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Ultimate structures in catalysis: Single atoms, subnano-clusters, and
electrons
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ABSTRACT When reduced to the atomic level, catalysts
exhibit greatly improved performance, i.e., improved atomic
utilization, heightened coordination unsaturation, and in-
creased specific surface area. Meticulous design concerning
atomic distribution and electron behavior is vital for im-
proving catalytic efficiency, introducing the concept of “ulti-
mate structure” in catalysis. These structures span a broad
range from single atoms (SAs) to dual atoms, single-atom
chains/layers, and subnano-clusters (SNCs). By examining
catalysts at the atomic and electronic levels using these ulti-
mate structures, we can gain a deep understanding of their
inherent properties and new directions for future catalytic
design. This review delves into the recent progress and re-
search directions of ultimate structures in catalysis, focusing
on SAs, SNCs, and electron-level dynamics. In particular, we
focus on advanced strategies such as metal-support bond en-
hancement, defect manipulation, and electron configuration
control to optimize these ultimate structures. We also explore
the interrelationships between various ultimate structures,
underlining their unique attributes. This review outlines po-
tential trajectories for the evolution of these catalysts with
ultimate structures.

Keywords: ultimate structures, catalysts, single atoms, sub-
nanoclusters

INTRODUCTION
The downsizing of catalysts has yielded remarkable improve-
ments in catalysis [1,2]. As material size decreases, specific
surface area, electronic structures, and quantum size effects
significantly increase, prompting extensive exploration and
manipulation of catalysts from a microscopic perspective [3–5].
Amid the pursuit of minimizing material dimensions, new cat-
alysts transcending the conventional classification have pro-
liferated in various reactions. The concept of single-atom
catalysts (SACs) was initially introduced in 2011 to delineate
catalysts with single atoms (SAs) anchored to support materials
[6]. The first practically prepared SAC with Pt SAs on iron oxide
nanocrystallites has a distinctive electronic structure capable of
fine-tuning reaction pathways, demonstrating exceptional
activity and selectivity. Since then, research on SACs con-
siderably increased, inspiring enthusiasm toward diverse and
well-designed microstructures in catalysis. Notable paradigms in
the microstructures of catalysts include single-metal-atom

chains (SMACs) and single-atom layers (SALs); these have
exhibited considerable promise in catalysis [7–9]. Increasing
studies of SAs lead to the further development of subnano-
clusters (SNCs), comprising dual atoms to dozens of atoms with
the size less than 2 nm [10]. Previous reports have revealed their
compelling merits derived from size reduction and synergistic
effects [11,12]. Moreover, the role of electrons as the smallest
“structure” to modulate catalytic performance has attracted
considerable attention [13,14]. Given the multifaceted
improvements accomplished through dimension reduction, a
comprehensive understanding of these structures in catalysis is
required.
This review introduces “ultimate structure” as a paradigm of

basic components to modulate catalytic performance, providing
new insights into the evolving trend of size reduction in cata-
lysis. The ultimate structures in catalysis are microstructures
downsized to atomic and electronic levels, which are funda-
mental constituents of materials. Specifically, ultimate structures
in catalysis are expounded upon the scale of SAs, SNCs, and
electrons (Fig. 1). Studies of these dimensions manifest the trend
of decreasing mass and increasing active sites for catalysts with
ultimate structures, as well as reveal cross-dimensional interac-
tions. Recent advancements and prevailing research trends on
ultimate structures in catalysis are comprehensively analyzed in
each category. Their catalytic performance in oxygen evolution
reaction (OER), hydrogen evolution reaction (HER), carbon
dioxide reduction reaction (CO2RR), oxygen reduction reaction
(ORR), nitrogen reduction reaction (N2RR), and other electro-
chemical reactions, as well as the modulating strategies in metal–
support interaction (MSI), defect engineering, and electronic
structure, are discussed in detail. Finally, several perspective
directions for the future development of ultimate structures in
catalysis are proposed.

ULTIMATE STRUCTURE I: SAs
In recent research on catalysts, the significance of SAs has been
increasingly recognized. The SACs are renowned for their
maximized atomic utilization efficiency, which is attributed to
the individually dispersed atoms on supports [3]. Beyond SACs,
the significance of SAs in SMACs and SALs, which represents
extensions of SACs with precisely arranged SAs, is also deter-
mined [8,15]. The common thread linking these kinds of cata-
lysts is the composition of their active sites by one or several
SAs, indicating that strategies aimed at modulating their cata-
lytic performance should focus on the behavior of SAs. The
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ultimate structures of SACs, SMACs, and SALs characterized by
SAs are depicted in Fig. 2.
Driven by the pursuit of increasing the number of active sites,

SACs have received considerable attention. The strategies to
enhance the properties of SACs, particularly the regulation of
support species and defect engineering and the optimization of
the coordination environment, serve as valuable guides for other
kinds of catalysts with ultimate structures [16–18]. Studies of
SMACs and SALs further highlight their exceptional advantages
in increasing metal loading and harnessing synergistic effects
between metal atoms compared with SACs [9,15]. In the sub-
sequent sections, the distinctive features and recent efforts on
SACs, SMACs, and SALs are summarized.

SACs
Since being proposed in 2011, SACs involving individually dis-
persed atoms on substrates have garnered remarkable attention
[6]. By contrast to traditional catalysts in which only a fraction
of metal atoms contribute to catalytic activity, the atomic dis-
persion of SACs is theoretically up to 100%, endowing SACs
with maximized atomic usage efficiency and specific surface area
[19–21]. Moreover, the distinctive electronic structure and
controllable coordination environment are beneficial for
enhancing the catalytic performance of SACs [22–25]. Notably,
Pt SAs anchored on nitrogen-doped carbon nanosheets (Pt1/
NCNS) showed remarkable HER activity [26]. Compared with
the counterparts with Pt SAs and nanoparticles, Pt1/NCNS
exhibits a similar HER activity while using significantly less Pt
content. This notable performance of Pt1/NCNS is attributed to
its unique electronic structure, which features a higher unoc-

cupied density of 5d orbital states than that of Pt nanoparticles.
Zeolite-templated carbon with a substantial number of indivi-
dually isolated Pt atoms undergoes a unique two-electron ORR
pathway to produce H2O2, which could maintain high activity
for 2 h [27]. Furthermore, Pt SAs on nitrogen-doped carbon
(NC) effectively reduces the activation barrier of CO2RR to
1.16 eV, facilitating the reduction of CO2 to CH4 [28].
Although extensive investigations of SACs have indicated their

remarkable catalytic activity and scalability for large-scale pre-
paration, further enhancements in metal loading and stability
are required [29,30]. Constrained by the limited surface area of
the supports and the high free energy of SAs, achieving metal
loading exceeding 1 wt% is challenging for SACs [24,31–33]. As
a result, although the catalytic activity of SAs can surpass that of
nanoparticles by several folds, nanoparticles often exhibit a
higher space-time yield than SACs [34,35]. Moreover, the high
free energy contributes to the tendency of SAs to aggregate
during the reaction and preparation processes [36]. Therefore, to
enhance the catalytic performance, the metal loading and sta-
bility of SACs require to be increased compared with conven-
tional catalysts. In particular, this enhancement can be achieved
by the manipulation of support species and defect engineering
and the optimization of the coordination environment.

Support species
Although SAs constitute the active sites in SACs, supports play
an indispensable role during the reaction process [18,37]. Sui-
table supports help anchor and stabilize SAs while optimizing
their catalytic performance through the MSI [38–40]. First, the
surface properties of supports could control the catalytic beha-

Figure 1 Ultimate structures in catalysis and modulating strategies.
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vior of SACs. Elements with strong electronegativity on the
support surface, such as O, N, and S, are conducive to stabilizing
SAs [41,42]. Unsaturated coordination environments of atoms
on the support surface also provide strong interaction with SAs
[43]. The oxidation–reduction property of the support surface is
also related to the catalytic performance of SACs [44,45]. A
study of Pt SAs on highly reducible Fe2O3, reducible ZnO, and
irreducible γ-Al2O3 verifies that their catalytic performance is
determined by the surface properties [45]. Pt SACs on supports
with higher reducibility show a large turnover frequency (TOF)
value for CO oxidation in the temperature range of 140–180°C.
The modification of the surface properties of supports, such as
doping, oxidation, and physisorption, has also been used in
SACs [44,46,47]. Second, the functionalization of the support
surface significantly influences the catalytic performance [48].
Functionalized support surfaces with attached groups have been
observed to improve catalytic activity, stability, and selectivity.
–OH functional groups on the aforementioned Fe2O3, ZnO, and
γ-Al2O3 surfaces are significantly reduced during CO oxidation,
increasing the CO oxidation rate of Pt SAs, particularly on the
Fe2O3 surface [45]. Therefore, the influence exerted by the
supports on SACs, particularly by the support species, requires
to be thoroughly assessed.
Carbon-based supports impart diverse morphologies, poros-

