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ABSTRACT Lithium-ion batteries (LIBs) have gained im-
mense popularity as a power source in various applications.
Accurately predicting the health status of these batteries is
crucial for optimizing their performance, minimizing oper-
ating expenses, and preventing failures. In this paper, we
present a comprehensive review of the latest developments in
predicting the state of charge (SOC), state of health (SOH),
and remaining useful life (RUL) of LIBs, and particularly focus
on machine learning techniques. This paper delves into the
degradation mechanisms of LIBs and their underlying the-
ories, providing an in-depth analysis of the strengths and
limitations of various machine learning techniques used to
predict SOC, SOH and RUL. Furthermore, this review sheds
light on the challenges encountered in the practical applica-
tion of electric vehicles, especially concerning battery de-
gradation. It also offers valuable insights into the future
research directions for LIBs. While machine learning methods
hold great promise in enhancing the accuracy of predicting
SOC, SOH, and RUL, there remain numerous technical and
practical obstacles that must be overcome to make them more
applicable in real-world scenarios.
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lithium-ion batteries, equivalent-circuit model, electrochemical
model, machine learning

INTRODUCTION
The escalating environmental pollution and the limited supply
of fossil fuels have spurred a rising interest in clean and
renewable energy sources. The development of new-energy
electric vehicles (EVs) as a substitute for traditional vehicles has
been a major focus in this regard [1–3]. With the rapid increase
in the production of new energy EVs, the number of retired
batteries is also rapidly increasing, given the limited lifespan of
batteries. Consequently, addressing the issues related to batteries
has become an urgent challenge that needs to be tackled [4].
EVs batteries can be categorized into three types based on

their capacity and output power: energy/power-balanced, pow-
er-type, and energy-type batteries. The power battery serves as a
substitute for fuel [5] and plays a crucial role in determining the
safety, efficiency, economy, and service life of the EV, directly
impacting the performance of EVs. Out of the various types of
batteries available, Lithium-ion batteries (LIBs) have emerged as
the predominant devices to power new energy vehicles owing to
their high energy density, extended service life, cost-effective-
ness, and eco-friendliness [6,7]. Moreover, LIBs exhibit no
memory effect and offer a voltage output nearly three times that
of NiCd batteries, thereby minimizing the need for additional
batteries and accompanying hardware [8]. As the core compo-
nent of EVs, LIBs are a vital factor in determining the overall
value of an EV. Hence, the health management, security early
alarm, performance optimization, and utilization of LIBs have
become crucial areas of research [9]. Commercial LIBs com-
monly employ LiFePO4, Li(NixCoyMnz)O2, LiMn2O4, LiNiO2, or
LiCoO2 as cathodes and Li4Ti5O12 or graphite as anodes, while
electrolyte salts such as LiPF6, LiBF4, LiClO4, ethylene carbon, or
diethyl carbonate are used [8–10]. Due to the poor thermal
stability, LiMn2O4 and LiCoO2 batteries are seldom used in
commercial EVs. On the contrary, commercialized LiFePO4
batteries exhibit excellent durability and cycle stability. Ternary
batteries Li(NixCoyMnz)O2 has a higher discharge voltage plat-
form, higher energy density and specific capacity. The energy
density of ternary battery cells and modules exceeds
200 W h kg−1, which is higher than that of LiFePO4 batteries
(approximately 136 W h kg−1). As a result, ternary batteries can
provide EVs with longer driving range. Both LiFePO4 batteries
and ternary batteries demonstrate excellent discharge perfor-
mance under high-rate conditions.
In practical applications, performance durability has been a

target since the first commercial LIBs. However, achieving this
target has been quite challenging as the electrochemical com-
position continuously degrades during charging/discharging
cycles. Notable examples of this degradation include the decre-
ment of lithium-ion concentration and the rapid formation of
complicated impurity phases at the electrode-electrolyte inter-
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face, leading to a significant increase in internal resistance (IR).
Under such circumstances, the capacity and usable power gra-
dually decrease, a phenomenon referred to as battery aging
[11,12], and battery aging occurs in two patterns: calendar and
cycle aging [13,14]. Calendar aging mainly relates to the una-
voidable capacity fade during the battery storage process, and it
has a strong sequential relationship with time. As demonstrated,
both the temperature and state of charge (SOC) directly affect
the calendar aging of the battery [15]. Cyclic aging is a battery
aging phenomenon that is affected by various parameters of the
battery’s usage cycle, such as the number of charges/discharge
cycles, usage pattern, charge and discharge rate, operating
environment, temperature and thermal stress. Since battery
aging is influenced by several factors, predicting battery health
and lifetime has become a popular and challenging research
topic [16,17].
In principle, the battery should be considered at the end of its

useful life when its capacity falls below 80% of the initial capacity
or its IR exceeds twice the initial resistance [18–20]. Battery
aging is a highly complex process, with numerous factors con-
tributing to the degradation of LIBs performance, including
physical factors such as mechanical stress and thermal stress due
to temperature changes, as well as chemical factors such as
electrochemical reactions during the charging and discharging
process. Various aging processes, changes in equipment condi-
tions, and dynamic operating environments lead to nonlinear
and uncertain performance degradation [21]. Therefore, accu-
rate estimation of battery health status and remaining useful life
(RUL) is critical for early detection of battery performance
issues, system maintenance, safe production, and secondary
recycling. To achieve this, appropriate and accurate battery
health metrics and prognostic methods are required [22].
Currently, the state of health (SOH), SOC, and RUL are the

three main indicators of battery status, which can be determined
by measuring internal IR, capacitance, power, and other aging
characterization factors. The ratio of the battery’s maximum
available capacity to its nominal capacity is a common quanti-
tative criterion used to determine SOH. SOC refers to the ratio
of the remaining capacity of the battery to its maximum avail-
able capacity. Accurate estimation of SOH and SOC ensures the
safety and reliability of battery systems, and provides the foun-
dation for energy safety management [3]. Furthermore, RUL is
defined as the time or number of cycles at which the device
performance first falls below a failure threshold [23,24].
Accurately predicting the RUL of a battery can be immensely

beneficial for battery recycling and cascade utilization. It can
help maximize the potential of the battery and extend its service
life before it requires replacement and disposal. As mentioned
earlier, parameters such as SOH, SOC, and RUL are indicators of
the battery’s aging state, which have been extensively measured
or calculated using various approaches [24–26]. Currently, the
SOC and SOH of a battery can be determined to some extent
using an advanced battery management system (BMS). How-
ever, the BMS has limitations in terms of estimation accuracy.
The battery’s static capacity, which is obtained through a max-
imum-capacity test, is a vital parameter for SOH and SOC cal-
culations, but it does not reflect the state under actual dynamic
conditions in real-time, which delays the battery’s health esti-
mation. Although other metrics, such as state of function (SOF),
state of energy (SOE), and state of power (SOP) [27], can be used
to evaluate battery performance, research on these metrics has

been relatively limited. Overall, accurate estimation of SOC,
SOH, and RUL indicators has been a challenging area of
research in recent years.
This paper provides a review of the fundamental mechanisms

and theories of LIBs and summarizes the commonly used
methods for estimating SOH, SOC, and RUL, with a particular
focus on various data-based approaches, followed by a per-
spective regarding their advantages and disadvantages. Our
objective is to provide theoretical knowledge on LIBs that can be
useful for both research and commercial technology develop-
ment. We hope that this review will facilitate the study and
advancement of LIBs health management and prognostication.
The review is structured as follows: we first present an over-

view of the paper and introduce the key definitions to establish a
foundation for subsequent sections. In the section of “AGING
MECHANISMS AND INFLUENCING FACTORS”, we discuss
the aging mechanisms and commonly studied factors based on
the charging/discharging principle and structure of LIBs, and
provide the basis for subsequent estimation of SOC, SOH, and
RUL. In the section of “TRADITIONAL TECHNOLOGIES FOR
SOC, SOH AND RUL ESTIMATION”, we review various tra-
ditional technologies for predicting a battery’s SOC, SOH and
RUL, and discuss their merits and drawbacks. In the section of
“MACHINE LEARNING METHODS FOR SOC, SOH AND
RUL ESTIMATION”, we provide an in-depth description of
data-based methods, with a particular focus on various machine
learning techniques, and offer a detailed explanation of algo-
rithms based on auto-regression, artificial intelligence (AI)
networks, support vector machines, etc.

AGING MECHANISM AND INFLUENCING
FACTORS
Battery aging is an inevitable process that leads to a reduction in
the capacity and power of batteries over time. This degradation
not only shortens the service life of the batteries but can also
pose a safety risk. Scientists have diligently investigated the
complex physical and chemical reactions within LIBs over the
last few decades, and various aging mechanisms within the
batteries have been identified thanks to the advent of more
accurate electrochemical analysis equipment. For example,
Wang et al. [28] investigated the reaction kinetics between LiOH
and I2 by combining calculations and machine learning tech-
nology, and further explored the influence of the degree of
disorder of LiOH and the solvents effects.
Taking the cubic Li-argyrodites as an example, Zhao et al. [29]

identified the conduction of Li+ by constructing a generic
technique of hierarchically encoding crystal structure (HECS).
Based on these observations, it has been demonstrated that the
aging mechanism actually varies greatly depending on many
factors, such as the type of battery and external factors [30,31].
Although electrode materials in batteries can vary greatly,
common patterns for battery degradation have been identified,
including loss of Li-ion inventory (LLI), loss of active materials
(LAM), and IR increase [32,33]. This section reviews battery
degradation on cathode and anode materials, outlines the aging
mechanisms and side reactions, and further analyzes the key
factors that contribute to performance degradation.

Aging mechanism

Battery degradation mechanism
Within a battery, electrochemical processes occur as the number
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of cycles increases, and they are often accompanied by a series of
irreversible side reactions (aging reactions) [14,34]. As shown in
Fig. 1, battery charging/discharging cycles are realized by
embedding and detaching lithium ions between the positive and
negative electrodes. During the charging process, the external
circuit current flows from the negative electrode to the positive
one; within the battery, the negative electrode receives electrons
(reduction) while the positive electrode releases them (oxida-
tion), simultaneously. Lithium ions separate from the positive
electrode, pass through the polymer diaphragm layer, enter the
electrolyte, and finally embed in the negative electrode. Battery
discharge is a reverse process, and a series of factors during
repeated charging/discharging process will lead to the battery
aging, such as the formation of solid electrolyte on the electrode
and electrolyte surface, the deposition and depletion of lithium
ions, the dissolution of the active material and electrolyte, the
destruction of the electrode structure, and the phase change of
the electrode material [35].
Essentially, battery degradation is influenced by the basic

components (electrodes, electrolyte and membranes) and major
electrochemical reactions [36]. As shown in Fig. 2, the battery’s
capacity is primarily determined by the quantities of active
material and available lithium ions. Among various battery
degradation modes, the LLI is mainly caused by processes such
as the formation and decomposition of the solid electrolyte
interface (SEI) film, the formation of lithium plating layer
material, electrolyte decomposition, and other related processes
that lead to a reduction in available lithium-ions. Additionally,
low temperatures, fast charging, and overcharging can also
contribute to electrolyte decomposition and lithium ions pre-
cipitation [37]. LAM is caused primarily by joint agent decom-
position, collector corrosion, loss of electrical contact, and
cracking of electrode particles due to peeling of the graphite
layer [38]. In the literature, LAM aging mechanism is subdivided

into the loss of lithiated/delithated cathode and anode materials
[30,39]. Battery degradation modes also include an increase of
IR and loss of electrolyte. Significant electrolyte loss primarily
affects the concentration of active material, additives and lithium
ions in the electrolyte, resulting in the LAM and a reduced
battery capacity.

