32,37,86–100]. Generally, g-C3N4 could be
fabricated S-scheme heterojunctions with many other semi-
conductors due to its excellent band structure. For instance,
Bashal et al. [89] synthesized a Cu nanoparticle-modified
g-C3N4/MoS2 S-scheme heterojunction photocatalyst. The as-
prepared Cu/g-C3N4/MoS2 composite presented an extremely
strong CO2 reduction rate of ca. 146.7 μmol h−1 g−1, over 9-fold
higher than that of g-C3N4. Tahir et al. [94] developed a Ti3AlC2
MAX cocatalyst-modified g-C3N4/TiO2 heterojunction photo-
catalyst via a sol-gel dip-coating strategy. The resultant Ti3AlC2
MAX-g-C3N4/TiO2 composite exhibited a significantly rein-

forced CO2 reduction activity of ca. 2400.7 μmol h−1 g−1, which
is over 23 times superior to the pure g-C3N4. The above evidently
reinforced CO2 reduction performance could be mainly due to
the fact that the charge transfer route of the generated g-C3N4/
TiO2 heterojunction obeyed the S-scheme mechanism.

Pollutant degradation
With the advancement of global industrialization, environ-
mental pollution has become increasingly serious, and the
content of various pollutants, such as oxynitrides, antibiotics,
and dyes, in the atmosphere, water, and soil has seriously
exceeded the standard [101]. Therefore, it is urgent to seek
effective methods to remove these environmental pollutants.
Among the many processing strategies, photocatalytic degrada-
tion technique can effectively remove the pollutants in the
atmosphere, water, and soil, and the degradation process of
pollutants is mild and does not produce toxic substances.
Moreover, the effect of the photocatalyst cycle is not reduced,
and it can be recycled and reused. Based on the photocatalytic
degradation mechanism, the more positive the VB of the semi-
conductor, the more stronger oxidation capacity of its photo-
generated holes, thus efficiently degrading various pollutants
into non-toxic and harmless CO2 and H2O. However, g-C3N4, a
typical RP, usually presents very weak photocatalytic degrada-
tion activity due to its limited oxidation capacity and severe
recombination of carriers. In this case, combining the OPs with
g-C3N4 to form S-scheme heterojunctions could effectively solve
the problem of weak oxidation capacity and severe recombina-
tion of carriers for g-C3N4, thus greatly enhancing its photo-
catalytic degradation activity.

For instance, Van Pham et al. [102] constructed a g-C3N4/

Figure 12 (a) TEM and HRTEM (inset) images of us-Cu3P/S/CN. (b) CO2 reduction activity. (c) EPR spectra and (d) S-scheme mechanism. Reprinted with
permission from Ref. [88]. Copyright 2021, American Chemical Society.
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SnO2 S-scheme heterojunction via a facile calcination process,
involving the pre-synthesizing SnO2 nanoparticles and g-C3N4
nanosheets by simple hydrothermal and calcination treatments,
respectively (Fig. 13a). The HRTEM image of g-C3N4/SnO2
composite clearly emerged that SnO2 nanoparticles with differ-
ent sizes were loaded on g-C3N4 nanosheet surface (Fig. 13b),
investigating the successful production of g-C3N4/SnO2 hetero-
junction. Additionally, the as-constructed g-C3N4/SnO2 hetero-
junction showed obviously reinforced photocatalytic NO
removal activity, which is 1.2 times higher than that of pure g-
C3N4 (Fig. 13c). The above enhanced photocatalytic activity
could be primarily owing to the fact that the generated g-C3N4/
SnO2 S-scheme heterojunction could effectively promote carrier
transmission and enhance its oxidation capacity (Fig. 13d).

Generally, semiconductors with strong oxidation ability are
mostly metal oxides. Hence, g-C3N4 is usually combined with
various metal oxides to construct S-scheme heterojunctions and
applied in photocatalytic degradation. For another example,
Truong and co-workers [103] fabricated a novel α-Fe2O3/g-C3N4
S-scheme heterojunction by a simple sonication treatment,
including the pre-synthesizing α-Fe2O3 and g-C3N4 via sol-gel
method and calcination process (Fig. 14a). The as-fabricated
α-Fe2O3/g-C3N4 heterojunction displayed prominently rein-
forced photocatalytic degradation performance of cefalexin and

amoxicillin, which was 5-fold and 9-fold superior to the pure
g-C3N4, respectively (Fig. 14b, c). To reveal the above perfor-
mance enhancement mechanism, EPR spectra were conducted.
Obviously, under visible light, the DMPO-·O2

− and DMPO-·OH
signals could be clearly detected in g-C3N4 and α-Fe2O3/g-C3N4
samples, while they could not be detected in dark (Fig. 14d, e).
Combining the active-radical trapping test results, it was not
difficult to draw a conclusion that the carrier transmission way
obeyed the S-scheme heterojunction (Fig. 14f), which con-
tributed to the significantly enhanced degradation rate of
α-Fe2O3/g-C3N4.

