Skip to main content
Log in

Progress in the prognosis of battery degradation and estimation of battery states

电池衰减诊断及状态评估研究进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) have gained immense popularity as a power source in various applications. Accurately predicting the health status of these batteries is crucial for optimizing their performance, minimizing operating expenses, and preventing failures. In this paper, we present a comprehensive review of the latest developments in predicting the state of charge (SOC), state of health (SOH), and remaining useful life (RUL) of LIBs, and particularly focus on machine learning techniques. This paper delves into the degradation mechanisms of LIBs and their underlying theories, providing an in-depth analysis of the strengths and limitations of various machine learning techniques used to predict SOC, SOH and RUL. Furthermore, this review sheds light on the challenges encountered in the practical application of electric vehicles, especially concerning battery degradation. It also offers valuable insights into the future research directions for LIBs. While machine learning methods hold great promise in enhancing the accuracy of predicting SOC, SOH, and RUL, there remain numerous technical and practical obstacles that must be overcome to make them more applicable in real-world scenarios.

摘要

锂离子电池(LIB)广泛应用于储能及动力输出等领域. 准确预测 电池的健康状态对于优化性能、降低运营费用和防止电池故障等方面 具有重要的意义. 本文对预测LIB的荷电状态(SOC)、健康状态(SOH) 和剩余使用寿命(RUL)方面的最新发展进行了全面回顾, 重点关注机器 学习技术方面的研究进展, 深入分析了LIB的退化机制及其基本理论, 评估了各种传统方法及机器学习技术在预测SOC, SOH和RUL方面的 优势和限制. 此外, 还探讨了电动汽车动力电池在实际应用中面临的挑 战, 特别是性能退化问题.最后提出了对LIB未来研究方向有价值的见 解. 尽管机器学习方法在提高预测SOC, SOH和RUL准确性方面具有巨 大潜力, 但在实际应用中仍然有许多技术和实际障碍需要克服.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lajunen A, Lipman T. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy, 2016, 106: 329–342

    Article  CAS  Google Scholar 

  2. Tarroja B, Zhang L, Wifvat V, et al. Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles. Energy, 2016, 106: 673–690

    Article  Google Scholar 

  3. Xiong R. Battery Management Algorithm for Electric Vehicles. Beijing: China Machine Press, 2020. 2–4

    Book  Google Scholar 

  4. Deng D, Kim MG, Lee JY, et al. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci, 2009, 2: 818–837

    Article  CAS  Google Scholar 

  5. Lai X, Jin C, Yi W, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives. Energy Storage Mater, 2021, 35: 470–499

    Article  Google Scholar 

  6. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359–367

    Article  CAS  PubMed  Google Scholar 

  7. Nykvist B, Nilsson M. Rapidly falling costs of battery packs for electric vehicles. Nat Clim Change, 2015, 5: 329–332

    Article  Google Scholar 

  8. Deng D. Li-ion batteries: Basics, progress, and challenges. Energy Sci Eng, 2015, 3: 385–418

    Article  Google Scholar 

  9. Huang B, Pan Z, Su X, et al. Recycling of lithium-ion batteries: Recent advances and perspectives. J Power Sources, 2018, 399: 274–286

    Article  CAS  Google Scholar 

  10. Nitta N, Wu F, Lee JT, et al. Li-ion battery materials: Present and future. Mater Today, 2015, 18: 252–264

    Article  CAS  Google Scholar 

  11. Rezvanizaniani SM, Liu Z, Chen Y, et al. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. J Power Sources, 2014, 256: 110–124

    Article  CAS  Google Scholar 

  12. Dubarry M, Liaw BY. Identify capacity fading mechanism in a commercial LiFePO4 cell. J Power Sources, 2009, 194: 541–549

    Article  CAS  Google Scholar 

  13. Xu B, Oudalov A, Ulbig A, et al. Modeling of lithium-ion battery degradation for cell life assessment. IEEE Trans Smart Grid, 2018, 9: 1131–1140

    Article  Google Scholar 

  14. Xiong R, Pan Y, Shen W, et al. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renew Sustain Energy Rev, 2020, 131: 110048

    Article  CAS  Google Scholar 

  15. Kassem M, Bernard J, Revel R, et al. Calendar aging of a graphite/LiFePO4 cell. J Power Sources, 2012, 208: 296–305

    Article  CAS  Google Scholar 

  16. Zhao R, Liu J, Gu J. A comprehensive study on Li-ion battery nail penetrations and the possible solutions. Energy, 2017, 123: 392–401

    Article  CAS  Google Scholar 

  17. Broussely M, Biensan P, Bonhomme F, et al. Main aging mechanisms in Li ion batteries. J Power Sources, 2005, 146: 90–96

    Article  CAS  Google Scholar 

  18. Xiong R, Yu Q, Wang LY, et al. A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter. Appl Energy, 2017, 207: 346–353

    Article  Google Scholar 

  19. Spotnitz R. Simulation of capacity fade in lithium-ion batteries. J Power Sources, 2003, 113: 72–80

    Article  CAS  Google Scholar 

  20. Farmann A, Waag W, Marongiu A, et al. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles. J Power Sources, 2015, 281: 114–130