Aging mechanism of anode materials
Currently, graphite anode is the dominating one. However,
lithium ions are theoretically unstable on the graphite surface
because the working voltage of the graphite anode falls outside
the voltage stablization window of the electrolytes. Specifically,
the working voltage of the graphite anode is around 0.05 V,
whereas the conventional liquid organic electrolyte is electro-
chemically stable within a range of approximately 1–4.5 V [40].
As a result, particularly during the first cycle of the initial
charging process, the formation of a passivation protective layer
known as SEI occurs easily, which is mainly made up of elec-
trolyte decomposition products generated on the graphite elec-
trode, resulting in the partial loss of battery capacity [41]. The
formation of SEI is heavily influenced by the specific composi-
tion and structure of the carbon electrodes, which includes
factors such as particle size, pore size, crystallinity, chemical
impurities, and the ratio of basal to edge planes. During the
observation of electrode structures during the discharge process,
Barré et al. [35] demonstrated that the morphology of the
positive electrode did not change significantly in batteries with
different levels of utilization, which indirectly confirms the
central role that the negative electrode plays in battery aging.
Specifically, the impact of SEI on batteries is mainly due to the
volume changes associated with lithium-ion intercalation and
delamination processes in graphite electrodes, which result in a
depletion of lithium-ion stock and an increase in IR, ultimately
leading to a decrease in capacity density. The continuous growth

Figure 1 Framework about the charging process of LIB.
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of SEI has been identified as the primary cause of LIBs aging
[13,42]. Interestingly, when in good condition, SEI can also play
a positive role by providing good insulation, excellent lithium
ions conductivity, and lower electron conductivity. These
properties can promote ion insertion, reduce stress during the
electrochemical reaction, and adapt to changes in anode volume
[43,44].
Besides graphite electrodes, spinel lithium titanium oxide

(LTO) and silicon-based anodes are also commonly used. LTO is
a zero-strain material that does not undergo any volume changes
during the intercalation and deintercalation of lithium ions.
Furthermore, LTO has a longer lifespan because its potential
remains within the stable range of the electrolyte, preventing the
generation of SEI film. Additionally, the relatively high voltage
also prevents the reduction of lithium ions and the dissolution of
metal materials [45,46]. Compared with LTO, silicon-based
anode operates outside the electrolyte-stabilized voltage window.
Consequently, SEI film readily forms, which can even cause
electrode cracking due to the severe volume expansion. Despite
this drawback, the silicon-based anode has been rapidly devel-
oped due to its low cost and high specific capacity. In practice,
pure silicon is generally not utilized as an anode material due to
conductivity and power concerns. Instead, a carbon/silicon
compound is commonly employed to enhance capacity utiliza-
tion and prolong battery life [47].

Aging mechanism of cathode materials
The primary degradation mode differs for various cathode
materials. The formation of solid electrolytes on the electrode
surface, electrolyte decomposition, and lithium plating con-
tribute to the depletion of the lithium-ion inventory during
cycles. Furthermore, changes in the volume of the active mate-
rial, decomposition and dissolution of chemical substances, can
lead to degradation of the electrode structure and the formation
of a parasitic phase, which in turn can increase the IR of the
battery and reduce its performance. During the discharge pro-
cess, lithium ions diffuse more rapidly in the electrolyte than
cathode particles due to their smaller size. This enables them to
more easily reach the negative electrode and be adsorbed onto its
surface or inserted into the cathode material. For instance, the
commonly used LMO spinel cathode material may experience a
Jahn–Teller distortion due to the insertion of extra lithium ions.
This can cause the material to transform from cubic to tetra-

gonal phase, resulting in a volume change [48,49]. Moreover,
because of the highly reactive nature of lithium ions, they are
susceptible to reacting with the cathode material particles,
forming insoluble compounds that can increase the IR of the
battery [50]. Furthermore, cathode materials may dissolve into
the electrolyte, which is often accompanied by the migration of
the dissolution substance and the precipitation reaction on the
anode, accelerating SEI formation [14].

Factors affecting battery performance
Under the operation condition, battery performance can be
affected by various factors, including the temperature, over-
charge/over-discharge, mechanical stress, and charge/discharge
rate. Temperature is one of the most important factors affecting
battery life because it directly affects the severity of internal side
reactions. It is worth noting that battery temperature can be
affected by various factors such as operating temperature,
heating and cooling systems, battery heat capacity, thermal
conductivity, and battery heat generation. Typically, battery
aging increases when the temperature drops below 25°C due to
the rapid plating of lithium ions on battery anodes, leading to
irreversible lithium ion depletion and hindered insertion [51].
When the temperature is too low, the transfer of lithium ions
slows down significantly, resulting in severe blockage during the
transfer process, ultimately leading to localized lithium transi-
tion and dendrite formation [52]. However, if the temperature
exceeds 25°C, it can also accelerate battery aging [53]. High
temperatures can accelerate the formation of SEI and rapidly
increase the IR of the battery. Additionally, elevated tempera-
tures can lead to the breakdown of the electrolyte and the dis-
solution of metal ions in the cathode, which can significantly
accelerate LLI and LAM.
Over-charging/over-discharging generates much Joule heat,

which can trigger the decomposition of electrolyte substances
and lead to a cascade of side reactions, even cause the separator
to rupture [54,55]. Under such circumstances, the electrode may
dissolve or deteriorate, leading to short circuit [5,56]. When gas
products are generated or significant volume expansion hap-
pens, the internal pressure is too high, directly bringing battery
rupture, cracking, and chemical leakage, posing a safety hazard
[57]. Mechanical stress is an essential parameter to reflect the
battery performance under such complicated condition, crack-
ing by external pressures (e.g., manufacturing pressure and the

Figure 2 Influencing factors and degradation mechanism of battery aging.
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working load) and internal pressure (e.g., electrode material
expansion and gas generated within the battery), showing a
guideline to analyze potential cracking and dangerous accidents
[58].
Other factors such as charge/discharge rate, operating condi-

tions, and charge/discharge current can also significantly impact
battery performance. The capacity of LIBs tends to decrease as
the charge/discharge rate increases. Excessive charge/discharge
rates can accelerate the degradation of electrolyte substances,
raise the internal temperature of the battery, and hasten the
lithium-ion plating process, leading to a shorter lifespan of the
battery. Yuan et al. [58] explored the boundary conditions of
charging/discharging rate of LiFePO4 batteries and demon-
strated experimentally that a maximum rate of 5 C (fully dis-
charging within 0.2 h) can be achieved with the maximum
voltage of 3.7 V.
In conclusion, various aging factors affect the battery perfor-

mance and lifetime primarily by creating multiple internal
degradation mechanisms. The LLI is primarily due to solid
electrolyte generation and decomposition, metal electrode dis-
solution, lithium plating, and dendrite formation within the
battery. Increases in IR are primarily caused by the generation
and decomposition of SEI, electrode dissolution, and current
collector corrosion. LAM manifests in various ways such as loss
of electrical contact, electrode dissolution, and electrode particle
cracking. These three primary degradation modes work in
conjunction and are affected by several factors, resulting in
nonlinear battery degradation that is challenging to predict.

TRADITIONAL TECHNOLOGIES FOR SOC, SOH
AND RUL ESTIMATION
The evaluation of battery status involves the estimation of the
performance degradation, range, and estimation of RUL using

historical cycling as data source under various mathematical
models. Accurate battery status estimation can provide end-
users with a clear evaluation of the maximum remaining range,
which can offer reliable advice for safe battery operation.
Accurate battery status estimation can benefit battery producers
by expediting the design of high-performance batteries that offer
improved recycling utilization, lower operating costs, and
increased safety and reliability. Under this context, the estima-
tion of battery states has been an active area of research, with
SOC, SOH, and RUL serving as the main indicators. We have
summarized the prevailing estimation methods and discussed
their strengths and limitations, with the goal of providing useful
insights for future research on batteries.

SOC estimation
In definition, SOC is the ratio of the battery energy remaining
currently to the fully charged energy, indicating how long the
battery will last before a recharge is required [59]. The battery
SOC is similar to the fuel gauge which is installed on a gasoline
vehicle to determine the left fuel in the tank. However, directly
measuring SOC can be challenging due to the nonlinear
degradation of batteries. It is necessary to rely on other para-
meters (e.g., current, terminal voltage, and temperature) to
estimate the battery SOC. Generally, SOC estimation methods
can be classified into four categories: ampere-time integration,
characterization parameters, model-based indicators, and data-
driven analysis, as illustrated in Fig. 3.

Ampere-hour integral method
The ampere-hour (AH) integral method, also known as the
coulomb counting method, is the major method used to calcu-
late SOC. This method estimates SOC by utilizing the defining
equation: ratio of the current remaining battery capacity to the

Figure 3 Methods of predicting the battery SOC.
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maximum available capacity [60,61]:
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where SOC(t) is the predicted SOC at moment t, SOC(t0) is the
initial value, ηi is the coulomb efficiency for charging/dischar-
ging, i(τ) is the current at moment τ, and Cmax is currently
available maximum capacity.
The AH integral method provides excellent accuracy if the

initial SOC is sufficiently accurate [62]. While its limitation is
also obvious that the evaluation relies on the use of the static
maximum capacity Cmax, which is strongly affected by battery
performance degradation over time. Furthermore, obtaining an
accurate initial value SOC(t0) is particularly challenging, as these
parameters are highly sensitive to external environmental fac-
tors, such as temperature and noise. Importantly, these uncer-
tainties have a cumulative effect on the estimation error,
impairing the estimation reliability. Therefore, the AH integral
method is unsuitable for online applications.

Parameter-based characterization methods
Different from AH integration, the parameter-based character-
ization technique aims to identify the most stable and easily
observable parameters, based on which a mapping relationship
between SOC and observed quantity has been explored [63]. The
key question is which parameters can be utilized to achieve this
goal. So far, characterization parameters, including the current
residual capacity [64], open-circuit voltage (OCV), electro-
chemical impedance spectroscopy (EIS), and IR (polarized IR
and Ohmic resistance) [65,66], have been investigated. In
practical applications, the OCV-SOC relationship, which is
relatively stable, has been widely employed to calibrate the
battery’s SOC with reasonable accuracy. The SOC is related to
the static thermodynamics inside the battery and the quantity of
lithium ions intercalated in the active material, and each battery
system thus has its own unique OCV curve. At the same tem-
perature, the curve has a fixed relationship with the battery’s
SOC, which does not fluctuate considerably with the external
environment or changes in operating conditions [18,67–70].
Severson et al. [71] took the capacity as a function of voltage and
achieved an error of 4.9% in estimating battery capacity using
only the first five cycles of voltage data. This success highlights
the potential for accurately estimating the battery’s SOC using
the OCV, which can significantly improve predictability and
accuracy in battery performance. For this method, the primary
challenge lies in the OCV measurement, which exhibits hyster-
esis and requires a sufficient rest time to accurately assess the
SOC. Thus it is not commonly utilized in studies examining the
electrochemical performance of batteries [72,73]. EIS is a com-
monly used technique for investigating the internal chemistry of
batteries. It assesses the SOC by detecting changes in resistance
and capacitance at different frequencies of alternating current
(AC) signals [74–76].
Although parameter-based characterization methods are

widely used, the constant-current discharge mode used to
determine the parameters in experiments is not practical for
real-world applications. Additionally, an accurate mapping
relationship between the SOC and characterization parameters
must be obtained using checking tables and other methods,
which lacks real-time feasibility and cannot effectively dis-

criminate battery performance during operation.