ity, and robust interfacial interactions to anchor SAs, rendering
them the main representative category of SACs [49]. The large
specific surface area inherent in porous carbon enables effective
interactions with precursors, facilitating the capture of abundant
SAs by doped atoms or geometric imperfections. Previous
research shows that Fe SAs coordinated with N atoms in porous
graphitized carbon (Fe-SA-NSFC) can attain a high metal
loading of up to ~16 wt% (Fig. 3a) [50]. Conversely, the majority
of the reported SACs exhibit metal loadings below 1 wt% [12].
The substantial loading of SAs on the porous support results in
the exceptional ORR performance of Fe-SA-NSFC, out-
performing commercial Pt/C catalysts. This approach also pro-
vides a general methodology to fabricate high-loading SACs with
various SAs. Moreover, porous carbon supports offer various
coordination structures, indicating their potential to enhance
catalytic properties [51–53]. Pt precursors could be efficiently
adsorbed by C and N atoms in nitrogen-doped porous carbon
nanofibers (Pt-SA/pCNFs) [54]. The Pt-C2N2 coordination
structure of Pt-SA/pCNFs exhibits a small negative binding
energy, and Gibbs adsorbed free energy close to zero, indicating
impressive HER activity and stability. Apart from ORR and
HER, porous-carbon-based SACs have also been applied in other
reactions, such as CO2RR and N2RR [55–57]. Porous carbon

nanospheres are exploited to anchor single Fe atoms by elec-
trostatic interaction [55]. The metal loading of the as-prepared
Fe SACs is as high as 3.9 wt%, resulting in remarkable Faradic
efficiency of up to 90%. Porous carbons also act as suitable
substrates for stabilizing Mo SAs of Mo SACs [57]. Porous
features and the large number of active sites endow this SAC
with a superior NH3 yield rate and enhanced durability. In
studies of SACs for photocatalysis and thermocatalysis, the use
of porous carbon is also indispensable. Ir SAs isolated by porous
carbon nitride benefit from the synergism of interfacial carrier
transfer [58]. Bonding between these Ir SAs and the support
surface enable accelerated electron transfer and, in turn, decrease
photocarrier transfer barrier. As a result, a remarkable conver-
sion yield of CO2 to methanol is achieved, even with a relatively
low loading of Ir SAs (0.4 wt%). Mesoporous carbon foam
nanospheres are used to anchor Pd SAs with large specific
surface areas, resulting in higher thermocatalytic ethylene
selectivity than Pd nanoparticles [59].
As a two-dimensional (2D) carbon material with distinctive

geometry and electronic characteristics, graphene has been
proven to be highly suitable for the deposition of SACs [63].
Similar to porous-carbon-based SACs, graphene-based SACs
exhibit remarkable surface area. Moreover, the unique MSI and
electronic characteristics lead to the distinctive advantages of
graphene-based SACs [64,65]. The conjugated structure of gra-
phene contributes to its elevated conductivity, thereby facilitat-
ing the rapid transport of electrons during chemical reactions
[66–68]. Consequently, graphene-based SACs exhibit particular
applicability in electrocatalysis, where the prompt transport of
electrons is essential [69]. The location of coordination between
graphene and adatoms also varies according to their species,
ensuring precisely controllable catalytic performance of gra-
phene-based SACs [64,70]. An example of graphene-based SAC
with Co active centers (i.e., Co-N-C SAC) exhibits remarkable
HER activity, as shown in Fig. 3b [60]. Co-N-C SAC exhibits
enhanced intrinsic activity attributed to the preferential presence
of low-coordinated Co-N3 sites in the in-plane holes of gra-
phene. This configuration results in a remarkably low Tafel slope
(59 mV dec−1) and overpotential (82 mV at 10 mA cm−2),
representing the smallest values reported to date. Because of the
special bonding and electronic structure of isolated single Cu
atoms on defective nanodiamond–graphene, effective activation
of acetylene and easy desorption of ethylene are observed [71].
Thus, these graphene-based Cu SACs exhibit exceptional ther-
mocatalytic selectivity (~98%) and activity for acetylene hydro-
genation.
In addition to carbon-based SACs, research endeavors have

Figure 2 Schematic of SACs, SMACs, and SALs.
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been significantly focused on the usage of metal-organic fra-
meworks (MOFs) as support materials. As an emerging porous
material with organic ligands and metal centers, MOFs exhibit a
notable combination of characteristics, including large specific
surface area, unsaturated metal sites, and abundant functional
groups [72,73]. A general strategy is applied to deposit various
SAs on SnO2 trapped by MOFs (denoted as M1/SnO2/MOF, M =
Pt, Cu, and Ni) via microwave-assisted impregnation and
hydrolysis (Fig. 3c) [61]. Here, MOFs serve as ideal support with
pore space and tailored microenvironment to increase SA
loading, which decreases the proton activation barrier during the
reaction. Consequently, the obtained Pt1/SnO2/MOF exhibits
noteworthy photocatalytic hydrogen production compared with
that reported in previous studies. Moreover, the well-organized
pore structure of MOFs contributes to heightened efficiency in
electron transfer within SACs, thereby preventing the recombi-
nation of electrons and holes during reactions [74]. Zuo et al.
[75] assembled Pt SAs coordinated with porphyrin precursors
into MOF nanosheets by preparing 2D MOF-based SACs (PtSA-
MNSs) for the first time. The as-prepared PtSA-MNSs exhibit
the highest electron transfer efficiency relative to their coun-
terparts, which contributes to their excellent hydrogen revolu-
tion rate reaching up to 11,320 μmol g−1 h−1. Furthermore,
MOFs exhibit a high degree of controllability in terms of diverse
aspects, including pore size, coordination sites, and the con-
stituents of precursors [76,77]. For instance, 3D hybrid MOFs
enable Co SAs to find a suitable coordination environment for

reducing the free energy of ORR, thereby enhancing the catalytic
activity [78]. The SACs based on MOFs have also exhibited
exceptional performance in photocatalysis, such as photo-
catalytic CO2RR. Gas-permeable MOF membranes are effective
substrates to facilitate gas diffusion, thereby improving the
performance of Ir SAs in photocatalytic CO2RR [79–81].
Recently, biomass materials have gained prominence as sus-

tainable and cost-effective supports for SACs [82–84]. A sub-
stantial portion of biomass precursors exhibit hierarchical and
porous structures to anchor abundant SAs, obviating the need
for energy-consuming synthesis processes [85,86]. A green
method uses cotton as an in situ support for facilitating the
anchoring of atomically dispersed Pt (Fig. 3d) [62]. The catalytic
activity of the obtained SAC was determined to surpass that of
the primary Ni/C catalyst by approximately 25 times. The cost
efficiency of cotton enables the industrial application of Pt SAC.
Moreover, the use of abundant biomass substrates from the
earth leads to eco-friendly methodologies for large-scale SAC
preparation [87,88]. Zhong et al. [89] synthesized Fe-N-C cat-
alysts on wood-based porous carbon by using a scalable method
for SAC preparation. The hierarchical structure of the cell wall
in wood after pretreatment increases their ORR/OER activity
and durability.
Apart from carbon-based SACs, metal-based SACs also have

promising potential in various catalytic reactions. Single-atom
alloys (SAAs) with atomically dispersed SAs on the surface of
metallic supports have unique properties [90]. This structure not

Figure 3 (a) Schematic of Fe-SA-NSFC. Reprinted with permission from Ref. [50]. Copyright 2020, Springer Nature. (b) Schematic of CoN3-CSG. Reprinted
with permission from Ref. [60]. Copyright 2022, Wiley-VCH. (c) Schematic of the microwave-assisted synthesis process for M1/SnO2/UiO-66-NH2. Reprinted
with permission from Ref. [61]. Copyright 2021, Wiley-VCH. (d) Schematic of the synthesis process for the fibrous PtNi/C catalyst derived from cotton.
Reprinted with permission from Ref. [62]. Copyright 2022, Elsevier.
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only presents the merits of SACs but also inherits the synergistic
effect characteristics of alloys [17,91]. Different from that in
traditional alloys, previous studies reported that the electronic
structure of the dopant element in SAAs is similar to that of free
atoms. The density of state (DOS) was measured to explore the
electronic structure of the dopant element Cu in AgCu SAA
[92]. The results indicate that the d-band of Cu exhibits atomic-
level narrowness, similar to that of a free atom. Analogous d-
orbital projected DOS profiles were observed in diverse dopant
elements on Au host metal, verifying the presence of free-atom-
like electronic states in SAAs [93,94]. This distinctive electronic
structure endows SAAs with the capability to modulate the
reaction mechanisms, particularly the adsorbate bonding
[94,95]. The diminished density of d-electrons in Pt SAAs
weakens the Pt–CO interaction, subsequently reducing the
adsorption energy of CO on the surface [93]. Consequently, this
reduction in adsorption energy hinders the self-poisoning of Pt
SAAs. The high atomic usage and catalytic activity of SAs in
SAAs can also contribute to the reduction in noble metal
expenditures during catalyst preparation, resulting in an effec-
tive approach for the efficient utilization of noble metals. A Cu-
based Au SAA with surface Cu vacancies (VCu-Au1Cu SAAs) was
synthesized by galvanic replacement [96]. In VCu-Au1Cu SAAs,
the generation of electron-deficient Cu sites is facilitated
through the migration of electrons from Cu to Au. Despite the
limited quantity of Au SAs on the Cu surface, VCu-Au1Cu SAAs
exhibits desirable activity for the electroreduction of NO3