    Article  CAS  Google Scholar 

  21. Kan MS, Tan ACC, Mathew J. A review on prognostic techniques for non-stationary and non-linear rotating systems. Mech Syst Signal Proc, 2015, 62–63: 1–20

    Article  Google Scholar 

  22. Lipu MSH, Hannan MA, Hussain A, et al. State of charge estimation for lithium-ion battery using recurrent NARX neural network model based lighting search algorithm. IEEE Access, 2018, 6: 28150–28161

    Article  Google Scholar 

  23. Escobar LA, Meeker WQ. A review of accelerated test models. Statist Sci, 2006, 21: 552–577

    Article  Google Scholar 

  24. Tian H, Qin P, Li K, et al. A review of the state of health for lithiumion batteries: Research status and suggestions. J Cleaner Product, 2020, 261: 120813

    Article  CAS  Google Scholar 

  25. Wang D, Miao Q, Pecht M. Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. J Power Sources, 2013, 239: 253–264

    Article  CAS  Google Scholar 

  26. Wei J, Dong G, Chen Z. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression. IEEE Trans Ind Electron, 2017, 65: 5634–5643

    Article  Google Scholar 

  27. Shen P, Ouyang M, Lu L, et al. The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles. IEEE Trans Veh Technol, 2017, 67: 92–103

    Article  Google Scholar 

  28. Wang A, Zou Z, Wang D, et al. Identifying chemical factors affecting reaction kinetics in Li-air battery via ab initio calculations and machine learning. Energy Storage Mater, 2021, 35: 595–601

    Article  Google Scholar 

  29. Zhao Q, Zhang L, He B, et al. Identifying descriptors for Li+ conduction in cubic Li-argyrodites via hierarchically encoding crystal structure and inferring causality. Energy Storage Mater, 2021, 40: 386–393

    Article  Google Scholar 

  30. Han X, Ouyang M, Lu L, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. J Power Sources, 2014, 251: 38–54

    Article  CAS  Google Scholar 

  31. Gong C, Xue Z, Wen S, et al. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. J Power Sources, 2016, 318: 93–112

    Article  CAS  Google Scholar 

  32. Li Y, Liu K, Foley AM, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew Sustain Energy Rev, 2019, 113: 109254

    Article  Google Scholar 

  33. Groot J. State-of-health Estimation of Li-ion Batteries: Cycle Life Test Methods. Sweden: Chalmers Tekniska Hogskola, 2012. 8–15

    Google Scholar 

  34. Cui Y, Du C, Yin G, et al. Multi-stress factor model for cycle lifetime prediction of lithium ion batteries with shallow-depth discharge. J Power Sources, 2015, 279: 123–132

    Article  CAS  Google Scholar 

  35. Barré A, Deguilhem B, Grolleau S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J Power Sources, 2013, 241: 680–689

    Article  Google Scholar 

  36. Liu P, Wang J, Hicks-Garner J, et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J Electrochem Soc, 2010, 157: A499

    Article  CAS  Google Scholar 

  37. Xia ZY, Abu Qahouq JA. Adaptive and fast state of health estimation method for lithium-ion batteries using online complex impedance and artificial neural network. In: 2019 IEEE Applied Power Electronics Conference and Exposition (APEC). Anaheim: IEEE, 2019. 3361–3365

    Google Scholar 

  38. Hu X, Xu L, Lin X, et al. Battery lifetime prognostics. Joule, 2020, 4: 310–346

    Article  CAS  Google Scholar 

  39. Dubarry M, Truchot C, Liaw BY. Synthesize battery degradation modes via a diagnostic and prognostic model. J Power Sources, 2012, 219: 204–216

    Article  CAS  Google Scholar 

  40. Maher K, Yazami R. A study of lithium ion batteries cycle aging by thermodynamics techniques. J Power Sources, 2014, 247: 527–533

    Article  CAS  Google Scholar 

  41. Harris SJ, Lu P. Effects of inhomogeneities—Nanoscale to mesoscale—On the durability of Li-ion batteries. J Phys Chem C, 2013, 117: 6481–6492

    Article  CAS  Google Scholar 

  42. Joho F, Rykart B, Blome A, et al. Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries. J Power Sources, 2001, 97–98: 78–82

    Article  Google Scholar 

  43. An SJ, Li J, Daniel C, et al. The state of understanding of the lithiumion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016, 105: 52–76

    Article  CAS  Google Scholar 

  44. Cannarella J, Arnold CB. State of health and charge measurements in lithium-ion batteries using mechanical stress. J Power Sources, 2014, 269: 7–14

    Article  CAS  Google Scholar 

  45. Ouyang CY, Zhong ZY, Lei MS. Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem Commun, 2007, 9: 1107–1112

    Article  CAS  Google Scholar 

  46. Lu W, Liu J, Sun YK, et al. Electrochemical performance of Li4/3Ti5/3O4/Li1+x(Ni1/3Co1/3Mn1/3)1-xO2 cell for high power applications. J Power Sources, 2007, 167: 212–216

    Article  CAS  Google Scholar 

  47. Shen X, Tian Z, Fan R, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery. J Energy Chem, 2018, 27: 1067–1090

    Article  Google Scholar 

  48. Chung KY, Kim KB. Investigations into capacity fading as a result of a Jahn-Teller distortion in 4 V LiMn2O4 thin film electrodes. Electrochim Acta, 2004, 49: 3327–3337