Model-based approach
To avoid large lab-based measurement requested by parameter-
based methods, a model-based approach has been proposed,
focusing on the exploration of appropriate state estimation
algorithms [77]. In the literature, three battery models have been
proposed: the electrochemical model (EM), the equivalent-cir-
cuit model (ECM), and the black-box model (i.e., an empirical
model) [78]. Based on these models, a series of mathematical
equations, including partial differential or algebraic equations,
have been utilized to predict the SOC. For instance, the EM
describes the diffusion and migration of lithium ions, electro-
chemical reactions, charge conservation, Ohm’s law, and other
properties of the battery. Such model has been applied to depict
the microscopic physicochemical reactions that occur within the
battery based on clear physical meaning. Among various models,
the pseudo-two-dimensional (P2D) model based on porous
electrodes and concentrated solution theory, developed by Doyle
et al. [79] in the 1990s, is the most widely used one. The P2D
model utilizes the solid phase, liquid phase, and three regions
(i.e., the positive electrode, negative electrode, and diaphragm)
to describe battery characteristics, and it is based on several
assumptions: (i) the solid phase is comprised of equal-sized
spherical particles; (ii) the density and potential of the solution
only move along the horizontal axis (i.e., diffusion and migra-
tion only occur in the X-direction); (iii) the electrochemical
properties of the positive electrode, negative electrode, and
solid–liquid phase interfaces can be well analyzed using a range
of mathematical equations.
While the P2D model excels in simulating battery structures, it

poses challenges due to the presence of numerous differential
equations, demanding extensive computational resources and
presenting a high level of complexity. Here, the ECM, which
does not delve into the microscopic reaction mechanisms of
batteries, boasts a relatively straightforward structure and stands
out as another widely employed model-based approach. ECM
utilizes the electrical behavior generated by circuit components
to simulate external features such as the IR, voltage, and capacity
of the battery. The ECM is highly versatile and applicable to
various operating conditions, with significantly fewer state
equations than other models. This makes it easier to analyze and
solve, and it has been widely utilized in the modeling of EVs.
Common ECMs include the Rint model, Thevenin model,
Partnership for a New Generation of Vehicles model (PNGV),
dual-polarization model, second-order RC model, and third-
order RC model, among others, as illustrated in Fig. 4.
The Rint model is widely used for its simplicity and effec-

tiveness. It includes an ideal voltage source and a constant IR.
The terminal voltage and resistance of the model are obtained by
measuring the OCV and load when the battery is fully charged.
However, the Rint model exhibits an obvious voltage response to
changes in load, and it does not account for variations in IR. As
a result, it is limited in real application scenarios. To address this
issue, Thevenin model has been proposed with better con-
sideration of the dynamic behavior. It predicts the instantaneous
voltage response to current load changes by adding more RC
networks. However, the Thevenin model assumes that all elec-
trical units are constant, which is incompatible with the real-
world scenario throughout the battery cycle. Thus, it cannot
simulate the battery running time or capacity decline associated
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with thermal and degradation effects [11,80,81]. Moreover, more
advanced models have been developed to achieve better per-
formance, such as combining electric models that account for
battery degradation and thermal effects, and run-time electrical
models based on runtime. Hu et al. [82] experimentally con-
firmed that a first-order RC model with one-state hysteresis has
higher estimation accuracy for LiFePO4 batteries by fitting
parameters to different ECMs. Additionally, a fractional order
model has been established through the research on AC impe-
dance and the ECM [83]. Yang et al. [84] proposed a simplified
fractional-order impedance model and utilized a genetic algo-
rithm to identify its parameters, achieving a maximum battery
voltage tracking error of only 0.5%.
The black-box model, also known as the empirical model,

collects common characteristics extracted from historical data
and utilizes various regression models to fit these data. Such
parameterized model is often used to study complex systems
with many uncertain relationships, such as the battery’s non-
linear degradation. The process of parameterization is typically
complicated and heavily relies on the quality of training samples
and the machine learning algorithm utilized. Furthermore, the
empirical model solely focuses on the input and output data. It
lacks interpretability regarding electrochemical mechanisms.
Model-based methods for SOC estimation begin with an

initial SOC value and can generate two sets of OCV profiles: an
experimental value obtained through the AH integral method
and an actual value determined through model measurement.
The calculated values are then continuously adjusted by gain
calibration to minimize the error between the two OCV values.
This process is repeated until the desired SOC estimation value
is achieved clearly; the overall performance relies on the basic
model and the following gain correction. So far, gain correction
is commonly performed based on state estimation algorithms,
such as Gaussian process (GP)-based filter and probability-based
filter. For the former, several filter schemes have been proposed,
including Kalman filter (KF) [85,86], unscented KF (UKF) [87],
extended KF (EKF) [88–90], linear KF, adaptive extended KF

(AEKF) [91], and H∞ filter. Among which KF algorithm has
been widely applied to linear battery models for SOH estimation.
It is a two-step recursive process that involves forecasting the
system state and output, while also constantly changing the state
of the system in response to the output error [92–94]. Shrivas-
tava et al. [95] combined a battery model with KF algorithm to
predict SOC, and furthermore, considering nonlinear char-
acteristics, advanced filtering methods such as EKF, AEKF, UKF,
and square-root traceless KF methods were employed to address
the effect of battery noise on SOC estimation, leading to sig-
nificant improvements in the accuracy and robustness of the
state estimation. The EKF is a suboptimal filter that linearizes
the nonlinear system before KF. It uses partial derivatives to
expand the nonlinearity function, but its linearization procedure
frequently introduces truncation errors that can impair the
accuracy of SOC estimation [96].
Different from KF filters, probability-based filters, such as

particle filter (PF) [97,98], unscented PF (UPF), and cubature PF
(CPF), are proposed based on the empirical distribution of the
system space state vector. The PF fitting technique generates a
set of discrete sampling points in the state space and adjusts their
position and particle state based on observed values, and the
optimal particle state can be obtained by continually modifying
the particle set. Wang et al. [99] and Liu et al. [100] demon-
strated that the PF method outperforms EKF and UKF in terms
of the accuracy of SOC estimation. The UPF method improves
the particle sampling process of PF by utilizing a posterior
density function to compute the mean and variance of particles.
This approach provides more estimation information and fur-
ther enhances the accuracy of SOC estimation [101,102].

SOH estimation
SOH is an important metric for batteries that are in use and have
begun to degrade. It provides a quantitative assessment of the
changes in a battery’s charge/discharge capacity and storage
capacity over time. Essentially, SOH drops as batteries age and
experience performance loss, and it cannot be accurately

Figure 4 ECM models: (a) Rint model, (b) PNGV model, (c) Thevenin model, and (d) N-order RC model.
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determined prior to the battery entering service. Therefore,
monitoring SOH is crucial for predicting battery life and iden-
tifying when it may be time to replace a battery. Performance
parameters that undergo significant changes with cycling and
aging, such as the number of cycles, IR and capacity, can be used
as crucial indicators for calculating SOH, and the classification
criteria for estimating SOH vary across different literature
[24,103,104]. This section provides an overview of the most
common methods for estimating SOH, which include experi-
mental analysis and model-based approaches [105,106].
Experimental analysis methods involve collecting data on a
battery’s voltage, current, and temperature under controlled
laboratory conditions to analyze its aging behavior. This
approach is commonly used to investigate the underlying aging
mechanism and provide theoretical support for predicting bat-
tery SOH. Specifically, the experimental analysis method can be
further classified into direct measurements and indirect analysis,
as summarized in Fig. 5. Their advantages and limitations are
also discussed in Table 1.

Direct measurement
The direct measurement methods for SOH can be categorized
based on various characteristic parameters, including capacity/
energy profiles, AH counting, Ohmic resistance tests, impe-
dance-EIS spectra, cycle number counting, and destructive
methods. Of these parameters, the capacity/energy test is the
most fundamental and direct approach for evaluating SOH.

Specifically, the capacity of a battery reflects the energy it can
store when fully charged, and if the capacity is determined, the
SOH of the battery can be ascertained [39,105]. Currently, bat-
tery capacity can be accurately and directly measured in a
laboratory setting using online capacity identification devices
such as BMS. However, the accuracy of capacity estimation
depends heavily on the stability of the charge/discharge envir-
onment and cycle integrity, which can make real-time online
measurements of operating batteries challenging. Apart from
direct energy measurement, SOH can be evaluated using the AH
counting method by

Q
QSOH = × 100%, (2)max

n

where Qn and Qmax are the nominal capacity and the maximum
available capacity in its current state. The precision of the AH
counting method depends on the accuracy of the residual
capacity measurement, which is inextricably linked to the use of
high-precision current sensors. Ng et al. [107] utilized an
enhanced Coulomb counting method to estimate the battery
SOC and SOH under fully charged/discharged conditions. They
achieved estimation error of 1%, which demonstrated the con-
venience and validity of this method in simulation experiments.
However, meeting the instrumentation requirements of the AH
counting method can be challenging in practical applications,
and monitoring battery current over extended periods can be
costly. Furthermore, the fully charged/discharged state occurs

Figure 5 Brief introduction and classification of SOH estimation methods.
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infrequently during EVs operation. As a result, this method is
often used in laboratory settings to measure the change in
residual capacity under a slight constant current charge/dis-
charge and to verify the accuracy of other measurement methods
[105].
The Ohmic resistance measurement method is used to directly

estimate and evaluate battery SOH by measuring its IR
[108,109]. In practice, IR has been split as Ohmic resistance and
polarized IR. The former is simple and primarily determined by
battery components, but its measurement accuracy is heavily
affected by voltage and current fluctuations. The calculation
formula is

R = , (3)U

i

where R represents Rp or Rc, U is the pulse voltage variation of
the battery and i is the pulse current variation. For practical
operations, measurement can also be affected by the tempera-
ture, battery aging, and sampling interval. Therefore, a smaller
interval for voltage and current sampling is often necessary to
obtain a more accurate record of Ohmic resistance. Waag et al.
[110] extensively investigated the nonlinearity of battery resis-
tance, demonstrating that it varies slightly with SOC and varies
with the temperature and battery life.
EIS is a widely researched method for determining the SOH of

batteries. It measures the impedance of a battery at different
frequencies, which exhibits primarily Ohmic characteristics at
higher frequencies and capacitive traits at lower frequencies
[104]. Electrochemical workstations and other AC excitation
devices with similar functions are used to measure battery
impedance at different frequencies. The obtained impedance
spectra are then compared with EIS to determine the status of
the battery [111–113]. Galeotti et al. [115] established a rela-
tionship between the Ohmic resistance and available capacity to
calculate the SOH of the battery, showing a maximum evalua-
tion error of 3.73%. Xia and Abu Qahouq [37] conducted

research on predicting SOH by analyzing the relationship
between AC impedance and capacity decline, demonstrating the
relationship between the zero-crossing frequency and aging
state. Following this result, the SOH was further assessed by
incorporating the zero-crossing frequency as an input parameter
in the neural network (NN) algorithm. Moreover, by incorpor-
ating auxiliary tools and carefully configuring the equipment
parameters, any effects on the Ohmic resistance of EV devices
during constant current charging/discharging can be minimized
[116,117]. However, EIS has certain limitations that must be
considered. For instance, significant performance fluctuations
and poor generality between different battery types have been
observed. In addition, EIS testing can be time-consuming and
requires a stable testing environment, which may not always be
available in practical applications.
Counting battery cycle number is the simplest and most direct

way to evaluate the battery state. By using a BMS or other
devices with counting capabilities to visualize the battery’s cycle
number, the health status of the battery can be measured by
comparing the measured value with the total cycle number
calibrated by the manufacturer. It is important to note that the
cycle number is measured based on the assumption that the
battery is deeply and completely discharged. For an incompletely
discharged battery, it is necessary to measure the conversion
coefficients under experimental conditions first and then con-
vert them to fully charged/discharged cycles before calculating
the SOH [105]. The destructive method is an additional
approach to measuring the conventional electrical properties of
batteries. It is a conventional approach used to predict the SOH
of the battery, which can provide precise information about the
battery’s internal degradation [118]. The limitation is that such
operation may harm the performance, resulting in irreversible
damage. The commonly used destructive methods include
atomic force microscopy (AFM), Raman spectroscopy (RS)
[119], auger electron spectroscopy (AES), scanning electron
microscopy (SEM), X-ray diffraction analysis (XRD) [40], and

Table 1 Summary of SOH estimation methods

Category Methods Advantages Disadvantages

Direct measure

Capacity/energy Simple and easy to implement Limited accuracy; susceptible to
the environments and equipment

AH counting High precision Depending on device accuracy; hard to
operate online

Ohmic resistance impedance Good real-time performance; easy
to implement and study the aging mechanism

Susceptible to the environments and
equipment

Cycle number counting Easy operating; simplest and most
straightforward Not suitable for practical application

Destructive approaches Good for theory tests; easy to study
the aging mechanism

Not suitable for practical application;
may destroy the battery

Indirect analysis
IC/DV analysis Interpretable; high accuracy Difficult to operate in real time

DTV/DMP Applicable to theoretical study Difficult to operate in real time

Adaptive algorithm Joint estimation
High accuracy and robustness; easy
operating online; combinable with

other methods

Strongly depending on the accuracy
of the models

Data-driven Sample entropy, optimization
algorithm, etc.

High accuracy; no complex
model required

A large amount of calculations;
poor interpretability; hard to adjust

parameters
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cyclic voltammetry [106,120].

Indirect analysis method
In contrast to direct measurement, parameters can be indirectly
obtained to determine SOH. Specifically, health indictors (HIs)
that can reflect the change in batter capacity or IR, instead of
directly measuring these parameters, are also effective approa-
ches to calibrate the SOH. The HIs that are frequently men-
tioned include incremental capacity (IC), differential voltage
(DV), voltage response trajectory, SEI membrane impedance
variation, and constant-voltage charge/discharge time [75]. IC/
DV analysis is a widely used technique in indirect analysis,
employing IC and DV curves to examine battery degradation
and aging mechanisms. It is well known that IC curve represents
the relationship between the derivative of the capacity with

respect to the terminal voltage and voltage change ( )Q
V Vd

d .