Except for metal oxides, some oxysalt semiconductors are also
often used to construct S-scheme heterojunctions with g-C3N4.
For instance, Dai et al. [104] produced an Au/g-C3N4/BiO1.2I0.6
photocatalyst (Fig. 15a) by a facile calcination method. The TEM
and HRTEM images of the resultant Au/g-C3N4/BiO1.2I0.6 sample
clearly showed the lattice fringes of characteristic crystal faces
for Au and BiO1.2I0.6 (Fig. 15b, c). Moreover, the semitransparent
and amorphous lamellar structures of g-C3N4 could be observed,
powerfully indicating the successful production of Au/g-C3N4/
BiO1.2I0.6 heterojunction structure. Additionally, the as-designed
Au/g-C3N4/BiO1.2I0.6 sample displayed excellent photoreduction
activity of Cr(VI) and photocatalytic degradation activity of
BPAF, which were 3.7 and 6.5 times higher than that of the pure

Table 2 Recently reported g-C3N4-based S-scheme heterojunctions for CO2 reduction

S-scheme
heterojunction

Light source
(wavelength/nm)

Reduction
products

CO2 reduction rate
(μmol h−1 g−1)

Enhancement factor
versus g-C3N4

Apparent quantum
yield (%) Ref.

InVO4 QDs/g-C3N4
300 W Xe lamp

(λ > 420 nm) CO (93.3%) 69.8 18 6.8 [32]

O-g-C3N4/N-Nb2O5 300 W Xe lamp CO (78.82%)
CH4 (21.18%) 321.5 6 4.9 [37]

TiO2/g-C3N4 300 W Xe lamp CO
CH4

785.3 5.9 − [86]

g-C3N4/Cu2O@Cu 300 W Xe lamp CO
CH4

13.9 − − [87]

Cu3P/g-C3N4 300 W Xe lamp CO 137 9 − [88]

g-C3N4/MoS2/Cu 350 W Xe lamp
(λ > 420 nm) CO (100%) 146.7 9.7 3.2 [89]

g-C3N4/BiOBr 300 W Xe CH3OH 267 − − [90]

g-C3N4/Pd/MoO3-x 300 W Xe lamp CO 4.6 12.1 0.01 [91]

Ti3C2-g-C3N4/MoSe2 Simulated sunlight CO
CH4

47.8 − − [92]

g-C3N4/Ag-TiO2 300 W Xe lamp CO
CH4

52.7 − 2.4 [93]

g-C3N4/TiO2/Ti3AlC2 MAX 35 W HID car lamp CO (3.41%)
CH4 (96.59%) 2400.8 23.3 − [94]

ZnIn2S4/g-C3N4 300 W Xe lamp CO 883 13.4 8.9 [95]

CsPbBr3/S-g-C3N4
300 W Xe lamp

(λ > 400 nm) CO 83.6 4 − [96]

Bi3NbO7/g‐C3N4 Simulated solar CH4 (90%) 37.6 15 − [97]

BiOI/g-C3N4
300 W Xe lamp

(λ > 400 nm) CO 3.1 5.4 − [98]

g-C3N4/ZnO 300 W Xe lamp CH4 16 7 − [99]

rGO/R-CeO2/g-C3N4 300 W Xe lamp CO
CH4

23.9 4.6 − [100]
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g-C3N4 (Fig. 15d, e), respectively. The characterization and
theoretical calculation results indicated that the plasmon reso-
nance effect of Au and the formation of S-scheme heterojunc-
tion jointly promoted the enhancement of photocatalytic
performance for Au/g-C3N4/BiO1.2I0.6 sample.