    Article  CAS  Google Scholar 

  49. Han X, Lu L, Zheng Y, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation, 2019, 1: 100005

    Article  Google Scholar 

  50. Li X, Xu Y, Wang C. Suppression of Jahn-Teller distortion of spinel LiMn2O4 cathode. J Alloys Compd, 2009, 479: 310–313

    Article  CAS  Google Scholar 

  51. Fleischhammer M, Waldmann T, Bisle G, et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries. J Power Sources, 2015, 274: 432–439

    Article  CAS  Google Scholar 

  52. Jaguemont J, Boulon L, Dube Y. Characterization and modeling of a hybrid-electric-vehicle lithium-ion battery pack at low temperatures. IEEE Trans Veh Technol, 2015, 65: 1–14

    Article  Google Scholar 

  53. Waldmann T, Wilka M, Kasper M, et al. Temperature dependent ageing mechanisms in Lithium-ion batteries—A Post-Mortem study. J Power Sources, 2014, 262: 129–135

    Article  CAS  Google Scholar 

  54. Ouyang M, Ren D, Lu L, et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2 + LiyMn2O4 composite cathode. J Power Sources, 2015, 279: 626–635

    Article  CAS  Google Scholar 

  55. Garche J, Jossen A, Döring H. The influence of different operating conditions, especially over-discharge, on the lifetime and performance of lead/acid batteries for photovoltaic systems. J Power Sources, 1997, 67: 201–212

    Article  CAS  Google Scholar 

  56. Xiong R, Ma S, Li H, et al. Toward a safer battery management system: A critical review on diagnosis and prognosis of battery short circuit. iScience, 2020, 23: 101010

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ren D, Feng X, Lu L, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery. J Power Sources, 2017, 364: 328–340

    Article  CAS  Google Scholar 

  58. Yuan X, Liu H, Zhang J. Lithium-ion Batteries: Advanced Materials and Technologies. Boca Raton: CRC Press, 2011

    Google Scholar 

  59. Piller S, Perrin M, Jossen A. Methods for state-of-charge determination and their applications. J Power Sources, 2001, 96: 113–120

    Article  CAS  Google Scholar 

  60. Li Z, Lu L, Ouyang M. Comparison of methods for improving SOC estimation accuracy through an ampere-hour integeration approach. Tsinghua Sci Technol, 2010, 50: 1293–1301

    CAS  Google Scholar 

  61. Zhang Y, Song W, Lin S, et al. A novel model of the initial state of charge estimation for LiFePO4 batteries. J Power Sources, 2014, 248: 1028–1033

    Article  CAS  Google Scholar 

  62. Liu X, Wu J, Zhang C, et al. A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures. J Power Sources, 2014, 270: 151–157

    Article  CAS  Google Scholar 

  63. Xiong R. Battery Management Algorithm for Electric Vehicle, Singapore: Springer, 2020.

    Book  Google Scholar 

  64. Samad NA, Kim Y, Siegel JB, et al. Battery capacity fading estimation using a force-based incremental capacity analysis. J Electrochem Soc, 2016, 163: A1584–A1594

    Article  CAS  Google Scholar 

  65. Feng X, Weng C, Ouyang M, et al. Online internal short circuit detection for a large format lithium ion battery. Appl Energy, 2016, 161: 168–180

    Article  Google Scholar 

  66. How DNT, Hannan MA, Hossain Lipu MS, et al. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review. IEEE Access, 2019, 7: 136116–136136

    Article  Google Scholar 

  67. Tian J, Xiong R, Shen W. A review on state of health estimation for lithium ion batteries in photovoltaic systems. eTransportation, 2019, 2: 100028

    Article  Google Scholar 

  68. Pop V, Bergveld HJ, Danilov D, et al. Battery Management Systems: Accurate State-of-charge Indication for Battery-powered Applications. Dordrecht: Springer, 2008. 24–37

    Google Scholar 

  69. Snihir I, Rey W, Verbitskiy E, et al. Battery open-circuit voltage estimation by a method of statistical analysis. J Power Sources, 2006, 159: 1484–1487

    Article  CAS  Google Scholar 

  70. Sulzer V, Mohtat P, Lee S, et al. Promise and challenges of a data-driven approach for battery lifetime prognostics. In: 2021 American Control Conference (ACC). New Orleans: IEEE, 2021. 4427–4433

  71. Severson KA, Attia PM, Jin N, et al. Data-driven prediction of battery cycle life before capacity degradation. Nat Energy, 2019, 4: 383–391

    Article  Google Scholar 

  72. Roscher MA, Sauer DU. Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries. J Power Sources, 2011, 196: 331–336

    Article  CAS  Google Scholar 

  73. Dreyer W, Jamnik J, Guhlke C, et al. The thermodynamic origin of hysteresis in insertion batteries. Nat Mater, 2010, 9: 448–453

    Article  CAS  PubMed  Google Scholar 

  74. Blanke H, Bohlen O, Buller S, et al. Impedance measurements on leadacid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles. J Power Sources, 2005, 144: 418–425

    Article  CAS  Google Scholar 

  75. Zhang J, Lee J. A review on prognostics and health monitoring of Liion battery. J Power Sources, 2011, 196: 6007–6014