− to
NH3. Recently, SAA with Ru SAs on a Co substrate (Ru1Co-
SAA) has been found to photohydrogenate CO into liquid fuels
with outstanding conversion and selectivity, surpassing the
performance of Co nanoparticles [97].
The SACs on metal oxides have also been widely investigated

[98,99]. TiO2, a metal oxide semiconductor, is a representative
example of this field. For Ir SAs on defective TiO2 (Ir1/def-TiO2),
the interaction between SAs and metal supports was verified to
optimize their electronic and geometric structures [100]. As a
result, Ir1/def-TiO2 shows remarkable performance in the ther-
mocatalytic hydrogenation of furfural to furfuryl alcohol, sur-
passing that of Ir SAs on graphitic carbon nitride substrates. The
photocatalytic HER performance of SAs on different TiO2 sur-
faces indicates that the (001) surface exhibits enhancement in
capturing SAs by strengthening the MSI, which results in
improved proton adsorption and reduction [101]. Researchers
found that improving the catalytic performance of SACs by
anchoring SAs to favorable metal facets is a practical approach,
which is difficult to conduct in carbon supports. Furthermore,
CeO2 supports have been analyzed in depth to explore the
influence of structural and electronic dynamics on SACs, which
are essential for increasing catalytic activity and stability
[102,103].
In summary, appropriate supports render stable SAs with high

metal loading and strong MSI, which are conducive to opti-
mizing catalytic performance. As the largest category of SACs,
carbon-based SACs have enabled numerous developments in
catalysis, in which porous carbon, graphene, MOF, and biomass
materials play impressive roles. Moreover, SAAs with metal
supports have unique catalytic properties, particularly the
synergistic effect.

Defective structures
As extensively existing structures in catalysts, defects have a

significant influence on the preparation process and reaction
mechanism of SACs. During the preparation process of SACs,
various defects emerge as essential factors in stabilizing high-
loading SAs by anchoring active sites and strengthening the MSI
[46,104]. Vacancies, dopants, and edge defects represent pre-
valent defect types commonly harnessed in SAC preparation.
Vacancies could capture SAs through their affinity with their
neighboring atoms. Liu et al. [105] introduced carbon vacancies
to NC nanosheets by thermal etching and, in turn, confined Pd
SAs using these carbon vacancies. The formation of Pd-N3 sites
is pivotal for ensuring the stability of individual Pd atoms.
Similarly, vacancies in graphene have been harnessed to trap
diverse SAs [47,106]. Through pyrolysis, carbon vacancies are
intentionally induced in graphene, showing remarkable cap-
ability to capture isolated Pt atoms (Fig. 4a) [106]. Pt SAs
trapped by carbon vacancies further form Pt-C3 active sites,
exhibiting robust electron capture capability and reduced Gibbs
free energy difference. Consequently, Pt-C3 sites show excep-
tional HER activity, with a TOF value of 1584.6 h−1 and a mass
activity of 26.05 A g−1.
Doping provides an alternative approach for preparing SACs

by defect engineering [109]. Extensive researches on nonmetallic
dopants with lone-pair electrons, such as N, O, and S atoms,
have yielded insights into their capacity to capture individual
metal atoms through chemical bonding. A notable example of
doping is preparing a durable Ni-N-C SAC to address the
inherent vulnerability of Ni catalysts under acidic conditions
[110]. The chemical bonding between Ni and neighboring N
atoms leads to its exceptional stability, even in the presence of
hot water and tungstic acid. Furthermore, the strong electro-
negativity of O atoms enables them to anchor single Ni atoms
onto graphene, thereby forming Ni-O6 coordination sites
(Fig. 4b) [41]. Because of the remarkable activity of Ni SAs and
the weak Ni–O bonds, this Ni SAC exhibits excellent HER
performance in an alkaline environment. Moreover, the metal
loading of Ni SAs correlates with the number of O defects,
providing a facile strategy to modulate their OER performance
by controlling the applied voltage or electrolytes. Doping can
also induce other types of defects, such as vacancies, to construct
SAs. The introduction of abundant Mg2+ vacancies through Al3+
doping plays a significant role in isolating single Cu atoms,
achieving loadings of Cu atoms of up to 6.3 wt% [111]. By
contrast, without Al3+ dopants, Cu atoms tend to aggregate into
nanoparticles.
Another commonly existing defect type, i.e., edge defects, has

promising potential for SAC preparation. Serving as an intrinsic
defect component, edge defects provide distinctive structural
and electronic environments conducive to anchoring SAs
[112,113]. Experimental findings have confirmed the capability
of the monoatomic step edges in CeO2 to capture, stabilize, and
manipulate Pt2+ SAs [114]. The manipulation of step density
maximizes the Pt2+ coverage of step–edge sites to 80%. Analo-
gous outcomes were obtained in studies of carbon-based SACs
[115,116]. Exploiting the edge defects of mesopores in graphene
enables the capture of Mo SAs, which is crucial for fabricating
oxygen- and sulfur-doped graphene (OSG) hosting Mo SAs
(Mo1/OSG) [116]. Because of the capability of the defective
edges to stabilize SAs, the metal loading of Mo1/OSG is as high
as 10 wt%.
Defects exert a profound influence not only on SAC pre-

paration but also on the underlying chemical reaction
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mechanisms. The active sites formed by defects could influence
the energy path during catalytic reactions because of their
structural alterations [117,118]. Rong et al. [107] conducted a
seminal study of Ni SACs with vacancy defects (Ni-N3-V SAC)
and perfect supports (including Ni-N3 and Ni-N4 SACs) with
diverse configurations by performing density functional theory
(DFT) calculations on these structures. The DFT result of CO2
reduction to COOH*, the rate-determining step of CO2 reduc-
tion, indicates that vacancy defects substantially diminishes the
energy barriers for COOH* and desorbing CO compared with
Ni-N4 sites (Fig. 4c). Although Ni-N3 sites show favorable Gibbs
energy difference at the initial steps, the pronounced discrepancy
of their Gibbs energy at the fourth step impedes efficient CO2RR.
Consequently, the Ni-N3-V SAC exhibits superior catalytic
performance in CO2RR than in Ni SAC without defects. The
DFT calculations of Ni SACs on NC supports (Ni-SAC@NCs)
present similar results [119]. Ni-SAC@NCs exhibits an extra-
ordinarily low free energy barrier (0.62 eV) for COOH* gen-
eration from CO*, which is the pivotal step for CO2RR. This
remarkable CO2RR efficiency is attributed to the favorable
defect-enriched configuration. Moreover, defective structures
induce changes in adsorption processes arising from steric
hindrance effects, electrostatic influences, and perturbations in
electronic structures [120]. Notably, single Au atoms anchored
on TiO2 nanosheets with oxygen vacancies (Au-SA/Def-TiO2)
exhibit distinct behavior [108]. In this SAC, Au SAs are stabi-
lized by the three-center Ti-Au-O-Ti structure. Because of the
large interfacial steric hindrance effect and the electrostatic
repulsion caused by the surface oxygen atoms, CO adsorption on
Ti atoms is weaker than that of Au SAs on perfect TiO2

nanosheets (Au-SA/Per-TiO2) (Fig. 4d). By contrast, Au-SA/
Def-TiO2 with oxygen vacancies exhibits heightened CO
adsorption at Ti sites, alleviating the competitive adsorption
between O2 and CO. Furthermore, the energy barrier of Au-SA/
Def-TiO2 is reduced. This dual advantage attributed to oxygen
vacancies collectively improves the catalytic CO oxidation pro-
cess in Au-SA/Def-TiO2. Thus, the influences of defects on the
preparation process and reaction mechanism significantly
enhance the catalytic performance of SACs, including stability,
selectivity, and activity [121,122].
In summary, defects have been considered an indispensable

factor in capturing, stabilizing, and manipulating SAs. The
precisely tuned microenvironment of SACs by defective struc-
tures has promising potential in tailoring catalysts. To realize the
large-scale preparation of defective SACs, energy-efficient
methods to create defects are crucial and need to be further
investigated.