In addition to the above examples, the most recently reported
g-C3N4-based S-scheme heterojunctions for photocatalytic
degradation contaminant are shown in Table 3 [68,102–163]. It
is found that photocatalytic degradation technology can be
applied to degrade various antibiotics, dyes, atmospheric pol-
lutants, and even remove toxic heavy metal ions. Moreover,
most of the reported g-C3N4-based S-scheme heterojunctions
show extremely increased photocatalytic degradation activity.
For instance, Mkhalid et al. [105] prepared a g-C3N4/Li2MnO3

heterojunction photocatalyst by a simple evaporation process.
The obtained g-C3N4/Li2MnO3 heterojunction exhibited an
obviously reinforced photocatalytic degradation rate of tri-
chloroethylene, which was over 5-fold superior to the pure g-
C3N4. Moreover, the improvement was mainly owing to the
generation of S-scheme heterojunction, which significantly
promoted the separation and transmission of photoinduced
charges. Van et al. [106] constructed a g-C3N4/CdS nano-het-
erojunction via a solvothermal method. The as-prepared g-
C3N4/CdS heterojunction emerged with an extremely increased
photocatalytic degradation rate of methylene blue, nearly 25
times higher than that of pure g-C3N4, primarily due to the
construction of S-scheme heterojunction between g-C3N4 and
CdS.

Figure 13 (a) Synthetic process and (b) HRTEM image of g-C3N4/SnO2 somposite. (c) NO degradation rate constants and (d) photocatalytic reaction
mechanism. Reprinted with permission from Ref. [102]. Copyright 2021, Elsevier.
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Figure 14 (a) Synthetic process of α-Fe2O3/g-C3N4. Photocatalytic degradation of (b) cefalexin and (c) amoxicillin. EPR signals of (d) DMPO-·O2
− and

(e) DMPO-·OH. (f) Photocatalytic mechanism. Reprinted with permission from Ref. [103]. Copyright 2022, American Chemical Society.

Figure 15 (a) Graphical illustration. (b) TEM and (c) HRTEM images of Au/g-C3N4/BiO1.2I0.6. Kinetic fitting photodegradation curves of (d) Cr(VI) and
(e) BPAF. (f) Photocatalytic mechanism. Reprinted with permission from Ref. [104]. Copyright 2022, Elsevier.
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Table 3 Recently reported g-C3N4-based S-scheme heterojunctions for pollutant degradation

S-scheme heterojunction Light source
(wavelength/nm) Degradation substrate Reduction rate (min−1) Enhancement factor

versus g-C3N4
Ref.

Ti0.7Sn0.3O2/g-C3N4 1.5 W LED lamp
Rhodamine B 0.205 2.2

[68]
Tetracycline hydrochloride 0.053 8.8

g-C3N4/SnO2
300 W Xe lamp

(400 < λ < 800 nm) NO 0.0881 1.2 [102]

α-Fe2O3/g-C3N4
300W Osram lamp Cefalexin 0.0113 5.0

[103]
(λ > 420 nm) Amoxicillin 0.004 9.0

Au/g-C3N4/BiO1.2I0.6
500 W Xe lamp

(λ > 420 nm)
Bisphenol AF 0.0174 6.5

[104]
Cr (VI) 0.0204 3.7

Li2MnO3/g-C3N4
300 W Xe lamp

(λ > 420 nm) Trichloroethylene 0.0127 6.7 [105]

CdS/g-C3N4 30 W LED lamp Methylene blue 0.025 25 [106]

Bi2MoO6(2 0 0)/g-C3N4
Xe lamp

(λ > 420 nm) Hg0 − − [107]

R.palustris/RCM@CPU 500 W Xe lamp
(λ > 420 nm) Azo dye − − [108]

g-C3N4/TiO2 300 W Xe lamp
Methylene Blue 0.0548 5.4

[109]
Tetracycline 0.3154 8.5

TiO2/g-C3N4 350 W Xe lamp LBW 0.0023 2.9 [110]
g-C3N4/Mn(VO3)2 500 W Xe lamp Sulfamethoxazole − 14 [111]

LaFeO3/g-C3N4 1000 W Xe lamp
RB-19 0.0239 24.8

[112]
Cr (VI) 0.0172 10.3

ZnFe2O4/g-C3N4 300 W Xe lamp Tetracycline hydrochloride 0.0454 4.6 [113]

g-C3N4/BiOI Xe lamp
(λ > 420 nm)

Tetracycline 0.1687 27.2
[114]

Cr (VI) 0.0718 8.5
g-C3N4/NiFe2O4 300 W Xe lamp Tetracycline 0.0145 2.3 [115]

CeO2-C-g-C3N4
250 W Xe lamp

(320 < λ < 780 nm)
Methylene blue 0.0567 2.4

[116]
Tetracyclines 0.0194 1.5

TiO2−x/g-C3N4/CNFe 300 W Xe lamp
(λ > 420 nm) Peroxymonosulfate 0.0969 − [117]

g-C3N4/WO3/ZnS 300 W Xe lamp
(λ > 420 nm) Tetracycline 0.042 3.5 [118]

