Skip to main content
Log in

A universal strategy for narrowband organic photodetectors enabling arbitrary narrow spectrum detection

一种实现任意窄带光谱检测的有机光电探测器通用策略

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Narrowband photodetectors (PDs) with remarkable comprehensive performance are extensively in demand in critical applications such as spectrometers, light detection and ranging (LiDAR), optical communication, and surveillance. Despite the fact that silicon-based narrowband PDs currently predominate the market, their inherent rigidity, fixed band limitations, and bulky sizes significantly impede their applications in emerging fields, particularly in flexible and wearable optoelectronics. In this work, a facile and universal solution-processed strategy is presented to fabricate narrowband organic PDs (OPDs) that can detect arbitrary narrow spectra, which is realized by introducing an independent organic optical adjusting layer (OAL) comprising the same donor and acceptor within the photoactive film of OPD. With this strategy, we successfully fabricate a narrowband OPD centered at 750 nm, with a full width at half-maximum (FWHM) of 40 nm, spectral responsivity ratio of 3667, and −3 dB cutoff frequency of 927 kHz, as recorded in self-powered narrowband OPDs. Notably, this novel OAL strategy shows outstanding universality across all OPDs for detecting arbitrary narrow spectra in the range of 600–1000 nm with tunable FWHMs (minimum narrowing step of 2 nm), high responsivity and detectivity, and fast response speed. Benefiting from the inherent flexibility of organic semiconductors, we fabricate a flexible and bendable narrowband near-infrared OPD linear array for omnidirectional LiDAR, realizing a 360° horizontal scan without mechanical rotation.

摘要

窄带光电探测器因其优异的综合性能, 在光谱仪、激光雷达、光通信和监控等关键应用领域广受欢迎. 尽管窄带硅基探测器在当前市场上占据主导地位, 但其本征刚性、光学带隙固定和尺寸大的特性极大地限制了其在新兴领域的应用, 尤其是在柔性和可穿戴光电子领域. 在本工作中, 我们报道了一种构筑窄带有机光电探测器(OPD)的简单通用策略. 该策略通过溶液法将活性层中的给体和受体材料制备成光学调制层(OAL), 并集成在OPD上, 可实现对任意光谱的检测. 利用该策略, 我们成功地构筑了以750 nm为中心的窄带OPD, 其半峰宽(FWHM)为40 nm, 光谱响应率为3667, −3 dB截止频率为927 kHz, 打破了自驱动窄带OPD的性能记录. 值得注意的是, 这种新颖的OAL策略在OPD中具有良好的通用性, 可以实现对600至1000 nm范围内的任意窄光谱检测, 具有FWHM可调(最小步长为2 nm)、响应度和探测率高、响应速度快的优势. 受益于有机半导体固有的柔性特性, 我们构筑了一种柔性且可弯曲的窄带近红外OPD线性阵列, 并应用于全向激光雷达上, 在无需机械旋转的情况下实现了360°水平扫描.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lin Q, Armin A, Burn PL, et al. Filterless narrowband visible photodetectors. Nat Photon, 2015, 9: 687–694

    Article  ADS  Google Scholar 

  2. Armin A, Jansen-van Vuuren RD, Kopidakis N, et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat Commun, 2015, 6: 6343

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Xie B, Xie R, Zhang K, et al. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat Commun, 2020, 11: 2871

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Z, Yan T, Fang X. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat Rev Mater, 2023, 8: 587–603

    Article  ADS  Google Scholar 

  5. Morteza Najarian A, Vafaie M, Johnston A, et al. Sub-millimetre light detection and ranging using perovskites. Nat Electron, 2022, 5: 511–518

    Article  CAS  Google Scholar 

  6. Kim I, Martins RJ, Jang J, et al. Nanophotonics for light detection and ranging technology. Nat Nanotechnol, 2021, 16: 508–524

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Zhu Y, Geng C, Hu L, et al. Skin-like near-infrared II photodetector with high performance for optical communication, imaging, and proximity sensing. Chem Mater, 2023, 35: 2114–2124

    Article  CAS  Google Scholar 

  8. Bao J, Bawendi MG. A colloidal quantum dot spectrometer. Nature, 2015, 523: 67–70

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Yang Z, Albrow-Owen T, Cui H, et al. Single-nanowire spectrometers. Science, 2019, 365: 1017–1020

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Deng W, Zheng Z, Li J, et al. Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers. Nat Commun, 2022, 13: 4627

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vanderspikken J, Maes W, Vandewal K. Wavelength-selective organic photodetectors. Adv Funct Mater, 2021, 31: 2104060

    Article  CAS  Google Scholar 

  12. Yoon S, Sim KM, Chung DS. Bifunctional etalon-electrode to realize high-performance color filter free image sensor. ACS Nano, 2019, 13: 2127–2135