Coordination environments
The coordination environment has a profound influence on the
electronic structure of SAs, serving as an indispensable factor
affecting the stability, selectivity, and activity of SACs [123–125].
The coordination environment is divided into geometric and
chemical aspects, with the latter including local composition and
coordination numbers (CN). The local composition influences
the catalytic performance of SACs by tuning the adsorption
configuration during reactions. Ru SACs captured on different
cation vacancies of NiFe-layered double hydroxides (Ru1/LDH-
VII or Ru1/LDH-VIII) were synthesized to reveal the influences of
diverse coordination environments (Fig. 5a) [126]. The obtained

Figure 4 (a) Schematic of Pt SAs captured on carbon vacancies by pyrolysis. Reprinted with permission from Ref. [106]. Copyright 2022, American
Chemical Society. (b) Schematic of the process of inducing defects and anchoring Ni atoms to generate Ni SAC. Reprinted with permission from Ref. [41].
Copyright 2020, American Chemical Society. (c) Calculated free energy diagram illustrating the conversion of CO2 into CO on Ni-N4, Ni-N3-V, and Ni-N3.
Reprinted with permission from Ref. [107]. Copyright 2020, Wiley-VCH. (d) Schematic models depicting the CO oxidation process of Au SAs on perfect, O2C,
and O3C defective TiO2 (001) surfaces. Reprinted with permission from Ref. [108]. Copyright 2018, Wiley-VCH.
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Ru SAs on cation vacancies and surface sites were generally
classified as +4 and 0–+3 states, respectively. Differential coor-
dination environments were also observed for Ru SAs anchored
by LDH-MII or LDH-MII. Notably, Ru atoms anchored by LDH-
MIII exhibit a higher oxidation state and fewer d-state electrons
than Ru atoms anchored by LDH-MII, leading to benzaldehyde
desorption. As a result, differences in the coordination envir-
onments lead to diverse catalytic performance, with the Ru SAs
captured by LDH-MII vacancies exhibiting the highest efficiency
of benzyl alcohol oxidation (TOF value of 1331 h−1) among these
samples.
The influence of CN on catalytic performance was exemplified

in single Pt atoms on N-doped carbon with different CNs (Pt1-
NxCy) [127]. Four-coordinated single Pt atoms exhibit lower
formation energy than three-coordinated single Pt atoms, indi-
cating a preference for dispersion over aggregation. Compared
with Pt1-N1C2 with 3CN, 4CN Pt1-N1C3 has a weaker Pt–N
hybridization, corresponding to a higher Pt-5d center. The ele-
vated 5d center optimizes the hydrogen dissociation energies,
enabling 4CN Pt1-N1C3 to increase hydrogenation activity.
When the CN of Pt–O decreases, the oxidation state for Pt SAs
on Fe2O3 (Pt1/Fe2O3) exhibits a proportional decrease (Fig. 5b)
[128]. This shift in the Pt oxidation state further boosts the
hydrogenation activity of Pt1/Fe2O3 (TOF value of up to
21,099 h−1) while preserving its selectivity (95%–98%). These
studies reveal the potential for enhancing catalytic performance
by manipulating the CN of SAs.
Tuning the geometric structure of the coordination environ-

ment has emerged as a viable strategy to improve the catalytic
performance of SACs. For instance, the OER performance of
three out-of-plane configurations (with potential models of N2-
O4, N2-N4, and N2-O2) was investigated on Co SACs,

extending the scope of geometric exploration to the coordina-
tion environment (Fig. 5c) [130]. The evaluation of these con-
figurations reveals variations in the energy barriers for *OOH
formation from *O, the rate-determining step (Fig. 5d). Conse-
quently, diverse OER performance is achieved in different
configurations. Specifically, the N2-O2 model shows the lowest
energy barrier for the rate-determining step, resulting in
exceptional mass activities and TOF values for this specific
configuration.
In summary, the nature of support species, the presence of

defect structures, and the coordination environments collectively
exert pivotal influences on the catalytic properties of SACs. The
feasibility of designing SACs by modulating these factors is
worth investigating. Furthermore, the influences of these para-
meters highlight the significance of the ultimate structures in
catalysis. The ultimate structure of SACs exhibits not only the
indispensable role of SAs but also the profound differences in
catalytic performance yielded by even slight alterations at the
atomic scale.

SMACs
To improve the metal loading and modulate the electronic
structure of catalysts with ultimate structures at an advanced
level, the exploration of incorporating several atoms in an active
center while preserving a low-dimensional structure represents a
promising avenue [131]. 1D catalysts have emerged as a favored
platform for catalytic applications because of their distinctive
high aspect ratio and confined carrier transport pathways
[132,133]. A notable example of such materials is the Fe–N-
doped carbon nanofibers (Fe-NHCFs) synthesized as a typical
kind of 1D carbon catalysts for ORR [134]. The pronounced
specific area arising from the inherent 1D configuration equips

Figure 5 (a) Schematic of Ru1/LDH-VII, Ru1/LDH-VIII, and Ru1/LDH with different coordination environments and corresponding TOF values. Reprinted
with permission from Ref. [129]. Copyright 2021, Wiley-VCH. (b) Linear correlations between the CN of Pt–O and the average oxidation state (red line) and
between the CN of Pt–O and the hydrogenation activity (blue line) of Pt1/Fe2O3. Reprinted with permission from Ref. [128]. Copyright 2019, Nature
Publishing Group. (c) Potential models for three out-of-plane configurations of Co SACs. (d) Schematic of free energy over three models at 1.23 V for OER.
Reprinted with permission from Ref. [130]. Copyright 2022, Wiley-VCH.
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Fe-NHCFs with numerous active sites; meanwhile, electron
transfer is facilitated using the 1D honeycomb-like conductive
networks. As a result, Fe-NHCFs exhibit a current density of
5.2 mA cm−2 at 0.70 V (vs. reversible hydrogen electrode
(RHE)), a notable advancement compared with 5 mA cm−2 for
the conventional 20 wt% commercial Pt/C catalyst. Similar cir-
cumstances were observed in Fe–N-doped 1D porous carbon
nanotubes [135]. These nanotubes exhibit an impressive surface
area of 1380 cm2 g−1 and electron transport expedited by the 1D
structure. Subsequently, these nanotubes show remarkable ORR
activity throughout a long-time test, surpassing the performance
of the commercial Pt/C catalyst. However, the conventional 1D
catalysts have not comprehensively emphasized or modulated
the critical role of SAs, thereby rendering the regulation of
catalytic performance from an ultimate structure perspective a
challenge.
As a special kind of catalyst with ultimate 1D structure in the

scale of SAs, SMACs not only inherit the advantages of 1D
catalysts but also can harness the unique benefits of SAs. Being
the smallest 1D structures formed by atoms arranged along a
single direction, SMACs offer a promising avenue for generating
a large number of active sites by increasing the specific surface
area. Previous research has reported that the average bond
strength of SMACs is twice that of bulk materials, indicating the
stability of SMACs in chemical reactions [136]. The 1D structure
of SMACs facilitates rapid electron transport through the
oriented pathway, thereby enhancing their catalytic activity
[137,138]. Furthermore, the electron transport properties of
SMACs are different from those of other catalysts with ultimate
structures because of the phenomenon of quantized con-
ductance, indicating the potential for novel catalytic mechanisms

to emerge [139,140].
The introduction of Ag atoms to the tunnels of Hollandite-

type manganese oxide (HMO) to form Ag SMACs exemplifies
the use of the concept of SMACs [7]. Transmission electron
microscopy (TEM) and high-resolution TEM (HRTEM) images
confirm the structure of Ag-HMO nanorods and Ag SMACs,
respectively (Fig. 6a, b). Theoretical models depict Ag chains and
terminal Ag SAs from two distinct perspectives (Fig. 6c, d). The
terminal Ag SAs exposed at the top facets of HMO become
active sites for HCHO oxidation, exhibiting superior capability
to activate oxygen species even at low temperatures. Although
studies of SMACs in catalysis are relatively limited to date, their
catalytic potential remains appealing because of the advance-
ments in their synthesis methods [15,141]. Pt SMACs with a
high density, i.e., exceeding 10 wt%, were synthesized by the
vapor co-deposition method [15]. Fig. 6e shows the annular
dark-field scanning TEM (ADF-STEM) image of one obtained
Pt SMAC. The magnified ADF-STEM image of a rectangular
region in this Pt SMAC indicates that an atomically coherent 1D
channel is formed (Fig. 6f). These observations reveal the well-
ordered nature of Pt SMACs, as detailed in the model shown in
Fig. 6g. During the deposition process, the grain boundaries of
MoS2 provid anchor sites for stabilizing Pt SMACs, resulting in
an average length of up to 17 nm for high-density Pt SMACs.
This synthesis strategy provides a general approach to fabricat-
ing high-density SMACs, with the potential to incorporate a
multitude of active centers in catalysts with ultimate structures.
Furthermore, Pt SMACs exhibit exceptional stability in ambient
air, which is beneficial for prolonging the lifetime of catalysts.
Although previous studies have highlighted the promising

potential of SMACs in catalysis, several challenges persist, par-

Figure 6 (a) TEM image of Ag-HMO nanorod along the growth direction of [001]. (b) HRTEM image revealing the Ag SMACs. (c) Schematic of Ag SMACs
inside the tunnels of HMO in the direction of [011]. (d) Schematic of Ag SMACs inside the tunnels of HMO viewed from [001], indicating the terminal SAs.
Reprinted with permission from Ref. [7]. Copyright 2022, Wiley-VCH. (e) False-colored ADF-STEM image of a Pt SMAC. Inset: a fast Fourier transformation
of the blue rectangular area. (f) Magnified ADF-STEM image of a Pt SMAC. (g) Schematic of the detailed atomic structure of Pt SMAC. Reprinted with
permission from Ref. [15]. Copyright 2022, Springer Nature.
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ticularly in achieving controllable preparation methods for
SMACs and enhancing their density. Notably, the exposed atoms
in SMACs, which could facilitate the engagement of a larger
number of active sites in catalytic reactions, need to be
increased, thereby further optimizing their performance.