O-g-C3N4/OV BiOCl 500 W Xe lamp
(λ > 400 nm) Bisphenol A 0.035 12.1 [119]

MgO/g-C3N4
300 W Xe lamp

(λ > 420 nm) Rhodamine B 0.0064 33.7 [120]

g-C3N4/GO/ZnFe2O4 Halogen lamp
Tetracycline − −

[121]Rhodamine B − −
Methylene Blue − −

g-C3N4/CeO2 300 W Xe lamp Bisphenol A 0.0257 8.6 [122]

g-C3N4/TiO2/ZnIn2S4/GA 300 W Xe lamp
Methyl orange 0.094 37.6

[123]
Cr (VI) 0.0411 9.3

La2Ce2O7/g-C3N4
300 W Xe lamp

(λ > 420 nm) Rhodamine B 0.027 2.4 [124]

g-C3N4/TiOF2 500 W Xe lamp Tetracycline hydrochloride 1.052 2.8 [125]

N-TiO2−X/g-C3N4
300 W Xe lamp

(λ > 400 nm) 2,4-dinitrophenylhydrazine − − [126]

α-Fe2O3/g-C3N4 300 W Xe lamp Tetracycline hydrochloride 0.0165 3.1 [127]
Ag2CO3/Bi4O5I2/g-C3N4 300 W Xe lamp Tetracycline 0.0389 13.3 [128]

N-g-C3N4/NH2-MIL-125(Ti) 300 W Xe lamp
(λ > 400 nm) Rhodamine B 0.0246 3.3 [129]

CaSnO3/g-C3N4 500 W Halogen lamp Methylene Blue − − [130]

(To be continued on the next page)
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(Continued)

S-scheme heterojunction Light source
(wavelength/nm) Degradation substrate Reduction rate (min−1) Enhancement factor

versus g-C3N4
Ref.

SnO2-x/g-C3N4
300 W Osram lamp

(λ > 420 nm) NO − − [131]

g-C3N4/Ag/AgNCO 300 W Xe lamp Tetracycline 0.3 3.1 [132]
g-C3N4/SnO2 300 W Xe lamp NO − − [133]

α-Fe2O3/g-C3N4
300 W Xe lamp

(λ > 420 nm) Tetracycline − − [134]

N-ZnO/g-C3N4 300 W Xe lamp Norfloxacin 0.034 4.1 [135]
SnO2/g-C3N4 30 W LED lamp Rhodamine B 0.0353 10.7 [136]

PDI/g-C3N4/TiO2@Ti3C2
300 W Xe lamp

(λ > 420 nm) Atrazine 0.0248 4.4 [137]

WO3/g-C3N4 300 W Solar simulation light NO 0.119 2.1 [138]

g-C3N4/BiVO4
300 W Xe lamp

(λ > 400 nm) Methylene blue 0.0609 15.2 [139]

MoO3/g-C3N4 300 W Xe lamp
Rhodamine B − −

[140]
Cr (VI) − −

g-C3N4/TiO2/CFs 350 W Xe lamp Tetracycline hydrochloride 0.1566 9.5 [141]

BiOBr/Ni2P/g‐C3N4
300 W Xe lamp

(λ ≥ 400 nm)
Rhodamine B 0.026 3.6

[142]
Methyl orange 0.0154 3.9

Bi2Se3/g‐C3N4
60 W LED lamp

(λ > 400 nm) Phenol − − [143]

g-C3N4/TiO2 UV light Tetracycline hydrochloride 0.057 − [144]
TiO2/CN QDs 500 W Xe lamp Methyl orange 0.0172 − [145]

g-C3N4/Mo-WO3 350 W Xe lamp Methyl orange 0.0367 14.1 [146]

g-C3N4/ZnIn2S4
LED lamp

(λ > 400 nm) Tetracycline 0.0196 2.5 [147]

g-C3N4/NiZnAl-LDH 500 W Xe lamp
(λ < 400 nm)

Methyl orange 0.0233 3.5
[148]

Tetracycline 0.0145 3.2

g-C3N4/rGO/ZnO-Ag −
Rhodamine B 0.017 5.7

[149]
Methyl orange 0.023 4.9

BiOBr/g-C3N4
500 W Xe lamp

(λ > 400 nm) Ethyl xanthate 0.0282 24.6 [150]

SnS2/g-C3N4
60 W lamp

(200 < λ < 400 nm) Rhodamine B 0.0074 4.2 [151]