Conversely, the DV curve as the reciprocal of the IC curve,
giving the relationship between the derivative of the voltage with

respect to capacity and the capacity variation ( V
Q Qd

d ) [32].

IC and DV curves have distinct characteristic peaks, each with
unique features, locations, and shapes that are determined by the
electrochemical reactions occurring inside the battery [12,121].
For instance, the peaks observed in IC and DV curves corre-
spond to electrochemical phase equilibrium and phase transi-
tion, respectively. By analyzing the shapes and positions of these
characteristic peaks, microscopic chemical reactions and aging
mechanisms can be investigated. Subsequently, a relationship
between capacity and these characteristic values can be con-
structed [122]. It is worth mentioning that the position and
height of the characteristic peaks in IC/DV curves may vary
depending on the battery’s status and the starting time of the
charge cycle [30]. Unlike the DV curve that represents the
relationship with capacity, which decreases continuously with
battery aging, the IC curve indicates the relationship with vol-
tage, is less susceptible to polarization, and has a more stable
peak position, resulting in direct and reliable measurement
results. Weng et al. [123] calculated the battery SOH based on IC
curves and experimentally demonstrated that its peak height
decreases as the battery capacity reduced. In the laboratory,
charge/discharge experiments with lower multipliers (e.g., C/20,
C/3) are performed to measure peak variation, because a higher
multiplier generates large impedance that offsets the peak var-
iation and leads to errors. IC/DV analysis requires only the
measurement of battery capacity and voltage changes, which can
be done easily and conveniently using well-established BMS.
However, the differential process makes the curve highly sensi-
tive to external factors such as temperature, noise, and battery
performance, and thus data noise must be reduced or eliminated
before analysis using various filtering algorithms, such as
Gaussian filtering and particle filtering [124].
Differential thermal voltammetry (DTV) analysis and differ-

ential mechanical parameter (DMP) analysis are two other
commonly used methods for calculating the SOH of batteries,
which are often utilized as complementary tools to IC/DV
analysis. DTV analysis combines IC measurement and tem-
perature monitoring to obtain thermodynamic information such
as the temperature variation with time (dT/dt) and entropy.
Recorded spectrograms are then used to detect the changes in

characteristics such as the peak position and amplitude, pro-
viding an indirect reflection of battery status. Maher and Yazami
[40] validated that the peak and height of entropy variation in
the spectrum are comparable to the IC/DV, confirming that the
SOH can be measured through DTV. Merla et al. [125] con-
ducted an investigation on the DTV spectrum and discovered
that the height and location of the spectral peak are related to the
impedance, which varies with the battery ages. It is noted that
the entropy/enthalpy change curves do not align completely with
the battery discharge and open circuit potential (OCP) curves.
Using thermodynamic techniques, Maher and Yazami [40] cal-
culated the capacity loss and discharging potential of batteries
under constant-current charging and C/2 discharge cycles. Their
experiments showed that with an increase in the number of
cycles, the changes in the entropy and enthalpy curves were
more significant compared with the discharge or OCP curve.
The DMP method focuses on mechanical properties, as the

volume change of the battery is believed to be connected to the
development of an SEI film throughout the battery cycle. Load
sensors have been utilized to measure mechanical stress (stress-
strain) variations in the battery, and experimental results have
demonstrated that the stress produced during battery charging/
discharging is positively correlated with the battery SOH [44]. In
an experiment, the SOH can be measured by utilizing the rela-
tionships between strain/stress and capacity/voltage. However,
the DMP approach is only suitable for battery systems that can
expand freely and is challenging to apply to battery packs with
limited space. After measuring the stress at the end plates of a
battery pack, Samad et al. [64] developed a force-based IC curve

to estimate the battery capacity ( )Q
F

d
d . They found that the

capacity decay is linearly correlated to the peak voltage. The
proposed ICF method showed a capacity estimation accuracy of
0.42% during low-C-rate constant-current discharge.

Adaptive algorithm
The adaptive algorithm continuously updates the model para-
meters based on a battery model to accurately estimate the SOH,
and the specific models, such as EM and ECM, have been
described in the previous section [126]. The adaptive algorithm
is characterized by the simultaneous implementation of model
parameters, online updating, and SOC estimation. It can be
divided into three types: joint estimation, collaborative estima-
tion, and fusion method. After obtaining the SOC, the SOH is
calibrated accordingly, and the model parameters are con-
tinuously optimized using feedback from new measurements
until the desired level of predicted error is achieved. There are
various approaches for updating the parameters in adaptive
algorithms, such as the KF, PF [127], and least-squares algo-
rithms. These methods contribute to the continuous improve-
ment and refinement of the model’s accuracy.
The joint estimation method commonly employs multiple

filters to measure the model parameters and estimate the bat-
tery’s SOC. The model parameters consist of the IR, current,
voltage, capacity, OCV, and other related parameters mentioned
earlier. Yu et al. [128] employed a joint estimation method that
utilized two filters, namely the H-infinity filter and UKF, to
estimate the battery’s SOC online. The experiments revealed that
the joint estimation method has superior accuracy, robustness,
and adaptability in estimating the battery SOC compared with
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measurements taken for fixed parameters under different tem-
peratures and loading. Wei et al. [129] introduced a dual-esti-
mation method that integrates the KF-based SOC estimator and
a novel recursive least squares (RLS)-based capacity estimator.
Their experimental results indicate that the proposed model
parameters, SOC, and capacity can be computed in real-time
with rapid convergence and high accuracy. Moreover, in prac-
tical applications, the joint estimation method outperforms
other existing approaches in terms of computational cost.
The collaborative estimation method shares similarities with

the joint-estimation method, as both involve simultaneous
online prognosis of model parameters and SOC. However, the
former also includes an assessment of battery capacity. The
primary difference between these two approaches lies in the
fundamental frameworks of the algorithms utilized. This man-
ifests in two ways: (1) the relationship between the parameter
and state estimation and (2) the model used to obtain the
terminal voltage error (i.e., the new information for updating).
In the joint estimation method, the voltage errors in the two
estimators are independent, which implies that there is no sig-
nificant interaction or correlation between the predicted results
for the parameter and state. In contrast, the collaborative esti-
mation method utilizes a single voltage error for both estimators,
indicating an apparent interaction between the state and para-
meter prognosis.

RUL prediction
The RUL is a crucial battery parameter that is determined by
comparing the performance and state of an old battery with that
of a new battery of the same type [11,130]. The RUL is deter-
mined by calculating the remaining time and number of cycles
until the battery’s performance falls below the failure threshold,
which requires full consideration of the battery status, historical
cycle data, failure mechanisms, capacity decline trajectory, and
other battery properties [75]. For instance, RUL defined in terms
of cycles can be expressed as

m nRUL = , (4)
where m is the overall cycles at the battery’s end of life (EOL),
and n is the current cycle number [24]. So far, research on RUL
prediction for batteries has employed two main approaches:
mechanism analysis and data-driven methods [131]. The former
is based on the physical principles and concepts underlying
battery chemical reactions, which require precise modeling and
parameter settings. However, it is not well-suited for real-time
operations due to the extensive number of intricate mathema-
tical computations that it involves. Currently, data-driven
methods are the most promising approach for estimating battery
RUL, as illustrated in Fig. 6, which can be categorized into three
types: empirical, filtering, and time-series methods. The
empirical method is founded on the concept of data fitting,
where the RUL prediction is accomplished by fitting a mathe-
matical model to aging data that describe the aging behavior of
the battery. However, identifying an appropriate mathematical
model requires multiple attempts to ensure the model is well-
fitted, accurate, and robust. Commonly used empirical models
include polynomial, single-exponential, double-exponential,
Verhulst, and others. Additionally, methods for predicting RUL
can also be classified into AI, filtering, and stochastic processes
[132]. This section provides a detailed explanation of various
approaches used for forecasting the battery RUL.

AI/time-series prediction
This approach views battery RUL as a time-based problem,
analyzing historical data generation patterns in time series and
using diverse models to forecast battery degradation trends.
Time-series modeling can be categorized into two types: tradi-
tional modeling, which focuses on univariate time prediction,
and machine learning methods, which tackle multivariate time
prediction. Traditional univariate forecasting models include
moving average (MA), autoregressive moving average (ARMA),
and autoregressive (AR) models. In contrast, the support vector
machine (SVM), relevance vector machine (RVM), and random

Figure 6 Data-driven approaches for estimating the RUL.
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forest (RF) methods, etc., are common time-series forecasting
methods based on machine learning models [133]. Without
requiring a physical model, battery RUL can be estimated by
fitting a variable model from monitoring data and then extra-
polating the variables to a failure threshold, as outlined in Fig. 7.

Filter prediction method
Filtering methodology is mainly derived from Bayesian filtering
and Monte Carlo simulation, both of which are based on the
concept of state estimation [134]. Monte Carlo simulation cal-
culates the posterior probability density by generating a large set
of random particles and accumulating their correlation weights.
The filtering algorithm uses real-time data to continuously
update the battery parameters and then improves fitting quality
using the empirical prediction method. The algorithm is not
limited to a single state space, which provides reasonable
probability estimates for Gaussian, non-Gaussian, and nonlinear
systems. Commonly used filtering techniques include KF, EKF
[135], PF [136], and UPF, as introduced in section of “SOC
estimation”. It has been shown that full consideration of oper-
ating conditions is efficient to predict the battery RUL by
combining various filtering methods with existing diagnostic
techniques, such as Bayesian, naive Bayesian, and sparse Baye-
sian techniques, [137,138]. Xing et al. [97] adopted an integrated
model and utilized the PF algorithm to adjust model parameters
and predict the remaining capacity of batteries. Their study
demonstrated that the proposed method outperformed both
exponential and polynomial models, showing better regression
characteristics, robustness, and effectiveness, as well as smaller
errors and standard deviations. Additionally, Yang et al. [139]
proposed a model-based Bayesian approach for predicting the
RUL. They utilized a logarithmic model to capture the trend of
Li(NiMnCo)O2 battery degradation and demonstrated that the
addition of filtering improves the accuracy of the predictions,

surpassing that of existing double-exponential models.

Stochastic process
The stochastic process considers the temporal dependence of the
battery cycling mechanism, which can be determined by giving
the probability distribution of each finite subset for the variable
f(xi) consistently. In contrast with AI, the stochastic process
represents the uncertainty of prediction results but requires
many complex mathematical calculations, and it generally
includes a GP [140–142] and Wiener process (WP) [143]. The
former is defined as the collection of a finite number of random
variables: { }( )f x x x|i i indexed by a set x, where x is the
number of charge/discharge cycles and f(x) is the mean or
covariance function of x [144–146]. GP calculation has the
advantages of flexibility, probability, and non-parameterization,
and it incorporates prior knowledge of the data within a Baye-
sian framework to predict the system. Liu et al. [147] employed
GP regression (GPR) and utilized the mean and variance to
depict the level of uncertainty in assessing the SOH. The
experimental findings suggest that the proposed approach has
the ability to make precise estimation for LIBs. Furthermore, the
performance of GP has been evaluated against other machine
learning algorithms like SVM, RVM, and NN using simulation
and experimental datasets. The results demonstrate that GP
excels in quantifying the estimation uncertainty and evaluating
nonlinear battery systems [144].
The WP is a continuous time stochastic process. Adopting the

WP, Tang et al. [143] used a truncated normal distribution
(TND) to model the battery state and obtained an accurate and
closed battery RUL distribution considering measuring errors
and drift parameters. Current research on WP is primarily
centered around exploring the impact of WP and WP mea-
surement errors on RUL prediction, offline parameter estima-
tion (typically through maximum likelihood estimation), and

Figure 7 Specific steps in estimating the RUL with an AI approach.
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updating the random parameters of WP metric error.