    Article  CAS  Google Scholar 

  76. Zhang SS, Xu K, Jow TR. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim Acta, 2006, 51: 1636–1640

    Article  CAS  Google Scholar 

  77. Roman D, Saxena S, Robu V, et al. Machine learning pipeline for battery state-of-health estimation. Nat Mach Intell, 2021, 3: 447–456

    Article  Google Scholar 

  78. Holmström K, Petersson J. A review of the parameter estimation problem of fitting positive exponential sums to empirical data. Appl Math Computation, 2002, 126: 31–61

    Article  Google Scholar 

  79. Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc, 1993, 140: 1526–1533

    Article  CAS  Google Scholar 

  80. Kroeze RC, Krein PT. Electrical battery model for use in dynamic electric vehicle simulations. In: 2008 IEEE Power Electronics Specialists Conference. Rhodes: IEEE, 2008. 1336–1342

    Google Scholar 

  81. He H, Xiong R, Guo H. Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles. Appl Energy, 2012, 89: 413–420

    Article  Google Scholar 

  82. Hu X, Li S, Peng H. A comparative study of equivalent circuit models for Li-ion batteries. J Power Sources, 2012, 198: 359–367

    Article  CAS  Google Scholar 

  83. Freeborn TJ, Maundy B, Elwakil AS. Fractional-order models of supercapacitors, batteries and fuel cells: A survey. Mater Renew Sustain Energy, 2015, 4: 1–7

    Article  Google Scholar 

  84. Yang Q, Xu J, Cao B, et al. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries. PLoS ONE, 2017, 12: e0172424

    Article  PubMed  PubMed Central  Google Scholar 

  85. Do DV, Forgez C, El Kadri Benkara K, et al. Impedance observer for a Li-ion battery using Kalman filter. IEEE Trans Veh Technol, 2009, 58: 3930–3937

    Article  Google Scholar 

  86. Domenico DD, Fiengo G, Stefanopoulou A. Lithium-ion battery state of charge estimation with a Kalman filter based on a electrochemical model. In: 2008 IEEE International Conference on Control Applications. San Antonio: IEEE, 2019: 702–707

    Google Scholar 

  87. Kandepu R, Foss B, Imsland L. Applying the unscented Kalman filter for nonlinear state estimation. J Process Control, 2008, 18: 753–768

    Article  CAS  Google Scholar 

  88. Li J, Klee Barillas J, Guenther C, et al. A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles. J Power Sources, 2013, 230: 244–250

    Article  CAS  Google Scholar 

  89. Ristic B, Arulampalam S, Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Boston: Artech House, 2003. 830: 1–4

    Google Scholar 

  90. Plett GL. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. J Power Sources, 2004, 134: 277–292

    Article  CAS  Google Scholar 

  91. Junping W, Jingang G, Lei D. An adaptive Kalman filtering based state of charge combined estimator for electric vehicle battery pack. Energy Convers Manage, 2009, 50: 3182–3186

    Article  Google Scholar 

  92. Mastali M, Vazquez-Arenas J, Fraser R, et al. Battery state of the charge estimation using Kalman filtering. J Power Sources, 2013, 239: 294–307

    Article  CAS  Google Scholar 

  93. Xu L, Wang J, Chen Q. Kalman filtering state of charge estimation for battery management system based on a stochastic fuzzy neural network battery model. Energy Convers Manage, 2012, 53: 33–39

    Article  CAS  Google Scholar 

  94. Yu Z, Huai R, Xiao L. State-of-charge estimation for lithium-ion batteries using a Kalman filter based on local linearization. Energies, 2015, 8: 7854–7873

    Article  Google Scholar 

  95. Shrivastava P, Soon TK, Idris MYIB, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renew Sustain Energy Rev, 2019, 113: 109233

    Article  CAS  Google Scholar 

  96. Xiong R, Sun F, Chen Z, et al. A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles. Appl Energy, 2014, 113: 463–476

    Article  Google Scholar 

  97. Xing Y, Ma EWM, Tsui KL, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron Reliability, 2013, 53: 811–820

    Article  CAS  Google Scholar 

  98. Gordon NJ, Salmond DJ, Smith AFM. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc F Radar Signal Process UK, 1993, 140: 107

    Article  Google Scholar 

  99. Wang Y, Zhang C, Chen Z. A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter. J Power Sources, 2015, 279: 306–311

    Article  CAS  Google Scholar 

  100. Liu X, Chen Z, Zhang C, et al. A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation. Appl Energy, 2014, 123: 263–272

    Article  CAS  Google Scholar 

  101. Merwe RVD, Doucet A, Freitas ND, et al. The unscented particle filter. In: Proceedings of the 13th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2000. 1–7

    Google Scholar 

  102. Wang Y, Tian J, Sun Z, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew Sustain Energy Rev, 2020, 131: 110015

    Article  Google Scholar 

  103. Ungurean L, Cârstoiu G, Micea MV, et al. Battery state of health estimation: A structured review of models, methods and commercial devices. Int J Energy Res, 2017, 41: 151–181

    Article  Google Scholar 

  104. Hatzell KB, Sharma A, Fathy HK. A survey of long-term health modeling, estimation, and control of lithium-ion batteries: Challenges and opportunities. In: 2012 American Control Conference (ACC). Montreal: IEEE, 2012. 584–591