CoTiO3/g-C3N4
300 W Xe lamp

(λ > 400 nm) Methyl orange 0.0165 38.1 [152]

g-C3N4/MXene/Ag3PO4
300 W Xe lamp

(λ ≥ 420 nm) Tetracycline 0.0353 4.3 [153]

ZnFe2O4/g-C3N4
300 W Xe lamp

(λ ≥ 400 nm) Bisphenol A 0.075 − [154]

Bi4V2O11/g-C3N4
300 W Xe lamp

(λ > 420 nm) Oxytetracycline − 3.3 [155]

BiOBr/g‐C3N4
300 W Xe lamp

(λ > 400 nm) Rhodamine B 0.0127 48.2 [156]

ZnFe2O4/g-C3N4 LED lamp Uranium (VI) − − [157]

Bi2WO6/g-C3N4
300 W Xe lamp

(λ > 400 nm) Ammonium dinitramide 0.0567 44.3 [158]

S-g-C3N4/TiO2 300 W Xe lamp Congo Red 0.0962 8.2 [159]

Cd0.5Zn0.5S/g-C3N4
350 W Xe lamp

(λ > 420 nm) Rhodamine B 0.0817 13 [160]

C-WO3/g-C3N4
300 W Xe lamp

(λ > 420 nm) Tetracycline 0.0378 2.3 [161]

Bi2MoO6/g-C3N4
300 W Xe lamp

(λ > 420 nm) Rhodamine B 0.0808 9.7 [162]

g-C3N4/α-Fe2O3 Halogen lamp Methyl orange 0.029 − [163]
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H2O2 production
Hydrogen peroxide (H2O2), a powerful oxidizing agent and
bleach, has been broadly used in industry, aerospace, energy, and
other fields due to its advantages of pollution-free, green, and
clean [164]. Currently, the anthraquinone method is mainly used
to produce H2O2. However, the anthraquinone method always
causes high energy consumption, large carbon, organic solvents
and pollutants emission. Therefore, developing environmentally
friendly, efficient, and economical strategy to produce H2O2 is
just what the public wanted. Based on the fact, photocatalytic
H2O2 production can convert H2O and O2 into H2O2 driven by
sunlight. Namely, H2O2 can be efficiently produced by a suitable
photocatalyst [85]. According to the mechanism of photo-
catalytic production H2O2, currently reported H2O2 generation is
mainly based on photogenerated electron reduction reaction. In
this case, g-C3N4 has been broadly used to produce H2O2.

For example, Phan et al. [165] designed a g-C3N4/CdS S-
scheme heterojunction via a plain calcination strategy (Fig. 16a).
The HRTEM images of g-C3N4/CdS composite indicated that
CdS particles were aggregated on the surface of amorphous
g-C3N4. Moreover, the lattice fringes corresponding to (103),
(101), and (200) crystal faces could be clearly observed
(Fig. 16b, c). Additionally, the resultant g-C3N4/CdS hetero-

junction emerged with a prominent H2O2 production rate of
23,440 μmol h−1 g−1, which was over two times superior to the
pure g-C3N4 (Fig. 16d), primarily owing to the generated g-
C3N4/CdS S-scheme heterojunction. To demonstrate the for-
mation process of S-scheme heterojunction, the work functions
of g-C3N4 and CdS were calculated and shown in Fig. 16e, f. Due
to their different work functions, the free electrons of CdS would
migrate to the g-C3N4 when they came into contact, thus gen-
erating a built-in electric field direction from CdS to g-C3N4
(Fig. 16g). When they were excited by the light, the photo-
generated carrier with weak redox ability would recombine,
while the carrier with strong redox ability would be retained and
participated in the following interface reaction, thus contribut-
ing to their highly increased performance.

Except for metal sulfides, g-C3N4 is also often coupled with
some metal oxides to construct S-scheme heterojunction and
used to produce H2O2. For instance, Wang and co-workers [166]
designed a Pd-modified Cu2O/g-C3N4 S-scheme heterojunction
photocatalyst. The TEM image revealed that the Cu2O-Pd par-
ticles were glomerated onto the surface of the semitransparent
g-C3N4 framework (Fig. 17a). Moreover, the lattice fringes and
spacings corresponding to Cu2O and Pd could be clearly
observed from their HRTEM images in Fig. 17b, c. Simulta-

Figure 16 (a) Preparation process. (b, c) HRTEM images. (d) H2O2 production rates. Work functions of (e) g-C3N4 and (f) CdS. (g) S-scheme mechanism.
Reprinted with permission from Ref. [165]. Copyright 2023, American Chemical Society.
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neously, the lattice fringes of Cu2O and Pd emerged obvious
intersections (Fig. 17c), adequately indicating the successful
generation of Pd-modified Cu2O/g-C3N4 heterojunction struc-
tures. Additionally, the resultant g-C3N4/Cu2O-Pd sample
exhibited a super-strong H2O2 production rate of
34,000 μmol h−1 g−1, which was over 10-fold stronger than that
of pure g-C3N4 (Fig. 17d). The greatly improved performance
can be mainly ascribed to the synergistic promotion of S-scheme
heterojunction and Pd modification (Fig. 17e).