    CAS  PubMed  Google Scholar 

  13. Liu J, Yi K, Wang Z, et al. All-organic composites with strong photoelectric response over a wide spectral range. Sci China Mater, 2021, 64: 1197–1205

    Article  ADS  CAS  Google Scholar 

  14. Zhao B, Wang F, Chen H, et al. Solar-blind avalanche photodetector based on single ZnO−Ga2O3 core–shell microwire. Nano Lett, 2015, 15: 3988–3993

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Strobel N, Droseros N, Köntges W, et al. Color-selective printed organic photodiodes for filterless multichannel visible light communication. Adv Mater, 2020, 32: 1908258

    Article  CAS  Google Scholar 

  16. Li G, Suja M, Chen M, et al. Visible-blind UV photodetector based on single-walled carbon nanotube thin film/ZnO vertical heterostructures. ACS Appl Mater Interfaces, 2017, 9: 37094–37104

    Article  CAS  PubMed  Google Scholar 

  17. Ollearo R, Ma X, Akkerman HB, et al. Vitality surveillance at distance using thin-film tandem-like narrowband near-infrared photodiodes with light-enhanced responsivity. Sci Adv, 2023, 9: eadf9861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu PA, Wang L, Yoon M, et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett, 2013, 13: 1649–1654

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Hu PA, Wen Z, Wang L, et al. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 2012, 6: 5988–5994

    Article  CAS  PubMed  Google Scholar 

  20. Dai M, Chen H, Feng R, et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS Nano, 2018, 12: 8739–8747

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Kublitski J, Xing S, et al. Narrowband organic photodetectors —Towards miniaturized, spectroscopic sensing. Mater Horiz, 2022, 9: 220–251

    Article  CAS  PubMed  Google Scholar 

  22. Zhu Y, Chen H, Han R, et al. High-speed flexible near-infrared organic photodiode for optical communication. Natl Sci Rev, 2023, nwad311

  23. Liu Q, Zeiske S, Jiang X, et al. Electron-donating amine-interlayer induced n-type doping of polymer:nonfullerene blends for efficient narrowband near-infrared photo-detection. Nat Commun, 2022, 13: 5194

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Argence B, Chanteau B, Lopez O, et al. Quantum cascade laser frequency stabilization at the sub-Hz level. Nat Photon, 2015, 9: 456–460

    Article  ADS  CAS  Google Scholar 

  25. Lukac R. Single-sensor imaging in consumer digital cameras: A survey of recent advances and future directions. J Real-Time Image Proc, 2006, 1: 45–52

    Article  Google Scholar 

  26. Hu Y, Dai M, Feng W, et al. Monolayer hydrophilic MoS2 with strong charge trapping for atomically thin neuromorphic vision systems. Mater Horiz, 2020, 7: 3316–3324

    Article  CAS  Google Scholar 

  27. Dai M, Wang Z, Wang F, et al. Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Lett, 2019, 19: 5410–5416

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Xing S, Nikolis VC, Kublitski J, et al. Miniaturized vis-NIR spectrometers based on narrowband and tunable transmission cavity organic photodetectors with ultrahigh specific detectivity above 1014 Jones. Adv Mater, 2021, 33: 2102967

    Article  CAS  Google Scholar 

  29. Dai M, Chen H, Wang F, et al. Robust piezo-phototronic effect in multilayer γ-InSe for high-performance self-powered flexible photodetectors. ACS Nano, 2019, 13: 7291–7299

    Article  CAS  PubMed  Google Scholar 

  30. Gong X, Tong M, Xia Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325: 1665–1667

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Yang J, Huang J, Li R, et al. Cavity-enhanced near-infrared organic photodetectors based on a conjugated polymer containing [1,2,5]sele-nadiazolo[3,4-c]pyridine. Chem Mater, 2021, 33: 5147–5155

    Article  CAS  Google Scholar 

  32. Yan T, Li Z, Cao F, et al. An all-organic self-powered photodetector with ultraflexible dual-polarity output for biosignal detection. Adv Mater, 2022, 34: 2201303

    Article  CAS  Google Scholar 

  33. Gao L, Ge C, Li W, et al. Flexible filter-free narrowband photodetector with high gain and customized responsive spectrum. Adv Funct Mater, 2017, 27: 1702360

    Article  Google Scholar 

  34. Wang W, Zhang F, Du M, et al. Highly narrowband photomultiplication type organic photodetectors. Nano Lett, 2017, 17: 1995–2002

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Xing S, Wang X, Guo E, et al. Organic thin-film red-light photodiodes with tunable spectral response via selective exciton activation. ACS Appl Mater Interfaces, 2020, 12: 13061–13067

    Article  CAS  PubMed  Google Scholar 

  36. Li L, Deng Y, Bao C, et al. Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response. Adv Opt Mater, 2017, 5: 1700672