MACHINE LEARNING METHODS FOR SOC, SOH
AND RUL ESTIMATION

Data-driven estimation
Data-driven methods utilize the large amount of offline data
generated during battery cycles to establish and train a mapping
relationship between the HIs and SOC, SOH, and RUL. By
extracting information on battery aging from historical cycling
data and using specific algorithms, HIs such as voltage, current,
capacity, temperature, and IR can be extracted and the aging
trend can be calculated [148–152]. One key advantage of data-
driven methods is that they do not require complex models or
reaction mechanisms. Instead, they only rely on the collection of
battery aging data, which is particularly valuable for nonlinear
correlation matters. However, data-driven methods rely on
numerous offline data as prior knowledge for model training,
which is essential for algorithm selection and can often be highly
complex. Moreover, the aging data can be affected by battery
system operating modes, cut-off conditions, and application
requirements, which can result in varying generalization cap-
ability and poor robustness of trained models. Typical data-
driven methods are NN, artificial NN (ANN) [37,153,154], SVM
[155], RF and other machine learning and deep learning
methods, among which, the empirical fitting methods are the
simplest and easiest data-driven methods to implement, using
basis set with polynomial, logarithmic, power, trigonometric,
and exponential functions. Such fitting methods, however, often
have poor accuracy and applicability due to the nonlinear nature
of battery aging. To improve accuracy, optimization algorithms
and sample entropy can be used to assess the predictability of
time series and the regularity of data sequences. For instance,
Widodo et al. [156] improved the accuracy of empirical fitting
by incorporating sample entropy as an input for the learning
algorithm. While this approach has been proven effective, it
requires extensive calculations and data collection on battery
aging, making it time-consuming and challenging to perform
[44,156]. This section summarizes the general basic steps of
various data-driven prediction algorithms, namely data acqui-
sition, model training, and model testing [157]. The specific
characteristics of each algorithm are given in detail in section of
“Machine learning algorithms” [158].

Data acquisition
High-quality offline data are the foundation for model training,
and performance evaluation for learning algorithm in terms of
stability and reliability. Currently, a great deal of battery beha-
vior can be collected during the cycling using existing test
platforms and BMS, such as conventional electrical test, AC
impedance, and remaining-life measurement. Other tests, like
maximum available capacity, OCV, mixed pulse, EIS, discharge
time, IR, temperature, and other original data also can be col-
lected in a short time by controlling the operating parameters
under well-defined experimental conditions. Severson et al. [71]
generated a comprehensive dataset for 124 commercial lithium-
ion phosphate/graphite batteries cycled under fast charging
conditions. Impressively, their experiments provide compre-
hensive data about capacity degradation with a 3.6 C charge/
discharge profile, the capacity decreased only 4% within 1000
cycles for most samples and some battery life even reached 2300

cycles. As battery aging tests are time-consuming and costly, and
require complex and expensive signal acquisition systems,
publicly available datasets are highly valuable for validating
prediction algorithms [38], e.g., the National Aeronautics and
Space Agency [159], Center for Advanced Life Cycle Engineer-
ing (CALCE) at the University of Maryland, University of
Oxford, and Stanford University. Prior to model training, the
raw data must be preprocessed with the primary goal of selecting
relevant features, integrating and normalizing the data into
appropriate blocks [149,157]. Algorithms can achieve high
accuracy by selecting appropriate features that correlate with the
state of the battery. The lack of key features can impair the
model fitting and prediction quality, but having too many fea-
tures can lead to model overfitting, making the model not uni-
versally applicable and lacking in prognosis ability. Data
integration, normalization, and chunking are the process of
organizing features in the required format, removing invalid
data, and dividing the organized data into a training set, vali-
dation set, and test set for subsequent model processing
[129,157].

Model training
To ensure accurate estimations, a well-trained model is essential,
which can be achieved by using a validation set to assess linearity
or nonlinearity and physical interpretability. The process of
model training involves fine-tuning parameters to improve
accuracy until further changes do not enhance the evaluation
performance. Following this, the parametrized model is vali-
dated using a testing set to assess its robustness and precision.

Model testing
After effective training of the model, its capacity needs to be
validated within an acceptable margin of error. If the validation
falls outside this margin, further training or a new model is
required until the ideal HIs and model are obtained. Compared
with model-based methods, data-driven approaches do not
consider chemical reactions. Instead, they rely on a mathema-
tical module powered by weight parameters and embedded
criteria, rather than a specific physics-based model. Thanks to
the rapid development of computational efficiency, data-driven
methods have a strong fitting ability under such a scheme,
providing excellent self-adaptability to suit any battery and
delivering versatile performance in real-world applications in
recent years. Ni et al. [160] for instance, employed a data-driven
approach to accurately predict the capacity decay curve of
LiFeO4 batteries. They successfully predicted the capacity loss
using only the first 10% of the raw data, achieving an error of
only 2.18%. With the rapid development of high-performance
computational clusters, deep learning has been gradually applied
to the prediction of battery nonlinear systems because it does
not require manual design features.

Machine learning algorithms
Machine learning is realizing its promise with the advancement
of computer science, especially in the case that a problem can be
transformed into a classification, regression, or clustering task.
Such tasks are critical aspects of machine learning and have been
extensively researched [161–163]. Fortunately, the estimation of
SOC, SOH, or RUL can be abstracted as a regression task,
allowing us to deal with battery issues using powerful machine
learning approaches, even without the background knowledge of
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the physicochemical materials and complicated reactions. To
power such process, we simply need to conduct enough
experiments to collect the battery parameters and corresponding
experimental results, based on which a regression model has
been constructed and trained with a large set of parameters, until
the model correctly predicts battery features of interest.
Regression is an important supervised machine-learning

problem, where the goal is to construct a model from many
input data in predicting the continuous output. Classification
differs from other supervised learning problems in that the input
data are a feature vector of samples, but the output is the sample
label and manifests as a one-hot vector. Formally, the regression
task is to learn a function f X y: , where X R n d× is the
feature matrix, n is the number of samples, each feature vector
has d dimensions, and y R n is the continuous target value
vector. This is a common paradigm in real-world house price
prediction, stock price prediction, and rainfall forecasting. In the
following subsections, we summarize these newly developed
techniques under the context of lithium batteries, focusing on
the performance aging.

Linear regression (LR)
In machine learning, sample features and target properties (like
battery performance) are described by a set of feature vectors X
and target value y for each sample, using ŷ denoting the pre-
dicted value. Before we describe the methods of LR, we first need
to make several assumptions to guarantee that LR works well
[164].
Each value of X and y is credible and from the real world.
The target value y can be linearly composed of feature vectors

in X and model parameters w.
The variance of the errors is constant, and the values of the

errors are serially independent.
The features in X are linearly independent of each other.
If all the above assumptions are satisfied, we can construct the

LR model [165] as

( )y w x w w x w x, = + + … + , (5)n n n0 1

where w1…wn are weight parameters of the LR model and w0 is
the bias, which is called the intercept. Controlling the weights
and bias in the 2D space uniquely determines a linear function.
To find the line that best fits the data points, the LR model
should optimize one loss function, i.e., minimize the residual
sum of squares of the difference between actual and predicted
values,

Xw ymin . (6)w 2
2

This loss function can be solved easily using any well-estab-
lished optimization method (e.g., the gradient descent method)
or, if the feature matrix X is of full rank, we directly obtain the
best parameter using the least-squares estimator

( )w X X X y= T T1 . This LR method is well known in the fields of
statistics and finance for its simplicity and efficiency.
LR is now frequently combined with other methods or models

to improve forecasting accuracy owing to its limited fitting
performance; e.g., LR is combined with statistical analysis to
accurately estimate battery OCV, which is critical in predicting
SOH and SOC [166]. Furthermore, Hong et al. [167], by com-
bining multiple LR and long short-term memory (LSTM)
algorithms, proposed the LR-LSTM joint prediction model to

achieve control of the prediction accuracy and horizon of the
battery.

Ridge regression
Using the least-squares estimator to get the best parameters
requires X XT to be reversible, which may be not satisfied, under
which the data are referred to as having a multicollinear feature.
Using a strong optimizer to minimize the loss function often
leads to overfitting, meaning excellent performance on the
training data but poor performance on the test data. In this case,
a regularization technique is introduced. Ridge regression (RR)
[168] sets an l − 2 norm on the original LR loss function:

Xw y wmin + , (7)w 2
2

2
2

where α is a trade-off parameter of the loss function. The second
term of the ridge regression loss function controls the sum of all
parameters w. An increase in α decreases the sum of w and
reduces unimportant parameters in w to almost zero, helping the
model to learn a looser result and preventing the overfitting
problem. From the perspective of the least-squares estimator,
when adding an extra regularization item to the loss function,
the closed-form solution of w changes as (XTX + αI)−1XTy, where
I is the unit matrix. This formula is always reversible.
Least absolute shrinkage and selection operator (lasso)

regression [169] is similar to ridge regression. In lasso regres-
sion, the l − 2 norm is replaced with the l − 1 norm:

Xw y wmin + . (8)w 2
2

1
2

Compared with the case of ridge regression, the l − 2 norm
indeed shrinks w

i

n
i=1
2 to reduce overfitting, but the irrelevant

parameters in w still exist. Thus, the covariate selection char-
acteristics are weak, and the model is less interpretable. The l − 1
norm is a stronger penalty than the l − 2 norm, and it directly
reduces the irrelevant parameter to zero rather than close to
zero. This results in a model with only a few parameters that
work in the end, and these features have non-zero values and are
the key features of the model. Ridge and lasso regression
methods counter the effects of multicollinearity, using a ridge to
simulate the aging process of batteries. Wu et al. [170] obtained
SOH estimation more reliable than those from nonlinear
regression even though using less computing resources. Jiang et
al. [171] compared the experimental performances of three
regression methods in predicting battery SOH, finding that both
ordinary least-squares regression and ridge regression had errors
within 2% and that ridge regression had a smaller root-mean-
square error.
Elastic-net regression combines the concepts of ridge and

lasso regressions by introducing both l − 1 and l − 2 norms to
the vanilla LR loss function:

( )Xw y w wmin + +
1
2 , (9)w 2

2
1 2

2

where α and ρ are trade-off parameters of the loss function. This
joint formula retains the advantages of the two original methods
while suppressing their disadvantages. For ridge regression, as
we discussed before, it is difficult to select a covariate because the
l − 2 norm only shrinks the unrelated parameters down to close
to zero. For lasso regression, the l − 1 norm is sometimes too
powerful. If a group of features are collinear, then lasso regres-
sion tends to select only one of the features, resulting in the
excessive loss of information from the features. A reasonable
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setting of the trade-off parameters in the elastic net thus leads to
a suitable covariate selection result. Elastic-net regression has a
wide range of applications. Lin et al. [172], for example, pro-
posed a data-driven method for predicting the RUL, using
elastic-net regression to extract characteristic features. Severson
et al. [71] used machine learning to predict the RUL and classify
the battery according to its cycle life. They generated model
characteristics and used them in the elastic net, resulting in
prediction error of 9.1% for the first 100 cycles.
Overall, three methods introduce regularization techniques to

improve the prediction performance and perform well. To
minimize the value of the loss function that we design for the
model, the overfitting during the training process may occur and
must be seriously considered. However, regularization approach
can largely alleviate overfitting and ensure the model obtains a
more relaxed result.