In addition to the above metal oxides and sulfides, metal-
organic frameworks have been broadly combined with g-C3N4 to
produce heterojunction photocatalysts. For example, Xia et al.
[167] fabricated a novel g-C3N4/Zinc porphyrin (Zn-TCPP) S-
scheme heterojunction photocatalyst by a thermal poly-
condensation route. The as-prepared g-C3N4/Zn-TCPP hetero-
junction composite presented an evidently improved H2O2
production-rate of 355.13 μmol h−1 g−1, over 3-fold superior to
the g-C3N4 (Fig. 18a). Moreover, the g-C3N4/Zn-TCPP could
maintain its initial high performance after four H2O2-production
cycles (Fig. 18b). To demonstrate the charge transfer route
between g-C3N4 and Zn-TCPP, KPFM technology was con-
ducted, and its corresponding results were provided in
Fig. 18c–f. In dark, the surface potential of Zn-TCPP (point B,
402 mV) was obviously higher than that of g-C3N4 (point A,
101 mV), which would cause the migration of electrons from
Zn-TCPP to g-C3N4, thus producing a built-in electric field of
direction from Zn-TCPP to g-C3N4 (Fig. 18g). With light illu-
mination, the surface potential of g-C3N4 (point A) increased
even more, due to the fact that the photoinduced electrons
migrated from g-C3N4 to Zn-TCPP, consistent with the direction
of the electric field. Consequently, the above KPFM results

in-situ confirmed the carrier transmission path of S-scheme
heterojunction.

In addition to the above examples, the most recently reported
g-C3N4-based S-scheme heterojunctions for H2O2 production are
displayed in Table 4 [165–174]. It is found that g-C3N4 can be
used to construct S-scheme heterojunctions with various oxi-
dation and reduction-type photocatalysts and show significantly
enhanced activity. For instance, Fang et al. [168] designed a
hollow sphere structure Pt/g-C3N4/BiOBr S-scheme hetero-
junction via a solvothermal method. The resultant Pt/g-C3N4/
BiOBr heterojunction exhibited a prominent H2O2-production
rate of 225 μmol h−1 g−1. Das et al. [169] developed a Fe2O3
quantum dots/boron-doped g-C3N4 (Fe2O3 QD/B-g-C3N4) S-
scheme heterojunction photocatalyst by an in-situ generation
strategy. The resultant Fe2O3 QD/B-g-C3N4 heterojunction
showed an obviously reinforced H2O2-production rate of
729 μmol h−1 g−1, nearly two times higher than the pure g-C3N4,
mainly due to the generation of S-scheme heterojunction
between Fe2O3 QD and B-g-C3N4. Consequently, all the reported
g-C3N4-based S-scheme heterojunctions displayed excellent
photocatalytic H2O2 production performance.

Other applications
Except for the above applications of photocatalytic degradation,
H2 evolution, H2O2 production, and CO2 reduction, g-C3N4-
based S-scheme heterojunction photocatalysts have also been
used to produce O2 and fixate nitrogen (N2). For instance, Li
et al. [175] constructed a g-C3N4/Ag3PO4 S-scheme hetero-
junction through an in-situ synthetic strategy, involving the
premier fabrication of g-C3N4 nanotube and the next in-situ
production of Ag3PO4 onto g-C3N4 (Fig. 19a). The obtained g-

Figure 17 (a) TEM and (b, c) HRTEM images of g-C3N4/Cu2O-Pd sample. (d) H2O2 production rates and (e) H2O2 production and charge transfer
mechanism. Reprinted with permission from Ref. [166]. Copyright 2023, American Chemical Society.
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C3N4/Ag3PO4 heterojunction composite displayed an excellent
photocatalytic O2-production rate of ca. 370.2 μmol L−1 h−1, over
3-fold superior to the pure Ag3PO4 (Fig. 19b). The above
enhancements could be mainly due to the fact that the generated
g-C3N4/Ag3PO4 S-scheme heterojunction significantly improved
the migration efficiency and redox ability of carriers.