    Article  Google Scholar 

  37. Meng L, Liang H, Song G, et al. Tandem organic solar cells with efficiency over 19% via the careful subcell design and optimization. Sci China Chem, 2023, 66: 808–815

    CAS  Google Scholar 

  38. Meng L, Yi YQQ, Wan X, et al. A tandem organic solar cell with PCE of 14.52% employing subcells with the same polymer donor and two absorption complementary acceptors. Adv Mater, 2019, 31: 1804723

    Article  Google Scholar 

  39. Ke X, Meng L, Wan X, et al. The rational and effective design of nonfullerene acceptors guided by a semi-empirical model for an organic solar cell with an efficiency over 15%. J Mater Chem A, 2020, 8: 9726–9732

    Article  CAS  Google Scholar 

  40. Chen H, Zou Y, Liang H, et al. Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension. Sci China Chem, 2022, 65: 1362–1373

    Article  CAS  Google Scholar 

  41. Zhao Z, Xu C, Ma Y, et al. Ultraviolet narrowband photomultiplication type organic photodetectors with Fabry–Pérot resonator architecture. Adv Funct Mater, 2022, 32: 2203606

    Article  CAS  Google Scholar 

  42. Wang X, Pan Y, Xu Y, et al. High spectral-rejection-ratio narrowband photodetectors based on perovskite heterojunctions. Adv Elect Mater, 2022, 8: 2200178

    Article  CAS  Google Scholar 

  43. Yazmaciyan A, Meredith P, Armin A. Cavity enhanced organic photodiodes with charge collection narrowing. Adv Opt Mater, 2019, 7: 1801543

    Article  Google Scholar 

  44. Tang Z, Ma Z, Sánchez-Díaz A, et al. Polymer:fullerene bimolecular crystals for near-infrared spectroscopic photodetectors. Adv Mater, 2017, 29: 1702184

    Article  Google Scholar 

  45. Chen H, Liang H, Guo Z, et al. Central unit fluorination of nonfullerene acceptors enables highly efficient organic solar cells with over 18% efficiency. Angew Chem Int Ed, 2022, 61: e202209580

    Article  CAS  Google Scholar 

  46. Liang H, Chen H, Wang P, et al. Molecular packing and dielectric property optimization through peripheral halogen swapping enables binary organic solar cells with an efficiency of 18.77%. Adv Funct Mater, 2023, 33: 2301573

    Article  CAS  Google Scholar 

  47. Chen H, Zhang Z, Wang P, et al. 3D acceptors with multiple A–D–A architectures for highly efficient organic solar cells. Energy Environ Sci, 2023, 16: 1773–1782

    Article  CAS  Google Scholar 

  48. Wan X, Li C, Zhang M, et al. Acceptor–donor–acceptor type molecules for high performance organic photovoltaics—Chemistry and mechanism. Chem Soc Rev, 2020, 49: 2828–2842

    Article  CAS  PubMed  Google Scholar 

  49. Yao Z, Liao X, Gao K, et al. Dithienopicenocarbazole-based acceptors for efficient organic solar cells with optoelectronic response over 1000 nm and an extremely low energy loss. J Am Chem Soc, 2018, 140: 2054–2057

    Article  CAS  PubMed  Google Scholar 

  50. Xiao Z, Jia X, Li D, et al. 26 mA cm−2Jsc from organic solar cells with a low-bandgap nonfullerene acceptor. Sci Bull, 2017, 62: 1494–1496

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFA1203304), the Minstry of Science and Technology of China (2022YFB4200400 and 2019YFA0705900), and the National Natural Science Foundation of China (21935007 and 52025033).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Chen Y and Li G conceived and designed the project. Zhu Y fabricated the narrowband photodetector and carried out all of the performance studies. The manuscript was mainly written by Chen Y, Li G, and Zhu Y. All authors contributed in the general discussion.

Corresponding authors

Correspondence to Guanghui Li  (李光辉) or Yongsheng Chen  (陈永胜).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Yu Zhu received his Bachelor degree from Lanzhou University in 2019. He is currently a PhD candidate at Nankai University. His research mainly focuses on the design and fabrication of photodetectors.

Guanghui Li received his PhD degree in chemical and environmental engineering from the University of California, Riverside in 2018. Currently, he is an associate professor of chemistry at Nankai University. His research interests primarily focus on nanomaterials and organic functional materials for photosensors.

Yongsheng Chen received his PhD degree in chemistry from the University of Victoria in 1997. From 2003, he has been a chair professor at Nankai University. His main research interests focus on carbon-based nanomaterials and organic functional materials for green energy applications.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Qin, H., Guo, T. et al. A universal strategy for narrowband organic photodetectors enabling arbitrary narrow spectrum detection. Sci. China Mater. 67, 852–862 (2024). https://doi.org/10.1007/s40843-023-2749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2749-3

Keywords

Navigation