SALs
With the tendency to increase the metal loading for ultimate
structures in the scale of SAs, current research endeavors are
directed toward developing SALs, which is the smallest 2D
ultimate structure [142–144]. SALs are composed of metal atoms
arranged in monolayer, with thicknesses limited to approxi-
mately 1 nm [9]. The fundamental characteristic of SALs is the
complete exposure and activation of atoms, leading to an
ultrahigh density of active sites. This feature ensures that SALs
achieve satisfactory catalytic performance. He et al. [8] used ion
etching under low-density plasma at −30°C to remove Se atoms
from predeposited 2D PtSe2, synthesizing Pt SAL with an
amorphous structure (Fig. 7a). After the synthesis process, an
assessment of the catalytic efficacy of the obtained Pt SAL was
conducted. With the increase in Se vacancies during etching, an
enhancement in the current density of HER in Pt SAL was
observed (Fig. 7b). Initially, the basal plane of the perfect single
crystal is HER inert. After plasma etching for a short time,
defective PtSex exhibits moderate HER performance, with an
onset potential of ~0.1 V (vs. RHE) and a Tafel slope of
~100 mV dec−1. Finally, a notable increase in the current density
to 25 mA cm−2 at 50 mV (vs. RHE) in Pt SAL, accompanied by a

reduction in the Tafel slope to 39 mV dec−1, is achieved. The
scope of SAL extends to studies of alloys. As an illustration, an
atomically thick Pt–Cu nanosheet was fabricated in a sandwich
structure configuration [145]. This nanosheet exhibits remark-
able activity in formic acid oxidation.
An appealing approach to advancing the field of SALs is the

preparation of freestanding SALs. Theoretically, atoms in free-
standing SALs have dangling bonds in one dimension while
maintaining coordination bonds in other dimensions [146].
Thus, freestanding SALs exhibit a higher energy band in one
dimension because of the split of its empty valence band in this
2D coordination environment. This unique structure empowers
freestanding SALs to achieve unusually remarkable activity in
catalysis. Conversely, within the plane formed by the two other
dimensions, atoms are stabilized through coordination bonds,
indicating the inherent stability of freestanding SALs. For
instance, although orbital splitting is challenging to discern in Pd
SAL because of the weak Pd–Pd interaction, it becomes dis-
tinctly evident in the case of PdCo SAL because of the robust
Pd–Co interaction (Fig. 7c) [146]. For PdCo nanoparticles and
Pd few-atom layers, the electronic interference lacks directional
preference, leading to the presence of conventional orbitals. As a
result, in an accelerated durability assessment spanning the
range of 0.6–1.1 V (vs. RHE), PdCo SAL only shows reductions
in the electrochemically active surface areas by 8.8%, whereas the
3D Pd catalyst exhibits a substantial decline as high as 67.9%.
Moreover, PdCo SAL exhibits a mass activity six times higher
than that of commercial Pt NP catalysts. The exceptional activity

Figure 7 (a) Schematic of the structural evolution of Pt catalysts from SNCs to SAs and SALs. (b) Polarization curves of PtSex as the treatment duration
spans from 0 to 60 s, corresponding to varying x values from 2.0 to 1.1. Reprinted with permission from Ref. [8]. Copyright 2022, Springer Nature.
(c) Schematic of the 2D-oriented coordination in the SAL. Reprinted with permission from Ref. [146]. Copyright 2019, Elsevier.
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and durability of PdCo SAL indicate the significance of the
distinctive electronic structure inherent to SAL.
Although SALs exhibit remarkable strength in catalysis,

increasing the proportion of activated atoms is a challenge in
preparing SALs. For most 2D catalysts, only atoms at the edge
are activated, leaving other areas of the monolayer uninvolved in
the reaction. Moreover, parameters that regulate active sites,
including defects, substrate species, and coordination environ-
ments, play a pivotal role in advancing SALs [146–148]. Notably,
the confinement effect of the oxygen vacancies was used to
prevent Pt atoms from aggregating, which is beneficial for
anchoring Pt SAL [147]. This Pt SAL exhibits an outstanding
hydrogen evolution rate of 25.5 μmol cm−2 h−1 and stability for
up to one week.

ULTIMATE STRUCTURE II: SNCs
Ultimate structures in the scale of SAs have remarkable advan-
tages, such as maximized atomic utilization efficiency, large
specific surface area, and unsaturated coordination environ-
ments. However, their progress in catalysis is inherently con-
strained by the structure of single active centers. For SACs, the
restrictions in metal loading, linear relationship, and electronic
structure are inevitable. Metal loading lower than 1 wt% has
impeded catalytic application for a large proportion of SACs

[24,31–33], as discussed in SACs. Overcoming this challenge
within SACs remains a complex task because of the ultrahigh
free energy of SAs. Moreover, all intermediates of SAC are
bound in the same active site during the reaction. Previous
studies have indicated that this situation will lead to a linear
relationship between intermediate and adsorption energy [149].
However, a tradeoff arises between activation and desorption,
which means that the linearly varying adsorption energy makes
it difficult for SACs to modulate the reaction pathway [150].
Moreover, although the electronic structure of active sites in
SACs could be modulated by supports and defects, the inherent
simplicity of the SAC structure limits the efficacy of such
modulation, particularly in sophisticated reactions [151]. For
SMACs and SALs, the research is still in the initial stages. The
development of refined synthesis and activation methodologies
for SMACs and SALs requires further exploration [7,9].
To solve the aforementioned challenge of SACs, a range of

strategies involving synergistic effects and dynamics have been
pursued [152]. As a cross-dimensional extension of ultimate
structures in the scale of SAs, SNCs have emerged as a promising
avenue for addressing these issues. SNCs (smaller than their
threshold sizes of quantum size effect, generally <2 nm in size)
are composed of dual atoms to dozens of atoms (Fig. 8a), con-
stituting a distinctive category of ultimate structures in catalysis

Figure 8 (a) Schematic of SNCs with different numbers of atoms. (b) Linear relationship of the free energy of adsorption of intermediates in SACs.
Reprinted with permission from Ref. [157]. Copyright 2022, American Chemical Society. (c) Schematic of the conventional adsorption evolution and *O–*O
coupling mechanisms. (d) Gibbs free energy diagram of NiPd@NC and the corresponding SACs for OER. Reprinted with permission from Ref. [158].
Copyright 2023, Springer Nature. (e) Net electron difference of Ni and Cu sites in different dNiCu models using Ni SAC (sNi) and Cu SAC (sCu) models as
the baseline, respectively. (f) Comparison of the free energy diagrams of Ni sites for the dNiCu-5.3, dNiCu-2.6, and sNi models under HER. (g) Potential-
dependent Faradaic efficiencies of CO for NiCu-NC, Ni-NC, and Cu-NC. Reprinted with permission from Ref. [159]. Copyright 2023, Wiley-VCH.
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[10]. The significant feature of SNCs is the quantization of the
conduction band, which enables them to exhibit different elec-
tronic properties in comparison with nanoparticles (>2 nm) with
a relatively continuous valence band [153]. Au SNCs have been
investigated as a typical example of SNCs for decades, exhibiting
considerable electronic relaxation when changing from Au
nanoparticle (15 nm) to Au55 SNC (1.4 nm) [154]. The decrease
in electronic relaxation continues as the size reduces to 0.7 nm
in Au13 SNC, which further highlights the difference between
SNCs and nanoparticles. Furthermore, significant advancements
in terms of increasing metal loading, breaking linear relation-
ships, and modulating electronic structure have been observed in
SNCs [4,151,155]. Consequently, SNCs have exhibited excep-
tional catalytic performance compared with ultimate structures
with SAs [10,156]. The origins and current developments of
these strengths of SNCs will be subsequently discussed.

Why SNCs?
Compared with SACs, SNCs exhibit distinctive properties, such
as increased metal loading, the disruption of linear scaling
relationships, and enhanced electronic structures, as previously
discussed [156,160]. In SNCs, each active site comprises multiple
metal atoms, leading to higher metal loadings compared with
SACs, even with an equivalent number of active sites. Further-
more, because of the interactions between adjacent atoms, the
formation energy of multiatom sites generally tends to be lower
than that of SACs, indicating that the multi-atom configurations
in SNCs are inherently considerably stable [11,161]. Moreover,
compared with SMACs and SALs that need to be precisely
prepared, SNCs have advantages in simplifying the synthesis
process [162,163]. These inherent features collectively contribute
to the facilitated increase in metal loading for SNCs. For
instance, Wei et al. [164] prepared Fe dual atoms on graphitized
N-doped carbon layers. Theoretical calculations validate that the
formation energy of dual Fe configurations is lower than that of
Fe SAs, indicating a propensity for higher metal loading with Fe.
The optimized adsorption configuration and reaction pathway

lead to the breakage of the linear relationship in SNCs. A
representative linear relationship of the free energies of
adsorption between intermediate C and other intermediates of
SACs is shown in Fig. 8b, where the simple structure of active
sites makes it difficult to modulate the free energy of adsorption
[157]. By contrast, active centers in SNCs are composed of
multiple adjacent atoms, enabling reactants to not only bond
with diverse elements but also simultaneously engage with
multiple atoms during reactions [165,166]. This structure allows
SNCs to surpass the constraints of bonding with only the same
atom in SACs for reactants, particularly during complex reac-
tions. Therefore, SNCs can provide a broad range of adsorption
configurations, thus enhancing their potential to improve cata-
lytic performance. Fang et al. [158] investigated a series of dual-
atom catalysts (DACs, referred to as M′M@NC) to unravel their
reaction pathways. In the conventional adsorption evolution
mechanism (AEM), the binding energies of intermediates exhi-
bit strong correlations. However, the *O–*O coupling mechan-
ism (OCM) with a second active center breaks this structural
constraint in AEM. In OCM, the pathway of O2 production
circumvents the *OOH, thereby enabling M′M@NC to avoid the
linear relationship (Fig. 8c). As a result, all M′M@NC samples
exhibit superior OER activity compared with the corresponding
SACs. A notable illustration is provided by NiPd@NC, where the