N2 fixation technology is essential for the development of
industry and agriculture. The proportion of N2 in the air is as
high as 78%. However, most plant corpus cannot directly absorb

and utilize the N2 in the air. Traditional industrial ammonia
synthesis can convert N2 into ammonia that is easily absorbed by
organisms, while it requires high temperature, high pressure,
and H2 energy as a raw material. Therefore, there is an urgent
need to develop new, gentle, and green technologies to convert
abundant nitrogen into nitrogen that can be absorbed by living
organisms. Photocatalytic N2-fixation technology is driven by
solar energy, N2, and water as raw materials; N2 can be converted
into ammonia easily absorbed by organisms. For instance,

Figure 18 (a) H2O2 production rates. (b) Recycling tests. (c) AFM image and the corresponding surface potential maps: (d) dark and (e) light. (f) Surface
potentials from A to B and (g) S-scheme mechanism. Reprinted with permission from Ref. [167]. Copyright 2023, Elsevier.
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Mousavi et al. [176] constructed a g-C3N4/AgBiS2 S-scheme
heterojunction photocatalyst via a solvothermal method. The
TEM image (Fig. 20a) shows that AgBiS2 aggregates were
attached to the surface of translucent g-C3N4 nanosheets
(CNNS). Moreover, the lattice fringes and spacings corre-
sponding to CNNS(002) and AgBiS2(200) could be clearly
observed from its HRTEM image in Fig. 20b. Additionally, the
resultant g-C3N4/AgBiS2 heterojunction exhibited prominent
N2-fixation (NH4

+ generation) activity of ca. 3780 μmol g−1 L−1,
over 2-fold and 3-fold higher than that of pure AgBiS2 and g-
C3N4, respectively (Fig. 20c). Moreover, the g-C3N4/AgBiS2
sample emerged excellent stability in the cycle test of nitrogen-

fixation performance (Fig. 20d). The above excellent N2-fixation
activity and stability were mainly due to the fact that the S-
scheme g-C3N4/AgBiS2 heterojunction could efficiently accel-
erate charge transmission efficiency and enhance its redox
ability.

CONCLUSIONS AND OUTLOOK
In summary, single-component photocatalysts cannot simulta-
neously possess high utilization efficiency of solar energy and
strong redox abilities of photoexcited charges, thus usually suf-
fering weak photocatalytic activity [177,178]. The star material
g-C3N4 in the field of photocatalysis is no exception. In this case,

Table 4 Recently reported g-C3N4-based S-scheme heterojunction photocatalysts for H2O2 evolution

S-scheme
heterojunction Sacrificial agent Light source

(wavelength/nm)
H2O2 production rate

(μmol h−1 g−1)
Enhancement factor

versus g-C3N4

Apparent quantum
yield (%) Ref.

CdS/g-C3N4 − 3 × 50 W Halogen lamp 23,440 2 − [165]

g-C3N4/Cu2O-Pd − 500 W Xe lamp (λ > 400 nm) 34,000 − 3.3 [166]

Zn-TCPP/g-C3N4 Ethanol 300 W Xe lamp 355.1 3.1 7 [167]

Pt/g-C3N4/BiOBr − 300 W Xe lamp (λ > 400 nm) 225 − − [168]

Fe2O3 QD/B-g-C3N4 5% IPA 250 W Hg lamp (λ ≥ 420 nm) 729 2 − [169]

S-g-C3N4/TiO2 − 300 W Xe lamp
(300 ≤ λ ≤ 700 nm) 2128 2.6 0.6 [170]

PCN/MnS − 300 W Xe lamp 4188 − 8.5 [171]

CN QDs/BiOBr − 300 W Xe lamp − − − [172]

NH2-MIL-101(Fe)
@MCN/Bi2O3

− 300 W Xe lamp (λ > 420 nm) 327.8 2.7 − [173]

g-C3N4/PDA − 300 W Xe lamp (λ > 350 nm) 3801.3 2 2.2 [174]

Figure 19 (a) Synthesis process. (b) O2 production rates and (c) photocatalytic mechanism. Reprinted with permission from Ref. [175]. Copyright 2022,
Elsevier.
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constructing S-scheme heterojunctions between g-C3N4 with
other semiconductors can simultaneously overcome the typical
shortcomings of low light energy utilization, rapid recombina-
tion, and weak redox abilities of carriers, thus prominently
reinforcing its photocatalytic performance [179]. Hence, this
review comprehensively comments on the latest research pro-
gress of background, fundamental theory, design and prepara-
tion, and characterization strategies of g-C3N4-based S-scheme
heterojunctions. Additionally, various photocatalytic applica-
tions of g-C3N4-based S-scheme heterojunctions have been
detailly illustrated through example discussion and list com-

parison, involving photocatalytic H2 production, CO2 reduction,
H2O2 production, pollutant degradation, and others.