Support vector regression
SVM is a well-known robust machine learning method used for
classification, regression, and outlier detection. Support vector
regression (SVR) involves using an SVM model for regression
[173], creating a spacing band on both sides of the linear object
function f(x) = wx + b. The interval of this spacing band is
denoted ε (often given empirically). We do not calculate the loss
for all samples that fall into the spacing band, i.e., only the
support vector affects the function. The optimized model is
obtained by minimizing the total loss and interval. Here, we
want the model parameters w to be as small as possible to keep
the model robust. As for lasso regression, we add an l − 2 norm
to the function, and the problem is formally written as

w

y wx b
wx b y

min1
2 ,

s.t. ,
+ . (10)

w

i i

i i

2
2

Equation (10) is a hard-margin optimization problem. It is
assumed that there is always a linear function f(x) that satisfies
the constraint. However, the real-world scenario is more com-
plex, and we cannot find such an f. We therefore loosen the
constraint with slack variables i and i and obtain a soft
margin loss function:

( )
( )

( )

w C

y f x

f x y

min1
2 + + ,

s.t. + ,

+ , , 0, (11)

w
i

n

i i

i i i

i i i i i

2
2

=1

where C > 0 is a box constraint that helps prevent overfitting.
Equation (12) is a classical quadratic programming problem.
Generally, we transfer the original problem to a more easily
solved dual problem to optimize [174]. We first construct a
Lagrange function of Equation (12) as the primal objective
function:

( )

( ) ( )

( )

( ) ( )

L w C

y f x y f x

= 1
2 + + +

+ + + + ,

s.t. , , , 0,

(12)
i

n

i i
i

n

i i i i

i

n

i i i i
i

n

i i i i

i i i i

2
2

=1 =1

=1 =1

where L is the Lagrangian and
i
, i , i, and i are Lagrange

multipliers. Continuing with the calculation of partial derivatives
for the model parameters, substituting into Equation (12) and
considering the Karush–Kuhn–Tucker conditions, we obtain a
dual-objective function:

( )x x

y

C

max 1
2 ( )

( + ) + ( ),

s.t . ( ) = 0,

, [0, ], (13)

i j

n

i i j j i
T

j

i

n

i i
i

n

i i i

i

n
i i

i i

,
, =1

=1 =1

=1

i i

with KKT conditions ( )f x y( ) + + = 0,i i i i

( )( )y f x + + = 0,i i i i

( )C = 0,i

( )C = 0.i

Sequential minimal optimization is the most popular method
of solving a dual-objective function [175]. Once optimal i and

i are obtained, ( )f x can be written as

( ) ( )f x x x b= + , (14)
i

n

i i i
T

=1

where b is calculated using each support vector:

( )b S y x x= 1 + . (15)
i S

i
j S

j j j
T

i

For a training sample xi, if the corresponding 0i i , we
have a support vector, which means that xi is located outside the
spacing band. The support vector of SVR is only a small fraction
of the training sample; thus, its solution is sparse and robust.
SVR is illustrated in Fig. 8a.
One important limitation of the above regression methods is

that they assume the relationship between X and y to be linear;
however, most real-world data are nonlinear. To solve the
nonlinear regression problem, Cortes and Vapnik [176] pro-
posed the kernel method. The idea is that if a data set is non-
linear in a lower-dimensional space, we can map it to a higher-
or infinite-dimensional space. The distribution of data points is
sparser in higher-dimensional space, and it is thus guaranteed
that there is a hyperplane containing all sample points, resulting
in a linear data set and efficient and low-bias models. Li et al.
[177] adopted a particle swarm optimization algorithm to
optimize the parameters of the SVM model when predicting the
battery SOC and performed cross-validation to evaluate the
model’s performance, confirming that the proposed model has
higher accuracy and robustness.
The key point of the kernel method is to find a suitable kernel

function. Formally, using Mercer’s theorem [178], the kernel
function is defined as follows:
Definition 1. AssumeX is the input space and H is the Hilbert

feature space. If there exists a mapping function ( )x : X H,
for all x z, X , function ( )K x z, satisfies ( ) ( ) ( )K x z x z, = , .
Function K is then called a kernel function. Here ϕ(x) is the map
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function and , is the inner product space, mapping the input
space to the high-dimensional space, but this map function is
usually difficult to design. Even if we find a suitable mapping
function, the computational overhead of calculating the inner
product is vast if the dimensionality of the input features is high.
Luckily, most regression or classification machine learning
methods only need the calculation of the inner product of the
input vectors, just like in SVR (Equations (13) and (14)).

( ) ( ) ( )f x K x x b= , + . (16)
i

n

i i i
=1

The kernel function helps us omitting the map function ( )x
and directly obtain the inner product, i.e., we can explicitly
construct a kernel function ( )K , for a given ( )x or we can take
a kernel function and use it without having an explicit repre-
sentation of ( )x .

GPR
Another application of kernel function in regression problems is
GPR. This method considers the estimation of the regression
problem from a probabilistic standpoint, which provides a rig-
orous model derivation and a strong guarantee of classical sto-

chastic process theory. The method has natural advantages in
terms of algorithm interpretability, model transparency, and
uncertainty portrayal.
We start with a basic linear formula:

( )y x W N= + , 0, , (17)T 2

where is Gaussian noise, and x, W, and y each follow a dis-
tribution. We embed the deviation term b in W. From a prob-
abilistic view, once we know the distribution of W, through
Equation (17) given the distribution of x, we obtain the dis-
tribution of y. The calculation is

( )

( )

( )

( )

p y X w p y x w

y x w

y X w

X w I

( | , ) = | ,

= 1
2 exp 2

= 1
2

exp 1
2

= , . (18)

i

n

i i

i

n

n

i i
T

n

n
n

n

T

T
n

=1

=1

2

2

2
/2 2

2

2N

Figure 8 Illustrations of the data-driven approaches. (a) Diagram of the SVR structure. The loss for all samples that fall into the spacing band is zero.
(b) Example of a regression tree structure for predicting the price of a car. (c) Illustration of the GPR structure. There are an infinite number of curves in the
data. Each follows a probability distribution, and we find the curve with the highest probability. The figure plots such a curve with its corresponding
probability distribution, described by the mean and variance. (d) FNN illustration. It is a multilayer perceptron, i.e., there are several hidden layers, and the
nodes are fully connected. (e) RNN illustration. Each node value is affected by both the previous and subsequent moments.
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In a real-world scenario, however, it is difficult to obtain the
distribution of W, under which the maximum posterior (MAP)
method to estimate the posterior distribution of W has been
proposed [179]. Once we have enough data pairs X,y to learn,
the posterior will be infinitely close to the actual distribution of
W. For this approach, we first give a simple Gaussian prior
distribution to W~N(0,∑p) and then obtain from Bayes’ rule
that

( )
( )( )p w X y

p y X w p w
p y X| , =
| ,

| , (19)
( )

where ( )p y X| is the marginal likelihood, which is a normalizing
constant. Thus, the maximizing of the posterior distribution can
be performed only with considering the likelihood and prior:

p w X y y X y X

w w

w w XX w w

( | , ) exp 1
2 ( ) ( )

exp 1
2

exp 1
2( ) 1 + ( ) , (20)

n

T T T

T
p

T

n

T
p

2

1

2
1

where ( )w XX Xy= +n n
T

p
2 2 1 1

, and if we set

A XX= +n
T

p
2 1, we find that the posterior distribution of W

is a Gaussian distribution ( ) ( )p w X y w A| , , 1N . When a new
sample x appears, its corresponding target value y follows the

distribution of ( )x w x A x,T T 1N . We usually choose the mean
of this distribution as the final target value, and the covariance
matrix describes the uncertainty in y .
We use the kernel function to project the original sample

feature into a high-dimensional space and thus increase the
expressiveness of the Gaussian regression method. Richardson et
al. [140] adopted GPR to estimate battery SOH, emphasizing the
importance of choosing a proper kernel function. We denote the
project function as ϕ(x) for one sample and Φ(X) for all samples
in the training set. The basic regression formula Equation (17) is
rewritten as

y x W= ( ) + . (21)T

We then abbreviate ( )X and ( )x as and respectively
and substitute them into the predicted target distribution:

f x X y A y A| , , 1 , . (22)
n

T T
2

1 1N

In Equation (22), we need to calculate A 1. When the
dimensionality of A is large, the calculation time for this

operation becomes unacceptable. We thus define K = T

p
and rewrite the above equation as

( )

( )

f x X y K I y

K I

 | , , ( + ,

+ . (23)

p
n

p p
n

T

p

T 2 1

T T 2 1

N

In this equation, we note that there are three similar terms,
namely T

p , T
p and T

p . Here, we choose

( ) ( )x xT
p as the example. This term is an inner product, p is

positive definite, and we thus define ( ) =p p
1/2 2

and

( ) ( )x x= p
1/2 . Finally, using Mercer’s theorem, we get a new

kernel function ( ) ( ) ( )k x x x x, = used in Equation (23). Liu
et al. [180] demonstrated that GPR models that consider both
electrochemical and empirical aging have distinct advantages in
predicting battery capacity.

Regression tree
The regression tree is based on the decision tree method to make
predictions, which offers a strong interpretable sense. Moreover,
the aggregation of multiple decision trees can form an integrated
learning model with excellent learning capability.
It can start with a classical regression tree method, namely the

classification and regression tree (CART) [181]. Here, the
decision tree comprises nodes and directed edges. There are two
types of nodes, namely the internal node and leaf node, with the
former representing a feature or an attribute, and the later for a
class or value. When conducting a classification or regression
task with a decision tree, the process starts from the root node, a
feature of the sample is tested, and the sample is assigned to sub-
nodes according to the test results. At this point, each sub-node
corresponds to a value taken for that feature. The samples are
tested and assigned in this way recursively until they reach the
leaf nodes. In fact, the use of a decision tree is a way of dividing a
space by a hyperplane. With each partitioning, the current space
is divided according to the feature values, so that each leaf node
is a disjoint region in the space. When the decision is made, the
sample goes down step by step according to the value of each
dimensional feature of the input sample. Finally, the sample falls
into one of the N regions (assuming there are N leaf nodes).
Here, we give an example of CART used to predict a car price

in Fig. 8b. We assume two features affect the price of a car,
namely the horsepower and wheelbase, and the leaf node pre-
dicts the final price. Formally, we assume that X and Y are the
input sample and corresponding target variables, respectively,
and a training data set D = (x1,y1),(x2,y2),…,(xN,yN) is given. We
now need to consider how to build a decision tree. A regression
tree corresponds to a partition of the input space (i.e., feature
space) and the output values on the partitioned cells. Suppose
that the input space has been divided into M cells, R1,R2,…,RM,
and each cell Rm has a fixed output value cm. A regression tree
model is represented as

( ) ( )f x c I x R= . (24)
m

M

m m
=1

If the input space is already partitioned, the mean square

error, ( )( )y f x
x R

i i
2

i m

, can be used to represent the prediction

error, and the optimal value of each cell can be learned using this
loss function. The optimal value cm on battery Rm should be the
mean value of all output values y

i
corresponding to cell Rm; i.e.,

c y x R= mean( | )m i i m .
Our consideration has two core problems, which are how to

choose the division point and how to decide the output value of
a leaf node in a tree. To solve the first question, the CART
method adopts a heuristic approach to partition the input space
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by selecting the j th variable x ( )j and the value s as the splitting
variable and the splitting point respectively, and then defines
two regions:

} {( ) ( )R j s x x s R j s x x s, =  and , = > . (25)( ) ( )j j
1 2

The optimal division point is then found iteratively according
to

( )
( )

( )
( )y c y cmin min + min . (26)

j s c
x R j s

i c
x R j s

i,
,

1
2

,

2
2

i i

1

1

2

2

To solve the second issue, the selected optimal cut variable j
and the optimal cut point s are used to partition the region and
determine the corresponding output values:

}( ) ( )( ) ( )c y x R j s c y x R j s= mean | ,  and = mean | , . (27)
i i i i1 1 2 2

We iterate through all input variables and find the optimal cut
variable j, which forms a pair ( )j s, . In this way, the input space
is divided into two regions. The above partitioning process is
then repeated for each region until the stopping condition is
satisfied. A regression tree is thus generated, which is usually
called a least-squares regression tree.
Using a single regression tree is certainly not enough when

dealing with specific practical problems. We can use the
boosting framework in integrated learning to improve and
upgrade the regression tree, and we refer to the new model as the
boosting decision tree [182]. With further transformation, we
get the gradient boosting decision tree [183], which can be
further upgraded to XG-Boost [184] or light-GBM [185]. Yang
et al. [186] proposed the gradient boosting regression tree
(GBRT) model in 2020 to simulate the nonlinear degradation of
batteries, obtaining an average error of approximately 7% in
battery RUL prediction.