Gibbs free energy barrier for OER is significantly reduced
compared with those of Ni@NC and Pd@NC (Fig. 8d).
Because of the presence of additional metal atoms within the

active centers, SNCs provide a broad range of avenues for
enhancing catalytic performance compared with SACs, parti-
cularly the modulations to optimize electronic structures [167–
169]. The interactions between multiple atoms within SNCs lead
to a coupling effect on electronic structures, thereby modulating
d-band structures and charge densities accordingly [170].
Moreover, the unique microenvironment of SNCs renders them
sensitive and adaptable to tailoring electronic structures in
response to different intermediates [171,172]. The distinctive
electronic structures of SNCs could be revealed through inves-
tigations on NiCu dual atoms on NC (NiCu-NC) [159]. When
the inter-metal distance falls below a critical threshold (5.3 Å),
the decrease in the inter-metal distance leads to a strongly
altered electronic structure for metal centers (Fig. 8e). Simulta-
neously, the DOS for NiCu-NC shows a marked upshift of the d-
band center with the decrease in the inter-metal distance
(Fig. 8f). This controlled electronic structure in the threshold-
distributed NiCu-NC enhances the adsorption of CO2 during
electroreduction, resulting in a lower onset potential (300 mV)
and a broader potential window (~800 mV) than the counter-
parts (Fig. 8g). In summary, the superiorities of SNCs on
increasing metal loading, breaking linear scaling relationships,
and enhancing electronic structures enable them to exhibit
exceptional performance in catalysis.

DACs
The DACs have been extensively investigated as a basic and
prominent category of various SNCs, combining the advantages
of SACs and SNCs [173–175]. Remarkable breakthroughs have
been achieved in synthesizing DACs with high metal loadings.
For instance, carbon nanofibers treated with nitrogen plasma
yield active sites capable of hosting Fe and Co dual atoms (Fe,
Co SAs-PNCF) with a metal loading of up to 9.8 wt% (Fig. 9a)
[176]. The metal loading of Fe, Co SAs-PNCF exhibits a linear
correlation with the degree of defects, verifying that a higher
defect density leads to a higher metal loading (Fig. 9b). Theo-
retically designed DACs have achieved metal loading exceeding
40 wt% by reducing the number of carbon atoms surrounding
the dual-metal active sites, validating the feasibility of creating
DACs with exceptionally high metal loading [177]. The sig-
nificance of unique electronic structures remains pivotal in
investigations concerning DACs. An example is FeCo dual
atoms dispersed on an N-doped graphitic carbon (FeCo-DACs/
NC), providing an avenue for designing DACs with tailored
electronic structures [178]. The balance between the rate-
determining steps of the oxygen electrocatalysis processes is
achieved by the electron cooperation between Fe and Co atoms
because the adsorption energy of intermediates is optimized by
the change of the d-band. As a result, FeCo-DACs/NC exhibits
superior catalytic performance in ORR, attaining a kinetic cur-
rent density of up to 11.05 mA cm−2.
The synergistic effect is considered a crucial feature in opti-

mizing the catalytic performance of DACs. For instance, IrMo
dual atoms on TiO2 (Ir1Mo1/TiO2 DAC) exhibit exceptional
catalytic selectivity (>96% at 100% conversion) for the hydro-
genation of 4-nitrostyrene (4-NS) to 4-vinylaniline [179]. This
remarkable performance can be attributed to the cooperative
interaction between Ir and Mo atoms in hydrogen activation and
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4-NS adsorption (Fig. 9c). During the reaction, the total energy
of the system is first decreased to −1.65 eV as Ir sites facilitate
the activation of hydrogen, followed by a further reduction to
−1.86 eV through the subsequent adsorption of 4-NS on Mo
sites (Fig. 9d). By contrast, Ir1/TiO2 exhibits 38% activity at 87%
conversion, and its Mo1/TiO2 counterpart shows no activity. A
previous report explores the synergistic effect of Ag and Cu in
methane oxidation [180]. The ZSM-5 supported Ag and Cu dual
atoms (Ag1-Cu1/ZSM-5) activate the C–H bond of CH4 and the
O–O bond of H2O2 during the reaction. This cooperative effect
leads to a selectivity of 81% while outperforming several noble
metal catalysts in terms of productivity. Notably, this synergistic
phenomenon is absent in Cu and Ag nanoparticles, and Ag SAC
exhibits only half the productivity of Ag1-Cu1/ZSM-5. For
homonuclear DACs, the synergistic effect is also essential. Fe
dual atoms captured by carbon defects (Fe2DAC) on the cova-
lent organic framework (COF) were synthesized by one-step
carbonization [181]. The synergistic effect of dual atoms in
Fe2DAC engenders heightened adsorption of crucial inter-
mediates, thereby outperforming the Fe SAC counterparts in
ORR activity. Furthermore, DFT calculations reveal improved
charge distribution near FeCu active sites in FeCu DACs,
thereby enhancing the adsorption of peroxydisulfate [182].
In summary, DACs have remarkable advantages in increasing

metal loading, optimizing adsorption configurations, and mod-
ulating electronic structures. Moreover, studies of DACs provide
a valuable perspective for the future development of other SNCs
because DACs perform as the simplest SNCs. To further
enhance the catalytic performance of DACs, efforts to broaden
the range of support species are necessary. Moreover, in-depth
investigations on the reaction mechanism of DACs, particularly
the role of each atom in an active site during a reaction, need to

be conducted.

Other SNC catalysts
In addition to DACs, SNCs comprising numerous atoms have
yielded exceptional catalytic performance, meriting further
exploration [4,160,183]. The synergistic effects of Cu-Pt-Au
SNCs (~1 nm) result in unprecedented catalytic activity for the
aerobic oxidation of hydrocarbons (i.e., 1433 metal atom−1 h−1

TOF value, which is 24 times greater than that of commercial Pt
catalyst) [184]. Because of their favorable structure for C–H
bond activation and butene desorption, Pt3 SNCs exhibit
remarkable selectivity (99%) and excellent conversion (35%)
toward n-butane direct dehydrogenation [185]. This conversion
is the highest compared with that of Pt nanoparticles and Pt
SACs, indicating the promising prospective of SNCs in catalysis.
Similar to DACs, the electronic structure of SNCs is vastly

changed by the orbital overlap between metal atoms [186].
Moreover, the electron state of SNCs is influenced by several
factors, including ligands, dopants, and nuclearity [10,187,188].
Ligand-stabilized Au SNCs exhibit distinct electronic structures
in comparison with their bulk Au counterparts [189]. This dis-
crepancy includes shifts in the d-band center, reduction in spin–
orbit splitting, and narrowing of the d-band. A similar phe-
nomenon is observed in NiFeMo SNCs, wherein introducing Mo
and Fe atoms through doping leads to a shift in the d-band
center. Furthermore, the effect of the evolution of the electronic
structure on SNC size has been systematically explored [4,188].
Researchers have conducted comprehensive investigations into
the electronic structure of Pt clusters, ranging from 12 to 1415
atoms (0.7–3.5 nm in diameter) [188]. Notably, Pt SNCs com-
posed of 13 and 55 atoms exhibit significant gaps in DOS that
exert a significant influence on binding strength, which is less