    Google Scholar 

  105. Xiong R, Li L, Tian J. Towards a smarter battery management system: A critical review on battery state of health monitoring methods. J Power Sources, 2018, 405: 18–29

    Article  CAS  Google Scholar 

  106. Berecibar M, Gandiaga I, Villarreal I, et al. Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew Sustain Energy Rev, 2016, 56: 572–587

    Article  CAS  Google Scholar 

  107. Ng KS, Moo CS, Chen YP, et al. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl Energy, 2009, 86: 1506–1511

    Article  CAS  Google Scholar 

  108. Huet F. A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries. J Power Sources, 1998, 70: 59–69

    Article  CAS  Google Scholar 

  109. Dai H, Wei X, Sun Z. A new SOH prediction concept for the power lithium-ion battery used on HEVs. In: 2009 IEEE Vehicle Power and Propulsion Conference. Dearborn: IEEE, 2012. 1649–1653

    Google Scholar 

  110. Waag W, Käbitz S, Sauer DU. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl Energy, 2013, 102: 885–897

    Article  CAS  Google Scholar 

  111. Qahouq JAA, Xia Z. Single-perturbation-cycle online battery impedance spectrum measurement method with closed-loop control of power converter. IEEE Trans Ind Electron, 2017, 64: 7019–7029

    Article  Google Scholar 

  112. Huang W, Qahouq JA. An online battery impedance measurement method using DC-DC power converter control. IEEE Trans Ind Electron, 2014, 61: 5987–5995

    Article  Google Scholar 

  113. Pilla AA. A transient impedance technique for the study of electrode kinetics: Application to potentiostatic methods. J Electrochem Soc, 1970, 117: 467

    Article  CAS  Google Scholar 

  114. Macdonald JR, Barsoukov E. Impedance Spectroscopy: Theory, Experiment, and Applications. Wiley-Interscience, Hoboken, 2018. 424–458

    Google Scholar 

  115. Galeotti M, Cinà L, Giammanco C, et al. Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy. Energy, 2015, 89: 678–686

    Article  CAS  Google Scholar 

  116. Cui Y, Zuo P, Du C, et al. State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method. Energy, 2018, 144: 647–656

    Article  Google Scholar 

  117. Park C, Lahiri K, Raghunathan A. Battery discharge characteristics of wireless sensor nodes: An experimental analysis. In: 2005 Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2005. IEEE SECON 2005. Santa Clara: IEEE, 2005. 430–440

    Google Scholar 

  118. Grillet AM, Humplik T, Stirrup EK, et al. The role of composite binder on mechanics and performance of lithium ion battery electrodes. Meet Abstr, 2016, MA2016-01: 368

    Article  Google Scholar 

  119. Hardwick L, Buqa H, Novak P. Graphite surface disorder detection using in situ Raman microscopy. Solid State Ion, 2006, 177: 2801–2806

    Article  CAS  Google Scholar 

  120. Finegan DP, Scheel M, Robinson JB, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat Commun, 2015, 6: 6924

    Article  CAS  PubMed  Google Scholar 

  121. Schiffer ZJ, Cannarella J, Arnold CB. Strain derivatives for practical charge rate characterization of lithium ion electrodes. J Electrochem Soc, 2015, 163: A427–A433

    Article  Google Scholar 

  122. Bloom I, Jansen AN, Abraham DP, et al. Differential voltage analyses of high-power, lithium-ion cells. J Power Sources, 2005, 139: 295–303

    Article  CAS  Google Scholar 

  123. Weng C, Cui Y, Sun J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression. J Power Sources, 2013, 235: 36–44

    Article  CAS  Google Scholar 

  124. Li Y, Abdel-Monem M, Gopalakrishnan R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter. J Power Sources, 2018, 373: 40–53

    Article  CAS  Google Scholar 

  125. Merla Y, Wu B, Yufit V, et al. Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries. J Power Sources, 2016, 307: 308–319

    Article  CAS  Google Scholar 

  126. Lucu M, Martinez-Laserna E, Gandiaga I, et al. A critical review on self-adaptive Li-ion battery ageing models. J Power Sources, 2018, 401: 85–101

    Article  CAS  Google Scholar 

  127. Dong H, Jin X, Lou Y, et al. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. J Power Sources, 2014, 271: 114–123

    Article  CAS  Google Scholar 

  128. Yu Q, Xiong R, Lin C, et al. Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters. IEEE Trans Veh Technol, 2017, 66: 8693–8701

    Article  Google Scholar 

  129. Wei Z, Zhao J, Ji D, et al. A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model. Appl Energy, 2017, 204: 1264–1274

    Article  CAS  Google Scholar 

  130. Bose CSC, Laman FC. Battery state of health estimation through coup de fouet. In: INTELEC. Twenty-Second International Telecommunications Energy Conference (Cat. No.00CH37131). Phoenix: IEEE, 2000. 597–601

    Google Scholar 

  131. Chen C, Pecht M. Prognostics of lithium-ion batteries using modelbased and data-driven methods. In: Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing). Beijing: IEEE, 2012. 1–6

    Google Scholar 

  132. Wu L, Fu X, Guan Y. Review of the remaining useful life prognostics of vehicle lithium-ion batteries using data-driven methodologies. Appl Sci, 2016, 6: 166