AR model
The regression method described in the previous section does
not require temporal characteristics of the training data, such
that the data can be collected at any time. However, such con-
fusing temporal features sometimes cause problems in model
learning. Suppose that we can use the data’s temporal char-
acteristics as learning parameters and continuously use the
known sequence of data to predict the new data in the next
moment. This further improves the model’s estimation accuracy
while reducing the model’s learning difficulty. The problem of
adding a temporal attribute to a dataset and predicting future
arrivals from available data is called a time-series analysis pro-
blem. The autoregressive model is a basic method adopted to
solve the time-series problem, as illustrated in Fig. 8c.
To begin, we assume any time-series data Xt can be repre-

sented by a weighted sum of historical data and a superposition
of random perturbations:

X a X a X a X a X j= + + … + + = + , (28)t t t p t p t
j

p

j t t1 1 2 2
=1

where aj is a constant parameter, t is the random perturbation,
and our proposal is to find a suitable time-series { }Xt for the
given autoregressive model equation.
To calculate the solution to Equation (28), we need to know

the backshift and linear constant coefficient difference equa-
tions. For any time-series { }Xt and infinite series

( )z b z=
j

j
j

=
, if b X

j
j t j

=
converges in a sense (i.e., con-

vergence by probability, mean square convergence), we define

( )

( )

b

X b X b X

= ,

= = .
(29)

j
j

j

t
j

j
j

t
j

j t j

=

= =

B B

B B

B is the backshift operator at time t; obviously, we have
X X=t t jB .
If { }t is the white noise ( )0, 2N , then Equation (28)

becomes weakly stationary, and we can use the linear constant
coefficient difference equation to solve this problem. This
method is defined as follows. Given p real numbers
a a a a, , … , , 0p p1 2 ,

X a X a X a X t Z+ + … + = 0, , (30)t t t p t p1 1 2 2

which is called the rank p coefficient difference equation with a
linear constant. The solution to Equation (30) is obtained using
these p initial values X X X, , … , p0 1 1. We introduce the backshift
operator. We rewrite Equation (30) as ( )A X t Z= 0,tB , and

( )A z a z= 1
j

p

j
j

=1

, where ( )A z is the characteristic polynomial

of Equation (30). We now return to Equation (28). Based on the
above fundamental concepts, we rewrite the equation as

( )A X t Z= ,t tB . Letting the reciprocal roots of ( )A z be

z z z, , … , k1 2 , for { }z1 < < min j , we have A z A z( ) = 1 / ( )( 1) as

the analytic function of z z{ : < }, and we express A 1 as a
Taylor series:

( )A z z z= , , (31)
j

j
j1

=0

We then substitute z for the backshift operator, and we obtain
the stationary solution of Equation (28):

( )X A t Z= = , . (32)t t
j

j t j
1

=0

B

Through the stochastic process calculation, we directly obtain
the analytical solution of the whole series, and the model has
strong interpretability and efficiency. However, the auto-
regressive model also has limitations in that it makes strong
assumptions about the target time series, such as the weak sta-
tionary presumption, which is not satisfied by most time series
in real scenarios. Therefore, to improve the model’s general-
ization, many new methods have been explored to weaken the
assumptions of the autoregressive model, such as the auto-
regressive moving average model [187], autoregressive inte-
grated moving average (ARIMA) model [188], and vector
autoregressive model [189]. Liu et al. [190] combined the
autoregressive moving average model and KF for effective and
robust estimation of battery SOC. Furthermore, Zhou and
Huang [191] proposed a method based on the ARIMA model
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combined with empirical mode decomposition and found that it
provided more accurate SOH estimation results than methods
such as the RVM method.

FNN
ANNs are a series of mathematical models inspired by biology
and neuroscience. These models simulate biological NNs by
abstracting the neuronal network of the human brain, con-
structing artificial neurons, and establishing connections
between artificial neurons according to a certain topology.
From the perspective of machine learning, an NN can gen-

erally be regarded as a nonlinear model, whose basic compo-
nents are neurons with nonlinear activation functions. The
connections among many neurons make the NN a highly non-
linear model. The weights of connections between neurons are
the parameters that need to be learned and determined, which
can be studied using gradient descent methods in the machine
learning framework.
The feedforward NN (FNN) is one of the simplest NNs. Its

structure is shown in Fig. 8d. For the regression scenario, we set
RX n d× as n samples, each with d feature dimensions, and
RO n as the target values for the samples. For a single hidden-

layer NN with h hidden units, the output of the hidden layer is
represented as hidden representations. Both the hidden layer
and output layer are fully connected, and we have the hidden-
layer weights RW ( ) d h1 × and hidden-layer bias Rb ( ) h1 1× ,
and the output layer weights RW ( ) h2 ×1 and the output-layer
bias Rb (2) 1×1. Formally, we compute the output of a single
hidden-layer NN as

H XW b
O HW b

= + ,
= + .

(33)
(1) (1)

(2) (2)

To fulfill the potential of the NN architecture, we need an
additional key element: a nonlinear activation function applied
to each hidden cell after the affine transformation. Such an
activation function converts the linear model of Equation (33)
into a nonlinear model with stronger representation capability:

( )H XW b

O HW b

= + ,

= + .
(34)

(1) (1)

(2) (2)

To build a more general NN, we continue to stack such hidden
layers, such as ( )H XW b= +( ) ( ) ( )1

1
1 1 and

( )H H W b= +( ) ( ) ( ) ( )2
2

1 2 2 .
According to the universal approximation theorem [192], for

an FNN with a linear output layer and at least one hidden layer,
the squeezing property of the activation function can be used to
approximate any bounded closed-set function defined in the real
space R D with arbitrary accuracy, as long as there are sufficient
neurons in its hidden layer. Accordingly, each of the algorithms
we mentioned earlier can theoretically be approximated by an
NN to its model. However, such an NN has disadvantages:
(1) the powerful fitting ability readily leads to model overfitting;
(2) in achieving high accuracy, the model needs more training
samples to determine many unknown parameters. Chen et al.
[193] developed a method for estimating the battery SOC based
on the FNN and EKF, confirming that the FNN is an effective
method in practical and complex EV application environments.

RNN
The recurrent NN (RNN) is a deep learning method that con-
siders time series data [194,195]. It combines the advantages of
NN methods and time series methods. In an RNN, neurons
receive information not only from other neurons but also from
themselves, forming a network structure with loops. Compared
with the FNN, the RNN is more in line with the structure of
biological NNs.
The RNN processes temporal data of arbitrary length using

neurons with self-feedback. Given an input time series
( )x x x x= , , … ,T T1: 1 2 , if we need to use information from time

step t 1 to predict data of time step t, ( )P x x x| , … ,t t t n1 +1 , we
here learn a hidden state to represent the series information of
time step t 1, i.e., namely ( ) ( )P x x x P x h| , … , |t t t n t t1 +1 1 . In
general, using the current input xt and the previous hidden state

( )h h f x h: = ,t t t t1 1 , we calculate the hidden state for any time
at time step t − 1. We then introduce the concept of the hidden
state in the NN. We assume an n-sample series RX t

n d× ,
where each row of X t corresponds to one sample of time step t,
and let RH t

n h× represent the hidden state of time step t.
Unlike the FNN, we preserve the hidden state of the previous
time step here, H t 1, and introduce a new weight parameter

RWhh
h h× to describe how the hidden state of the previous

time step is used in the current time step. Specifically, the hidden
state of the current time step is calculated from the input of the
current time step together with the hidden state of the previous
time step:

( )H X W H W b= + + . (35)t t xh t hh h1

The relationship between the hidden state H t and the adjacent
time step H t 1 shows that these states capture and retain the
history of the sequence up to the current time step, as the state
or memory of the NN at the current time step, such that H t is
called the hidden state. The definition of the hidden state at the
current time step is the same as the definition used in the pre-
vious time step, and the computation of Equation (35) is thus
recurrent. Therefore, the recurrent-based hidden state NN is
referred to as the RNN. The layer in the RNN that performs the
computation of Equation (35) is called the recurrent layer.
For the final regression process, we design a special output

layer:
O H W b= + . (36)t t h1 1

The parameters of the RNN include the weights
R RW W,xh

d h
hh

h h× × and biases Rbh
h1× of the hidden

layer, and the weights RWh
h

1
×1 and biases Rb1

1×1 of the
output layer. It is noted that the RNN uses these model para-
meters at different time steps. Therefore, the parameter overhead
of the RNN does not increase as the number of time steps
increases.
Fig. 8e illustrates the computational logic of the RNN at three

adjacent time steps. At any time step, the computation of the
hidden state can be considered as (1) splicing the input X t of the
current time step t with the hidden state H t 1 of the previous
time step t 1 and (2) feeding the splicing result into a fully-
connected layer with an activation function . The output of the
fully connected layer is the hidden state H t of the current time
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step t. LSTM, which has become a research hotspot in recent
years, can capture underlying long-term dependencies among
the degraded capacities. Zhang et al. [196] used the LSTM-RNN
method to estimate the battery RUL, which can be independent
of offline data, and their experiments showed that the model had
higher accuracy than the SVM and simple RNN. Table 2 lists the
benefits and drawbacks of the proposed data-driven methods.

CNN
Convolutional NN (CNN) is a promising deep learning model
for battery state estimation, which can autonomously learn data
characteristics and efficiently process substantial volumes of data
in a short duration, significantly accelerating battery detection
and estimation. Additionally, its multi-layer architecture is
adaptable to various types of battery data, serving as an excellent
foundation for constructing the model with chemistry neutrality
[197].
CNN has been widely used for feature extraction. A special

type of CNN, namely multi-layer perceptron (MLP), is designed.
The MLP structure can be divided into three layers: input layer,
output layer, and hidden layer. The input layer is responsible for
transferring the raw data to the first hidden layer. The output
layer generates the desired output for the next program. The
hidden layer consists of fully connected layers, max pooling
layers, and convolutional layers. The convolutional layer is the
primary building block of the CNN. It extracts local features
from high-level inputs and passes all the information to lower
levels to obtain more complex features. The output result vector
o of the first convolutional layer can be represented by the fol-
lowing equation:

o b w x= + , (37)ij j
f

M

f i f j
o1 1

=1

1
+ 1,

v

v j v,

where , bj, and w represents the sigmoid activation function,
the bias for the j feature map, the weight of the kernel, respec-
tively. f

v and x are the filter index and the power production
input vector, respectively. Similarly, the outcome of the vector o
output from the l convolutional layer can be expressed as fol-
lows:

o b w x= + . (38)ij
l

j
l

f

M

f
l

i f j
o

=1
+ 1,

v

v j v,

Max pooling layers are employed for dimensionality reduc-
tion, thereby further alleviating the computational burden of the
model. The operation of the max pooling layer is given by the
following expression:

( )p y r R= max , (39)
ij
l

i T r j
l
× + ,

1

where R represents the pooling size, T is the step size deter-
mining the distance for the input data area to be moved, which is
smaller than the input dimension y. Fully connected layers
connect every neuron in one layer to every neuron in the output
layer.
In recent years, CNNs have been used for the analysis of time

series data. For example, Shen et al. [198] used deep CNN
(DCNN) to pre-train the data and integrated the resulting
DCNN model with transfer learning techniques to estimate the
capacity of commercial 18650 Li-ion batteries. The resulting root

mean squared error (RMSE) and max error indicated that the
proposed method outperforms other approaches such as the
CNN with U-Net architecture (derived from fully CNN) pro-
posed by Fan et al. [199] for SOC estimation, which achieved the
accurate estimation with mean absolute error (MAE) less than
1.1% and RMSE less than 1.4% under constant temperature
conditions. Wang et al. [200] introduced a closed-loop frame-
work based on DCNN to capture the relationship between SOC
and measurement equations of KF. The results demonstrate that
the model exhibits excellent robustness and high accuracy,
achieving an RMSE of less than 2.7%. However, it should be
noted that CNN typically demands a substantial volume of
training data. In the case of small sample datasets, CNN models
are susceptible to overfitting, and their utilization entails
extensive parameter tuning and high-end computing resources.
Therefore, the application of CNN for battery estimation still
encounters certain limitations.

Transformer model
The Transformer algorithm is a deep learning model employed
for processing sequence data. By introducing an attention
mechanism, the algorithm maps a query and a series of key-
value pairs to an output, in which the sum of the weights on the
value calculated according to the query and key is the output
vector [201]. This can simultaneously learn varying attention
weights, enabling it to focus on a broader range of information
in the data. Transformer algorithm is very useful for processing
long sequence data such as battery data. Moreover, this method
can directly extract data features from raw data, significantly
reducing the need for feature engineering. The general deep
learning architecture is also well-suited to a wide range of bat-
tery types.
The transformer model is composed of stacked self-attention

layers, encoders, decoders, and fully connected layers. This
model has significantly transformed the implementation of
attention mechanisms, relying solely on a self-attention
mechanism constituted by scaled dot-product attention and
multi-head attention. The scaled dot-product attention proposed
by Vaswani et al. [202] firstly computes a dot product for each
query, q, with all the keys, k. It subsequently divides each result
by dk and proceeds to apply a SoftMax function:

( )Q K V QK
d

VAttention , , = softmax . (40)
T

k

The equation for the multi-head attention mechanism is
predicated upon the forementioned scaled dot-product attention
mechanism, as illustrated below:

( ) ( )Q K V WMultihead , , = Concat head , … , head , (41)n
o

1

where each head i, i n= 1, 2, … , , implements a single attention
function characterized by its own learned projection matrices as

( )QW KW VWhead = Attention , , , (42)i i
Q

i
K

i
V

where q and k represent vectors of dimensions, and dk contains
the queries and keys, respectively. v denotes a vector of
dimensions and dv contains the values. Q, K, and V which denote
matrices that pack together sets of queries, keys, and values,
respectively. WQ, WK, and WV enote projection matrices which
are employed to generate different subspace representations of
the query, key, and value matrices, respectively. WO denotes a
projection matrix for the multi-head output. Additionally, each
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layer of the transformer’s encoder and decoder contains a fully
connected FNN, which is individually and uniformly applied at
each positional index.