Figure 9 (a) Schematic of the preparation process of Fe, Co SAs-PNCF, and its high-angle ADF (HAADF)-STEM image. (b) Relation among the nitrogen
content of Fe, Co SAs-PNCF, and the plasma treatment time. Reprinted with permission from Ref. [176]. Copyright 2022, Elsevier. (c) Schematic of the
reaction pathway for Ir1Mo1/TiO2 DAC, showing the cooperation between Ir and Mo atoms. (d) Energy profiles of the deoxygenation of 4-NS to 4-vinylaniline
on Ir1Mo1/TiO2 DAC. Unit: eV. Reprinted with permission from Ref. [179]. Copyright 2021, American Chemical Society.
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pronounced in Pt clusters with more atoms. As the SNC size
increases, the influence of adsorbates on charge density by
adsorbates becomes more localized and finally converged to the
bulk limit at 1.6 nm when the electronic finite-size effects vanish.
Accordingly, Pt clusters comprising more than 147 atoms
(1.7 nm) exhibit a charge density resembling that of a surface
slab. This tunable electronic structure endows SNCs with cata-
lytic performance connected with their microenvironment,
particularly their constituent atom count.
Given that the catalytic performance of SNCs varies with

nuclearity, a comparative investigation of the influence of
nuclearity and the identification of the optimal atom count is
crucial for SNC studies [190,191]. Li et al. [191] investigated the
catalytic performance of Mox (x = 1–4) anchored on graphdiyne
(Mox@GDY) for N2RR. Mo3@GDY with triple Mo atoms in one
active site shows the best activity and selectivity for N2RR among
various samples, indicating a substantial opportunity for cata-
lysts with triple atoms. Triple-atom catalysts also exhibit
exceptional performance in other catalytic reactions. In the
context of the hydrogenation of functionalized alkynes, Pd SAs,
dimers, and trimers show distinct behaviors [192]. Pd trimers
exhibit heightened activity because of the reduction in the
hydrogen activation barrier, whereas Pd SAs exhibit enhanced
selectivity and durability. Ru3 SNCs stabilized by nitrogen spe-
cies (abbreviated as Ru3/CN) exhibit a higher TOF (4320 h−1)
and conversion (100%) than Ru1/CN SAC (TOF value of 416 h−1

and conversion of 21%), achieving impressive activity in the
selective oxidation of primary alcohols to aldehydes [193]. The
excellent catalytic performance of Ru3/CN can be attributed to
its unique adsorption configuration, wherein one Ru atom is
bonded with hydroxyl and amino groups. For SNCs with more
atoms, the influences of nuclearity are also inevitable. Notably,
SNC with 12 Pt atoms (Pt12 SNC) formed by the removal of an
SA from the 13-atom counterpart (Pt13 SNC) yields a substantial
enhancement of ORR activity [194]. This profound transfor-
mation is caused by the correspondence between the nuclearity
of SNCs and their coordination. Specifically, Pt12 SNC exhibits
distorted coordination, whereas Pt13 SNC maintains a stable
icosahedral atomic arrangement.
Given the remarkable catalytic performance attained by SNCs

with a specific nuclearity, the atomically precise control of the
nuclearity and composition of SNCs is essential. The electronic
band structure, activity, and selectivity of SNCs would be sig-
nificantly changed by removing or adding an atom, enabling the
effective control of the nuclearity of SNCs [195,196]. Strength-
ened MSI and facilitated synergistic effect could be achieved
using appropriate atomic species and proportions, which enable
the fine modulation of SNC composition [197–199]. For
instance, different numbers of Pd atoms lead to distinct stability
of the valence shell, thereby influencing the CO oxidation
activity of Pd SNCs [200]. A crucial requirement for tailoring the
nuclearity of SNCs is identified in Ag catalysts, where the con-
straints imposed by the low d-band center on their ORR per-
formance are avoided by rationally modulated size [169].
Specifically, adatoms in Ag SNCs with 1.7 nm in size effectively
induce alterations in the electronic structure, consequently
enhancing the d-band center. As a result, this Ag SNC exhibits a
superior 148-fold surge in mass activity of ORR compared with
that of Ag nanoparticles. Based on this circumstance, the ORR
performance of Ag SNCs can be optimized by atomically precise
control of nuclearity. A previous study of SNCs with diverse Pd–

Ru proportions reported that the naphthalene hydrogenation
selectivity of Cu6Ru6 is higher than that of Cu4Ru12, which
highlights the importance of atomically precise SNC composi-
tion [201]. To realize the atomically precise regulation of the
nuclearity and composition of SNCs, considerable efforts have
been made to improve their preparation methods, such as
sequential self-limiting growth, deposition of defined precursors,
and gas phase redispersion [202,203]. Computational research
further bridges the gap between the structure and catalytic
performance of SNCs [204,205]. The atomically precise mod-
ulation of the nuclearity and composition of SNCs is expected to
have more exceptional outcomes in the future.
Apart from nuclearity and composition, supports also have

considerable influence on the catalytic performance of SNCs,
similar to that of SACs. The surface properties of supports
influence not only the adsorption and dispersion of precursors
but also the stability of SNCs [206,207]. The functionalization of
supports further enhances their effects on SNCs. For instance,
the tannic acid monolayer facilitates the adsorption of Pt pre-
cursor on carbon supports, thus enabling Pt SNCs (average
diameter: ~0.4 nm) to disperse on the tannic acid monolayer-
functionalized carbon surface with high density [208]. These as-
prepared Pt SNCs exhibit remarkable mass activity/TOF value,
surpassing that of commercial Pt/C catalysts.
As a cross-dimensional extension of ultimate structures in the

scale of SAs, SNCs exhibit a satisfactory perspective for
improving catalytic performance from different perspectives.
The presence of additional atoms in active sites triggers a
synergistic effect among metal atoms, with substantial potential
for increasing metal loading, breaking linear relationships, and
optimizing electronic structures. The correlation between the
number of constituent atoms in SNCs and their catalytic prop-
erties provides novel insights into tailoring catalysts to meet
specific demands. Moreover, the variable catalytic performance
of SNCs verifies the advantages of ultimate structures in cata-
lysis. Ultimate structures in SAs and SNCs for different reactions
are summarized in Table 1 according to previous discussions,
providing a comprehensive understanding of these catalysts.

ULTIMATE STRUCTURE III: ELECTRONS
Although electrons are an interior constituent of atoms, their
indispensable role in modulating catalytic performance, parti-
cularly in catalysis from a microscopic perspective, has been
recognized. The capacity of electrons to initiate catalytic cycles,
modulate the energy barriers, and fine-tune optimized catalytic
configurations enables their exploration as a unique component
in catalysis. Therefore, electrons need to be considered a special
category of ultimate structures in catalysis.
Among various ultimate structures that effectively modulate

performance in catalysis, the smallest is an electron. The size of
an electron (0.55 mg mol−1) is even smaller than that of a proton
(1.0 mg mol−1), not to mention other atoms or SNCs [14,209].
Despite its minuscule size, the influence of electrons on catalysis
is undeniable. The electron has been recognized as an effective
unit in catalysis as it initiates the catalytic cycle of redox reac-
tions [210]. A typical electron-catalyzed Diels–Alder reaction is
shown in Fig. 10a, in which the electron commences the catalytic
cycle [14]. A complete catalytic cycle can be achieved through
the injection of electrons into substrates, the formation of
intermediates, the conversion into products, and the subsequent
return of electrons [14]. In-depth investigations into the role of
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electrons in catalysis are frequently conducted in fields of syn-
thetic covalent and noncovalent chemistry. For instance, intro-
ducing a chemical electron source was observed to expedite
molecular recognition during the formation of a tri-radical
complex, which was a kinetically prohibited process under
standard conditions [211]. By applying catalytic amounts of
charge, the Newman–Kwart rearrangement was observed to
occur at ambient temperature, avoiding the requirement of
conducting this rearrangement between 200 and 300°C [212].
More importantly, electrons represent a fundamental element

that profoundly influences the catalytic performance of various
catalysts, particularly those with ultimate structures. Although

extensive research has focused on atoms as the fundamental
components driving the improvement of catalysts with ultimate
structures, the behavior of electrons determines the mechanisms
of these catalysts. For instance, single Co atoms anchored on NC
(denoted as SA Co-N/C) trigger the migration of electrons from
peroxymonosulfate (PMS) to Co sites, resulting in the creation
of electron-rich active sites surrounding the Co atoms (Fig. 10b)
[213]. Conversely, in the case of nanoparticle-based Co catalyst
(NPs Co/C), electron transfer occurs from Co atoms to the
adjacent carbon atoms because of the interactions between the
NPs Co and carbon network. In the degradation of naproxen
(NPX) through PMS activation, PMS is initially adsorbed

Table 1 Diverse ultimate structures for different reactions

Ultimate structure Support Reaction type Ref.