    Article  Google Scholar 

  133. Lipu MSH, Hannan MA, Hussain A, et al. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. J Cleaner Product, 2018, 205: 115–133

    Article  Google Scholar 

  134. Saha B, Poll S, Goebel K, et al. An integrated approach to battery health monitoring using bayesian regression and state estimation. In: 2007 IEEE Autotestcon. Baltimore: IEEE, 2007. 646–653

    Google Scholar 

  135. Zou Y, Hu X, Ma H, et al. Combined state ofcharge and state ofhealth estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J Power Sources, 2015, 273: 793–803

    Article  CAS  Google Scholar 

  136. Xiong R, Zhang Y, He H, et al. A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries. IEEE Trans Ind Electron, 2017, 65: 1526–1538

    Article  Google Scholar 

  137. Hu C, Jain G, Schmidt C, et al. Online estimation of lithium-ion battery capacity using sparse Bayesian learning. J Power Sources, 2015, 289: 105–113

    Article  CAS  Google Scholar 

  138. Ng SSY, Xing Y, Tsui KL. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl Energy, 2014, 118: 114–123

    Article  Google Scholar 

  139. Yang F, Wang D, Xing Y, et al. Prognostics of Li(NiMnCo)O2-based lithium-ion batteries using a novel battery degradation model. Microelectron Reliability, 2017, 70: 70–78

    Article  CAS  Google Scholar 

  140. Richardson RR, Osborne MA, Howey DA. Gaussian process regression for forecasting battery state of health. J Power Sources, 2017, 357: 209–219

    Article  CAS  Google Scholar 

  141. Rasmussen CE. Gaussian processes in machine learning. Springer, 2003. 63–71

  142. Azman K, Kocijan J. Dynamical systems identification using Gaussian process models with incorporated local models. Eng Appl Artif Intelligence, 2011, 24: 398–408

    Article  Google Scholar 

  143. Tang S, Yu C, Wang X, et al. Remaining useful life prediction of lithium-ion batteries based on the wiener process with measurement error. Energies, 2014, 7: 520–547

    Article  Google Scholar 

  144. Sahinoglu GO, Pajovic M, Sahinoglu Z, et al. Battery state-of-charge estimation based on regular/recurrent Gaussian process regression. IEEE Trans Ind Electron, 2017, 65: 4311–4321

    Article  Google Scholar 

  145. Williams C, Rasmussen C. Gaussian processes for regression. In: Proceedings of the 8th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 1995. 8: 514–520

    Google Scholar 

  146. Ebden M. Gaussian processes: A quick introduction, arXiv: 2015.02965

  147. Liu D, Pang J, Zhou J, et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron Reliability, 2013, 53: 832–839

    Article  CAS  Google Scholar 

  148. Chen Z, Mi CC, Fu Y, et al. Online battery state of health estimation based on Genetic Algorithm for electric and hybrid vehicle applications. J Power Sources, 2013, 240: 184–192

    Article  CAS  Google Scholar 

  149. Nuhic A, Terzimehic T, Soczka-Guth T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J Power Sources, 2013, 239: 680–688

    Article  CAS  Google Scholar 

  150. Sankavaram C, Pattipati B, Kodali A, et al. Model-based and data-driven prognosis of automotive and electronic systems. In: 2009 IEEE International Conference on Automation Science and Engineering. Bangalore: IEEE, 2009. 96–101

    Google Scholar 

  151. Kulkarni C, Biswas G, Saha S, et al. A model-based prognostics methodology for electrolytic capacitors based on electrical overstress accelerated aging. In: Annual Conference of the Prognostics and Health Management Society. Montreal, 2011. 3: 1–9

  152. Shi S, Gao J, Liu Y, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chin Phys B, 2015, 25: 018212

    Article  Google Scholar 

  153. Beale MH, Hagan MT, Demuth HB. Neural Network Toolbox. Natick: The MathWorks, 2010. 2: 77–81

    Google Scholar 

  154. Hagan MT, Demuth HB, Beale MH. Neural Network Design. Boston: PWS Publishing Co., 1997. 22–23

    Google Scholar 

  155. Andre D, Nuhic A, Soczka-Guth T, et al. Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles. Eng Appl Artif Intelligence, 2013, 26: 951–961

    Article  Google Scholar 

  156. Widodo A, Shim MC, Caesarendra W, et al. Intelligent prognostics for battery health monitoring based on sample entropy. Expert Syst Appl, 2011, 38: 11763–11769

    Article  Google Scholar 

  157. Cheng D, Sha W, Wang L, et al. Solid-state lithium battery cycle life prediction using machine learning. Appl Sci, 2021, 11: 4671

    Article  CAS  Google Scholar 

  158. Lombardo T, Duquesnoy M, El-Bouysidy H, et al. Artificial intelligence applied to battery research: Hype or reality? Chem Rev, 2022, 122: 10899–10969

    Article  CAS  PubMed  Google Scholar 

  159. Saha KGB. Battery Data Set, NASA Ames Prognostics Data Repository 2007. http://ti.arc.nasa.gov/project/prognostic-datarepository

  160. Ni Y, Xu J, Zhu C, et al. Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model. Appl Energy, 2022, 305: 117922

    Article  CAS  Google Scholar 

  161. Liu Y, Yang Z, Yu Z, et al. Generative artificial intelligence and its applications in materials science: Current situation and future perspectives. J Materiomics, 2023, 9: 798–816