( ) ( )x xW b W bFFN = max 0, + + . (43)1 1 2 2

Since the transformer model lacks recursion and convolution,
“Positional Encoding” (PE) is applied to the input embeddings,
encapsulating information regarding the relative or absolute
positions of the tokens within a sequence.

( )PE = sin pos 10000 , (44)( )i
i

dpos,2
2

model

( )PE = cos pos 10000 , (45)( )i
i

dpos,2 +1
2 +1

model

where pos is the position and i represents the dimension.
The transformer method is now commonly used for feature

extraction of battery. For example, Luo et al. [201] utilized a
transformer-based NN to extract features from original battery
data to estimate SOH. They achieved a mean absolute percentage
error about 1.63% compared with the raw data. Additionally, the
transformer method can be also combined with other deep
learning methods to enhance the accuracy of battery states
estimation. Li et al. [203] integrated the CNN and transformer
learning to improve battery capacity estimation performance,
demonstrating that this method can achieve fast online capacity
estimation with high accuracy and computational efficiency.
Similarly, Gu et al. [204] also employed a combination of CNN
and transformer models to estimate battery SOH, achieving
exceptional accuracy with the values of MAE, MAPE, and RMSE
within the range of 0.55% for the NASA dataset. Nonetheless,
similar to CNN, the transformer method also requires a sig-
nificant amount of training data, and some large-scale trans-
former models may be too complex for certain battery
estimation tasks, resulting in a lack of interpretability and

overfitting.

PROSPECTS AND CONCLUSIONS

Challenges and prospects
Due to the environmentally friendly, long-lasting, and efficient
properties, LIBs have achieved a significant level of commercial
maturity and are expected to continue playing a critical role in
EVs and energy storage systems. However, as shown in Fig. 9,
the LIB ecosystem involves complex processes such as materials
refinement, cell manufacturing, battery integration, application,
and recycling. The collection and analysis of data are crucial for
improving the safety and cost-effectiveness of LIBs. Nonetheless,
challenges such as nonlinear degradation, state estimation, and
failure warning continue to confront LIB applications. Thus,
research on high-accuracy estimation of battery states such as
SOC, SOH, and RUL is gaining increasing attention. Although
considerable advancements have been achieved in battery states
prognosis, it is important to note that ongoing research is still in
its initial phases. The current focus remains primarily on non-
linear degradation and dynamic operational environments
within practical applications. However, several challenges still
need to be addressed, which can be broadly classified into two
categories: forecasting methodology and real-world applications.
Regarding forecasting methods, there are two main challenges.

Firstly, while attempting to incorporate multiple electrochemical
properties and relevant parameters such as thermodynamic and
mechanical parameters along with ambient temperature to
improve accuracy, the resulting models often become complex,
computationally intensive, and challenging to construct suc-
cessfully. Secondly, relying solely on limited historical battery
data without considering the degradation mechanism, such as

Table 2 Evaluation of data-driven methods

Method Advantages Disadvantages

LR Simple regression model with low computational
consumption; high generalizability Weak representation; prone overfitting

RR
Able to handle many correlated features;
reducing overfitting; low-complexity

computation

Sensitive to hyperparameters; biased coefficients
estimation; hard to get accurate standard errors

SVR Self-prevention of overfitting or underfitting;
able to deal with non-linear process

High-complexity computation; careful selection of function
and decision of boundary distances highly required

GPR Working well on small datasets; able to provide
uncertainty measurements on the predictions

Hard to estimate the aleatoric uncertainty accurately with
sparse data; hard to choose the window size for each
dimension of input; high-complexity computation

RT
Handling non-linear parameters efficiently;

no feature scaling required; feature preprocessing
not required; easy to visualize; easy to understand

Not suitable for high-dimensional data; sensitive to
outliers; weak generalization performance

AR

Better generations and more accurate likelihoods;
not necessarily latent variable models; able to find

recurring patterns in data, a small amount of
data required

Slow in learning, inference, and generation;
may introduce artificial bias when assumed

order is imposed

FNN
Fixed computation time; high computation speed;
learning general solutions of training data; no need

an explicit model of a process

Large computational consumption, different types
of architecture based on the data; easy to overfitting

RNN

Able to process inputs of any length; modeled to
remember each information throughout the time;
the fixed model size; able to process the arbitrary

series of inputs

Slow computation; difficult to train the models;
Prone to problems such as exploding and

gradient vanishing
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some machine learning technologies, renders the estimations
less interpretable and offers little support for battery production
and performance optimization. In terms of real-world applica-
tions, there are still significant obstacles to overcome. First, most
existing studies on battery status estimation focus on a single
type of battery, and the cycle dataset is collected within experi-
mentally controlled environments, such as temperature, charge/
discharge rate, and load. This setup makes it difficult to deploy
the trained model in dynamic operating conditions and evolving
environments in practical applications. Second, batteries are
typically interconnected in parallel or series, forming a battery
pack. This configuration introduces substantial variations in
external conditions and operating environments compared with
single cells studied, and obtaining experimental data for battery
packs is more challenging.
Here, we have outlined several specific challenges that need to

be addressed, which will also guide our future research efforts.

Development of hybrid methods with combination of EMs and
machine learning
Firstly, to develop more accurate and explainable models for
online estimation, it is crucial to implement the parameteriza-
tion of EMs using simulation algorithms such as P2D, ECMs,
and single particle models (SPM). These simulation algorithms
allow for a comprehensive and systematic understanding of the
internal reaction mechanisms, thus providing a theoretical basis
for cell design and safety analysis. Additionally, combination
machine learning methods with model parameterization can
improve the accuracy and interpretability of battery estimation
models [205]. Moreover, employing first-principles calculations
together with the immense computational power also offers a
promising approach. This method can consider various influ-
encing parameters, including temperature, mechanical forces,
electrochemical parameters, and thermodynamic parameters, to

a greater extent than classical approaches, effectively enhancing
the accuracy of battery status estimation [38]. For instance, Ming
et al. [206] developed a model for predicting battery SOC using
LSTM-NN, which considered dynamic stress, and achieved a
maximum absolute error of only 2% during dynamic discharge.
This demonstrates the feasibility and effectiveness of combining
data-driven methods and first-principles calculation to predict
the battery status.

Designing a model with chemistry neutrality
Development of a battery status prognosis model that is chem-
istry-neutral has emerged as a prominent trend in response to
the limited reserves of traditional LIBs and the increasing
demand of energy storage. This model aims to work with dif-
ferent cathode materials, including sodium, to overcome the
limitations of conventional battery technologies. However,
accurately estimating battery performance is influenced by both
the electrode material and electrochemical properties, and most
existing machine learning algorithms are tailored specifically for
LIBs. Therefore, it is crucial to develop a predictive model that
can accommodate various cathode materials and exhibit chem-
istry neutrality for accurate and versatile estimation.

Early prediction with reliable uncertainty-aware estimates
It is essential for accurately predicting the dynamic degradation
process of batteries under various operating conditions. Devel-
oping a dependable prediction model that can accurately predict
the whole degradation process, starting from any number of
initial cycles, has become increasingly important for the recy-
cling and cascade utilization of batteries. To ensure the accuracy
and reliability of these predictions, implementing uncertainty-
aware and explainable machine learning techniques is necessary.
These techniques allow for the evaluation of prediction relia-
bility and provide insight into the underlying factors affecting

Figure 9 Battery application and challenge.
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battery performance.

Estimation battery performance under extreme conditions
(temperature, pressure, etc.)
Most battery estimation models are constructed based on data
collected in laboratory conditions, which typically involve room
temperature and constant current or voltage profiles. However,
battery degradation and internal reactions are influenced by
various factors, especially temperature, which can significantly
impact the aging mechanism of batteries, as discussed in section
of “Aging mechanism”. Developing a rapid estimation model
that can cater to extreme conditions is essential for accurately
evaluating battery performance and detecting online abnorm-
alities. To achieve this, it is crucial to identify and extract
effective aging features that are suitable for a broad range of
conditions, and subsequently establish a machine learning
algorithm capable of providing accurate estimations under these
extreme operating scenarios.

Diagnosis of safety hazards
Efficiently diagnosing the battery fault is crucial due to the
potential sudden and gradual failures during usage. Sudden
failures pose a greater risk due to their shorter warning time,
higher diagnostic difficulty, and potentially severe consequences,
making it a challenging problem that requires immediate
attention in the diagnosis of intrinsic battery failures. On the
other hand, aging mechanisms in LIBs are complex, and there
has been limited success in developing a quantitative evaluation
of the degree of aging under multiple operating conditions, such
as current, voltage, and temperature. Therefore, accurately
diagnosing gradual failures is even more difficult than sudden
failures, and requires further research to address this issue.

Estimation on the states of battery packs
In many applications, multiple batteries are integrated in series
or parallel configurations to enhance power output or energy
density. However, existing prediction models primarily focus on
individual battery cells, which is inadequate when one cell within
a battery pack becomes damaged or reaches its end-of-life
(EOL), resulting in the deactivation of the entire pack. The
incorporation of active or passive balancing technology modules
within the battery pack helps adjust battery capacity, leading to
varying degrees of capacity degradation and changes in impe-
dance characteristics across different battery packs. Further-
more, when soft-pack batteries are utilized in battery packs, the
limited space may restrict the swelling of battery cells, causing
variations in the charge and discharge curve characteristics
between the battery pack and independent battery cells. To
address these challenges, the battery management field is wit-
nessing a growing trend towards leveraging big data sharing
platforms and information technology. These platforms enable
the collection and exchange of diverse battery data, facilitating
the development of more accurate, robust, and widely applicable
estimation models.

CONCLUSIONS
This paper presents a comprehensive and systematic review of
fundamental principles, current research progress, and degra-
dation mechanisms of batteries, providing a thorough analysis of
battery SOC, SOH, and RUL estimation methods. It sheds light
on the foundational principles and specific implementation

strategies of machine learning algorithms, thoroughly exploring
the advantages and limitations of these methodologies. Fur-
thermore, based on real-world scenarios, this paper suggests
several innovative research directions that can serve as valuable
references for researchers in the field of battery technology.
Nevertheless, it is important to note that this paper only briefly
touches on specific implementation steps, which may provide
limited guidance for practical applications. Additionally, some
prediction approaches do not consider battery pack configura-
tion constraints, such as space limitations and load conditions.
Therefore, further research is necessary to address these chal-
lenges and opportunities in the field of battery research.
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电池衰减诊断及状态评估研究进展
袁君1,2†, 秦之理2,3†, 黄海坤1,2, 甘兴栋1,2, 王子为4, 杨毅琛4,
刘书江1,2, 文安2, 毕闯2, 李白海1,2*, 孙成华5*

摘要 锂离子电池(LIB)广泛应用于储能及动力输出等领域. 准确预测
电池的健康状态对于优化性能、降低运营费用和防止电池故障等方面
具有重要的意义. 本文对预测LIB的荷电状态(SOC)、健康状态(SOH)
和剩余使用寿命(RUL)方面的最新发展进行了全面回顾, 重点关注机器
学习技术方面的研究进展, 深入分析了LIB的退化机制及其基本理论,
评估了各种传统方法及机器学习技术在预测SOC, SOH和RUL方面的
优势和限制. 此外, 还探讨了电动汽车动力电池在实际应用中面临的挑
战, 特别是性能退化问题.最后提出了对LIB未来研究方向有价值的见
解. 尽管机器学习方法在提高预测SOC, SOH和RUL准确性方面具有巨
大潜力, 但在实际应用中仍然有许多技术和实际障碍需要克服.
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