Although g-C3N4-based S-scheme heterojunctions have made
phased progress in controllable construction and enhancement
of activity, there are still some bottlenecks to overcome, which
are listed as follows.

(1) The dynamic process of charge transfer and the intensity,
position, and direction of the built-in electric field are still
lacking in-situ characterization methods to intuitively reveal. It
is well-known that revealing the S-scheme mechanism in depth
is the prerequisite for its further development. Therefore, there is

Figure 20 (a) TEM and (b) HRTEM images of CNNS/AgBiS2. (c) Photocatalytic N2 fixation activities. (d) Recycling tests and (e) photocatalytic mechanism.
Reprinted with permission from Ref. [176]. Copyright 2023, Elsevier.
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an urgent need to develop new characterization technologies to
effectively reveal the mechanism. Meanwhile, it is necessary to
strengthen interdisciplinary integration to intuitively and effi-
ciently detect the relevant information of the built-in electric
field.

(2) According to the carrier transmission path of S-scheme
heterojunction, it is not difficult to conclude that the interfacial
electric field is the key factor driving the transmission of pho-
toexcitation charges in S-scheme heterojunctions. However, the
current researches for the improvement of g-C3N4-based S-
scheme heterojunction are primarily concentrating on the tra-
ditional cocataltyst modification, element doping, morphology
regulation, etc. [180–183], and the influences of the built-in
electric field of S-scheme heterojunction on its carrier separation
efficiency and photocatalytic activity are rarely studied. There-
fore, it is extremely indispensable to investigate the regulation of
interfacial built-in electric field of g-C3N4-based S-scheme het-
erojunction and its relationship with photocatalytic activity.

(3) As we all know, there is a certain gap between the current
photocatalysis efficiency and the industrial application level,
which is the key bottleneck of current photocatalysis technology.
Improving the efficiency of photocatalysis technology to a level
that can be used industrially is the ultimate goal. Therefore,
future research should optimize every condition that can
improve the activity of the photocatalytic systems from the
inside out. Taking the study of g-C3N4-based S-scheme hetero-
junction as an example, the intrinsic structure (such as mor-
phology, specific surface area, and crystallinity) of g-C3N4 and
other semiconductors, the heterojunction interface structure, the
related interfacial electric field structure, and other factors need
to be optimized to break through the bottleneck of performance
improvement and reach the level of industrial application.
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g-C3N4基S型异质结光催化剂
吴新鹤*, 谭丽红, 陈郭强, 康佳乐, 王国宏*

摘要 随着工业化的蓬勃发展, 能源短缺和环境污染日益严重, 威胁到
人类的生存. 光催化技术因其诸多突出优点和广泛的应用前景被认为
是解决能源和环境危机最有前途的技术之一. 在众多光催化剂中, 石墨
氮化碳(g-C3N4)以其独特的电子结构、较高的热稳定性和突出的光电
活性, 在清洁燃料生产和环境净化领域得到广泛应用. 然而, 单组分
g-C3N4与其他光催化剂一样, 不可能同时拥有高的太阳能利用效率和
强氧化还原能力的光生电荷, 导致其光催化效率较低. 幸运的是, g-
C3N4与另一半导体构建异质结可以同时克服太阳能利用效率低、载流
子重组快、氧化还原能力弱的缺点, 从而显著提高其光催化性能. 鉴于
目前g-C3N4基S型异质结的广泛研究, 本文对g-C3N4基S型异质结研究
背景、概念提出、基本理论、设计制备、表征方法等方面的最新研究
进展进行了较全面的综述. 此外, 通过实例讨论和列表比较详细讨论了
g-C3N4基S型异质结的各种应用, 包括光催化制H2、还原CO2、降解污
染物、生产H2O2. 最后, 总结了g-C3N4基S型异质结当前的研究进展和
不足, 并对未来的研究方向进行了展望.

REVIEWS SCIENCE CHINA Materials

472 February 2024 | Vol. 67 No. 2© Science China Press 2024


	g-C3N4-based S-scheme heterojunction photocatalysts 
	INTRODUCTION
	g-C 3N4-BASED S-SCHEME HETEROJUNCTIONS
	Fundamental theory
	Design and preparation
	Characterization method 

	APPLICATIONS
	H 2 evolution
	CO 2 reduction
	Pollutant degradation 
	H 2O2 production
	Other applications

	CONCLUSIONS AND OUTLOOK