    Article  Google Scholar 

  162. Liu Y, Yang Z, Zou X, et al. Data quantity governance for machine learning in materials science. Natl Sci Rev, 2023, 10: 125

    Article  CAS  Google Scholar 

  163. Liu Y, Wang S, Yang Z, et al. Auto-matRegressor: Liberating machine learning alchemists. Sci Bull, 2023, 68: 1259–1270

    Article  CAS  Google Scholar 

  164. Poole MA, O’Farrell PN. The assumptions of the linear regression model. Trans Institute Br Geographers, 1971, 52: 145–158

    Article  Google Scholar 

  165. Seber GA, Lee AJ. Linear Regression Analysis. Hoboken: John Wiley & Sons, 2012. 2: 1–20

    Google Scholar 

  166. Vilsen SB, Stroe DI. Battery state-of-health modelling by multiple linear regression. J Cleaner Product, 2021, 290: 125700

    Article  Google Scholar 

  167. Hong J, Wang Z, Chen W, et al. Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles. J Energy Storage, 2020, 30: 101459

    Article  Google Scholar 

  168. Hoerl AE, Kennard RW. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 1970, 12: 55–67

    Article  Google Scholar 

  169. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B, 1996, 58: 267–288

    Google Scholar 

  170. Wu J, Cui X, Zhang H, et al. Health prognosis with optimized feature selection for lithium-ion battery in electric vehicle applications. IEEE Trans Power Electron, 2021, 36: 12646–12655

    Article  Google Scholar 

  171. Jiang Y, Jiang J, Zhang C, et al. State of health estimation of second-life LiFePO4 batteries for energy storage applications. J Cleaner Product, 2018, 205: 754–762

    Article  CAS  Google Scholar 

  172. Lin D, Zhang Y, Zhao X, et al. Early prediction of remaining useful life for grid-scale battery energy storage system. J Energy Eng, 2021, 147: 04021046

    Article  Google Scholar 

  173. Drucker H, Burges CJ, Kaufman L, et al. Support vector regression machines. In: Proceedings of Advances in Neural Information Processing Systems 9. Cambridge: MIT Press 1996. 155–161

    Google Scholar 

  174. Boyd SP, Vandenberghe L. Convex Optimization. Los Angeles: Cambridge University Press, 2004, 12–108

    Book  Google Scholar 

  175. Platt J. Sequential minimal optimization: A fast algorithm for training support vector machines. Microsoft, 1998, 14: 7–9

    Google Scholar 

  176. Cortes C, Vapnik V. Support-vector networks. Mach Learn, 1995, 20: 273–297

    Article  Google Scholar 

  177. Li R, Xu S, Li S, et al. State of charge prediction algorithm of lithiumion battery based on PSO-SVR cross validation. IEEE Access, 2020, 8: 10234–10242

    Article  Google Scholar 

  178. Mercer J. Functions of positive and negative type and their commection with the theory of integral equations. Philos Trinsdictions Rogyal Soc, 1909, 209: 4–415

    Google Scholar 

  179. Abdolmaleki A, Springenberg JT, Tassa Y, et al. Maximum a posteriori policy optimisation, arXiv: 1806.06920

  180. Liu K, Hu X, Wei Z, et al. Modified gaussian process regression models for cyclic capacity prediction of lithium-ion batteries. IEEE Trans Transp Electrific, 2019, 5: 1225–1236

    Article  Google Scholar 

  181. Breiman L. Classification and Regression Trees. New York: Routledge, 2017. 1–14

    Google Scholar 

  182. Freund Y, Mason L. The alternating decision tree learning algorithm. In: Proceedings of the Sixteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 1999. 124–133

    Google Scholar 

  183. Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal, 2002, 38: 367–378

    Article  Google Scholar 

  184. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2016. 785–794

    Google Scholar 

  185. Ke G, Meng Q, Finley T, et al. Lightgbm: A highly efficient gradient boosting decision tree. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017. 1–8

    Google Scholar 

  186. Yang F, Wang D, Xu F, et al. Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model. J Power Sources, 2020, 476: 228654

    Article  CAS  Google Scholar 

  187. Box GEP, Jenkins GM, Reinsel GC, et al. Time series analysis: Forecasting and control. Oper Res-Ger, 2015, 22: 199–201

    Google Scholar 

  188. Nelson BK. Time series analysis using autoregressive integrated moving average (ARIMA) models. Acad Emerg Med, 1998, 5: 739–744

    Article  CAS  PubMed  Google Scholar 

  189. Lütkepohl H. Vector Autoregressive Models. Cheltenham: Edward Elgar Publishing, 2013. 6: 139–164

    Google Scholar 

  190. Liu Z, Dang X, Jing B, et al. A novel model-based state of charge estimation for lithium-ion battery using adaptive robust iterative cubature Kalman filter. Electric Power Syst Res, 2019, 177: 105951

    Article  Google Scholar 

  191. Zhou Y, Huang M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectron Reliability, 2016, 65: 265–273

    Article  CAS  Google Scholar 

  192. Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signal Syst, 1989, 2: 303–314

    Article  Google Scholar 

  193. Chen C, Xiong R, Yang R, et al. State-of-charge estimation of lithiumion battery using an improved neural network model and extended Kalman filter. J Cleaner Product, 2019, 234: 1153–1164