SAC

Fe
Ir

NSFC ORR [50]

Carbon nitride CO2RR [58]

Co Graphene HER [60]

Co 3D hybrid MOF ORR [78]

Fe Porous carbon ORR/OER [89]

Cu Au Nitrate reduction reaction [96]

Pd CeO2 CO oxidation [102]

SMAC Ag HMO HCHO oxidation [7]

SAL Pt SiO2 HER [8]

SNC

Fe, Co PNCF ORR [176]

Fe2 COF ORR [181]

Mox (x = 1–4) GDY N2RR [191]

Pt12 Without support ORR [194]

Figure 10 (a) Electron-catalyzed Diels–Alder reaction. Reprinted with permission from Ref. [14]. Copyright 2014, Springer Nature. (b) Top view of different
charge densities in SA Co-N/C and NPs Co/C. (c) Catalytic mechanism of SA Co-N/C for PMS activation. Reprinted with permission from Ref. [213].
Copyright 2021, Elsevier. (d) Mechanism diagram of chloramphenicol decomposition by Fe/Cu-N-C. Reprinted with permission from Ref. [214]. Copyright
2021, Elsevier.
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around Co active sites. The electron-rich environment in SA Co-
N/C facilitates the transfer of electrons from PMS to Co, thereby
expediting NPX degradation through this electron transfer
process (Fig. 10c). This electron-driven mechanism pre-
dominantly governs NPX degradation and consequently con-
tributes to the remarkable catalytic activity (0.241 min−1) of SA
Co-N/C. Moreover, Cu and Ni dual atoms dispersed on N-
doped carbon (abbreviated as Cu/Ni-NC) exhibit an NH3 Far-
adaic efficiency of up to 97.28% during NH3 synthesis from
NO3

− [215]. The accelerated electron transfer from Cu and Ni
dual atoms to NO3

− is a pivotal factor in enhancing the catalytic
performance of Cu/Ni-NC, which is caused by the robust
covalent character of Cu-Ni sites. In the case of FeCu dual atoms
on nitrogen–carbon (Fe/Cu-N-C), electron transfer from Cu
atoms to Fe atoms optimizes the bonding orbital distribution of
Fe 3d orbitals, providing Fe atoms with a low valence state [214].
This electron-rich environment leads to the reduced adsorption
energy of peroxydisulfate, enhancing its adsorption and catalytic
activity in chloramphenicol decomposition. Furthermore, the
electron transfer from the Fe/Cu-N-C center to peroxydisulfate
facilitates the cleavage of –O–O– bonds, a critical step in the
catalytic mechanism of chloramphenicol decomposition
(Fig. 10d). Consequently, the removal rate of chloramphenicol
increases from 0.073 to 0.093 min−1 compared with that of Fe
SAC. Notably, the exceptional catalytic activity of colloidal Ag
SNCs in the reduction of phenosafranin is attributed to their size
(20–30 nm), which is suitable for efficient electron transfer
[216]. The cluster potential associated with the SNC size in these
Ag SNCs resides between that of the donor and acceptor,
enabling Ag SNCs to function as electron relay points. The
unique electron transfer pathway through Ag SNCs provides a
reduced activation energy, accelerating the redox reaction.
Although studies on SALs and SMACs are limited, electrons still
play a significant role in research [147,217].
In summary, electrons play a modulatory role in catalysis by

establishing active sites, optimizing adsorption configurations,
and reducing energy barriers. These diverse influences are
conducive to tailoring catalysts toward the attainment of
exceptional performance. The electronic structures discussed in
previous chapters also originate from the intricate behavior of
electrons, further establishing electrons as a pivotal component
for modulating catalysts. Furthermore, electrons function as the
connective thread connect diverse ultimate structures in cata-
lysis, thereby furnishing an invaluable avenue for the prospective
advancement of catalysts.

CONCLUSION AND PERSPECTIVES
Ultimate structures, including SAs, SNCs, and electrons, have
shown outstanding catalytic performance. The SAs have pre-
sented enhanced atomic use efficiency, increased specific surface
area, and unsaturated coordination environments. For SNCs, the
synergistic interaction between metal atoms becomes evident,
enabling them to increase metal loading, disrupt linear rela-
tionships, and adjust electron configurations. The significance of
electrons as the smallest category of ultimate structures has
gained considerable attention, with a promising potential to
provide novel insights into catalysis. However, current studies of
ultimate structures in catalysis are incomprehensive. The fol-
lowing crucial aspects require to be explored to completely
harness the potential of ultimate structures in catalysis.
(1) The integration of diverse ultimate structures in catalysts

can generate further advancements in catalysis. The interactions
between various ultimate structures with distinctive advantages
have exhibited the potential to improve catalytic performance.
For instance, the manipulation of the electronic structure of
individual Fe atoms through neighboring Fe SNCs yields
heightened ORR activity and improved antioxidation stability
[218]. Hence, the rational combination of ultimate structures at
different scales emerges as a viable strategy to improve catalytic
performance.
(2) Emphasizing the stability of catalysts with ultimate struc-

tures is imperative for enhancing catalytic performance. The
tendency for aggregation inherent in ultimate structures exhibits
the necessity for robust stability during chemical reactions.
Numerous investigations have made efforts to improve the sta-
bility of ultimate structures in catalysis, in which the pivotal
points are exploiting adjacent atoms or defects and promoting
the interactions between ultimate structures and supports.
[35,219,220]. Dopants, vacancies, and edges on support surfaces
are frequently exploited to regulate the microenvironment of
ultimate structures precisely, thus enhancing their catalytic sta-
bility. Supports with highly electronegative atoms could also
anchor and stabilize ultimate structures by strengthening their
bond. Notably, strong MSI enables Pt SAs to disperse on α-Fe2O3
stably, even without surface defects. Encapsulation and appro-
priate preparation methods, including coprecipitation and pyr-
olysis, for stable ultimate structures have also been evaluated in
previous studies [30,221,222]. Moreover, ultimate structures
with well-designed geometric features to separate SAs or SNCs
can effectively enhance their stability. An example is Pt SAs that
are confined by oxide SNCs and unable to move across clusters
[219]. These obtained Pt SAs maintain atomic dispersion under
oxidizing and reducing environments, which is beneficial for
practical applications. In the future, in-depth research on sta-
bilizing catalysts with ultimate structures in diverse environ-
ments will further exert substantial influence on catalysis.
(3) Controllable synthesis is important for the industrial usage

of catalysts with ultimate structures. The catalytic performance
of catalysts is substantially dependent on their structural fea-
tures, including factors such as metal loading, atomic distribu-
tion, and electronic structure. However, maintaining precise
ultimate structures, particularly the well-designed distribution of
SAs, is a challenge during the preparation of catalysts. Several
strategies have been exploited to address this issue. Strengthened
MSI not only contributes to the formation and stability of ulti-
mate structures but also enables them to retain their features
during preparation. Methods involving the functionalization of
supports or precursors and defect engineering have been verified
to be effective [128,223,224]. The appropriate selection of pre-
paration methods helps maintain ultimate structures. Rapid
thermal treatment has a remarkable effect on maintaining the
dispersion of SAs, which is difficult for conventional preparation
methods to achieve [128]. Recently, the unique arrangement of
atoms by spatial confinements has emerged as a powerful
approach to stabilizing ultimate structures because it could
prevent the disassembly and aggregation of ultimate structures.
An example of this strategy is Pt SAs and SNCs prepared by the
confinement of cups and cages in zeolites [225]. Comprehensive
research on the controllable synthesis of ultimate structures is
required, considering that the tradeoff between controllable
synthesis and cost efficiency persists even for extensively
investigated SACs. Therefore, attaining breakthroughs in syn-
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thesizing catalysts with controllable ultimate structures will
contribute to their large-scale applications.
(4) The manipulation of electron transfer is crucial for

investigating ultimate structures in catalysis. Electrons play a
significant role in optimizing adsorption configurations and
rationalizing reaction pathways, which makes it imperative to
improve catalytic performance through well-tuned electron
transfer within reactions. Therefore, for ultimate structures in
future catalysis, efforts to achieve well-designed control of
electron transfer mechanisms become indispensable. Repre-
sentative strategies to address this issue involve surface mod-
ification, heterojunction constructions, and configuration
modification. The introduction of dopants, vacancies, and
ligands to supports has been extensively used to tune the charge
transfer in ultimate structures. Recently, heterojunctions expe-
diting the efficient separation and fast transportation of charge
carriers have received increasing attention and serve as a pow-
erful approach to enhancing catalytic performance by designing
electron transfer mechanisms [226–228]. Moreover, the asym-
metry of atomic configurations could be used to regulate charge
distribution, particularly for that in SNCs [159,229]. For future
developments of ultimate structures in catalysis, strategies to
realize controllable and well-designed electron transfer
mechanisms would be valued.
(5) The development of techniques for precise characteriza-

tion and identification could provide effective information on
the structure and evolution of SAs. Techniques to characterize
SAs, such as X-ray absorption spectroscopy, scanning tunneling
microscopy, and TEM, have also received increasing attention.
With improvements in synthesizing SAs with ultimate structures
for catalysis, further studies should be directed to dynamic and
in situ characterization techniques, which could reveal the
behavior of SAs under reactions. Considering the limitation of
extended X-ray absorption fine structure (EXAFS) to distinguish
SAs and clusters, precise and comprehensive identification
techniques of diverse ultimate structures are also merited [230].
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催化中的极限结构: 单原子, 亚纳米团簇和电子
王泓麟1, 李晶2, 朱宏伟1*

摘要 催化剂的尺寸在降低到原子尺度时表现出显著的性能提升, 如
原子利用率提高、配位不饱和度增强和比表面积增加. 为了实现高效
催化, 针对原子分布和电子行为的精细设计与调控至关重要, 由此引入
了“极限结构”这一概念. 极限结构涵盖了单个原子、双原子, 单个原子
链/层和亚纳米团簇等结构. 围绕这些极限结构在原子和电子尺度上研
究催化剂, 可以更深入地理解其本征性质并为未来的催化剂设计提供
新的方向. 本文总结了极限结构在催化应用中的最新进展和研究方向,
重点讨论单原子、亚纳米团簇和电子尺度的反应动力学. 特别关注极
限结构的优化策略, 如金属-支撑作用增强、缺陷和电子结构调控. 探
讨了各种极限结构之间的相互关系, 强调了每个结构的特性. 最后, 展
望了极限结构在催化领域的未来发展趋势.
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