    Article  Google Scholar 

  194. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature, 1986, 323: 533–536

    Article  Google Scholar 

  195. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9: 1735–1780

    Article  CAS  PubMed  Google Scholar 

  196. Zhang Y, Xiong R, He H, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans Veh Technol, 2018, 67: 5695–5705

    Article  Google Scholar 

  197. Liu Y, He Y, Bian H, et al. A review of lithium-ion battery state of charge estimation based on deep learning: Directions for improvement and future trends. J Energy Storage, 2022, 52: 104664

    Article  Google Scholar 

  198. Shen S, Sadoughi M, Li M, et al. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries. Appl Energy, 2020, 260: 114296

    Article  Google Scholar 

  199. Fan X, Zhang W, Zhang C, et al. SOC estimation of Li-ion battery using convolutional neural network with U-Net architecture. Energy, 2022, 256: 124612

    Article  CAS  Google Scholar 

  200. Wang Q, Ye M, Wei M, et al. Deep convolutional neural network based closed-loop SOC estimation for lithium-ion batteries in hierarchical scenarios. Energy, 2023, 263: 125718

    Article  Google Scholar 

  201. Luo K, Zheng H, Shi Z. A simple feature extraction method for estimating the whole life cycle state of health of lithium-ion batteries using transformer-based neural network. J Power Sources, 2023, 576: 233139

    Article  CAS  Google Scholar 

  202. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017. 30.

    Google Scholar 

  203. Li Y, Li K, Liu X, et al. Lithium-ion battery capacity estimation—A pruned convolutional neural network approach assisted with transfer learning. Appl Energy, 2021, 285: 116410

    Article  Google Scholar 

  204. Gu X, See KW, Li P, et al. A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model. Energy, 2023, 262: 125501

    Article  Google Scholar 

  205. Zhao Q, Avdeev M, Chen L, et al. Machine learning prediction of activation energy in cubic Li-argyrodites with hierarchically encoding crystal structure-based (HECS) descriptors. Sci Bull, 2021, 66: 1401–1408

    Article  CAS  Google Scholar 

  206. Ming T, Wang K, Tian D. Estimation on state of charge of lithium battery based on lstm neural network. Guangdong Electric Power, 2020, 33: 26–33

    Google Scholar 

Download references

Acknowledgements

This work was supported by the major program funds of State Grid Shaanxi Electric Power Company Limited (5226KY23000P) and the Startup funds of Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China (U03210019).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yuan J, Huang H, Liu S and Sun C wrote the section of AGING MECHANISM AND INFLUENCING FACTORS. Yuan J, Huang H, Gan X, Liu S and Bi C wrote the section of TRADITIONAL TECHNOLOGIES FOR SOC, SOH AND RUL ESTIMATION. Qin Z, Wang Z, Yang Y and Wen A wrote the section of MACHINE LEARNING METHODS FOR SOC, SOH AND RUL ESTIMATION. Li B and Sun C supervised the project, wrote the INTRODUCTION and section of PROSPECTS AND CONCLUSIONS. All authors contributed to the general discussion and revised the manuscript.

Corresponding authors

Correspondence to Baihai Li  (李白海) or Chenghua Sun  (孙成华).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Jun Yuan received her Bachelor’s degree in materials science and engineering from Chengdu University of Technology and Master’s degree in materials science and engineering from the University of Electronic Science and Technology of China (UESTC) in 2023. She is currently working toward her PhD degree in digital catalysis at the Department of Chemistry, Technical University of Munich in Germany. Her research interests include battery states estimation and early faulty diagnosis using machine learning and electrochemical models.

Zhili Qin received his Bachelor’s degree in computer science from Hefei University of Technology in 2017. He is currently pursuing his PhD degree at UESTC. In 2022, he participated in a one-year academic exchange program supported by China Scholarship Council (CSC) Scholarship at Ludwig Maximilian University of Munich in Germany. His primary research interests focus on the areas of multi-label learning, few-shot learning, and zero-shot learning, etc.

Baihai Li received his PhD degree from the Chinese Academy of Sciences in 2011 and subsequently served as a postdoctoral fellow at the University of Michigan-Ann Arbor. In 2013, Dr. Li joined the School of Materials and Energy, UESTC as an associate professor. His research primarily focuses on energy conversion and storage, especially for battery material surfaces/interfaces and intelligent battery management, such as data-driven estimation of battery states and early faulty diagnosis, employing a combination of machine learning techniques and electrochemical models.

Chenghua Sun received his PhD degree from the Chinese Academy of Sciences in 2007 and then joined the University of Queensland (Brisbane, Australia) as a postdoc fellow. In 2013, Dr. Sun joined the School of Chemistry, Monash University as a lecturer and established his group on computer-aided catalyst design. He was awarded ARC Future Fellow and joined the Swinburne University of Technology in 2017 as an associate professor. His research focuses on catalyst design for clean energy and environment applications, particularly for ammonia synthesis, methane combustion, batteries, and biomass conversion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Qin, Z., Huang, H. et al. Progress in the prognosis of battery degradation and estimation of battery states. Sci. China Mater. 67, 1014–1041 (2024). https://doi.org/10.1007/s40843-023-2665-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2665-8

Keywords

Navigation