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ABSTRACT The development of a new generation of non-
antibody protein drug delivery systems requires site-directed
conjugation strategies to produce homogeneous, reproducible
and scalable nanomedicines. For that, the genetic addition of
cysteine residues into solvent-exposed positions allows the
thiol-mediated cysteine coupling of therapeutic drugs into
protein-based nanocarriers. However, the high reactivity of
unpaired cysteine residues usually reduces protein stability,
consequently imposing the use of more methodologically de-
manding purification procedures. This is especially relevant
for disulfide-containing nanocarriers, as previously observed in
THIOMABs. Moreover, although many protein scaffolds and
targeting ligands are also rich in disulfide bridges, the use of
these methodologies over emerging non-antibody carrier pro-
teins has been completely neglected. Here, we report the de-
velopment of a simple and straightforward procedure for a one-
step production and site-directed cysteine conjugation of dis-
ulfide-containing non-antibody thiolated carrier proteins
(THIOCAPs). This method is validated in a fluorescent C-X-C
chemokine receptor 4 (CXCR4)-targeted multivalent nano-
carrier containing two intramolecular disulfide bridges and one
reactive cysteine residue strategically placed into a solvent-ex-
posed position (THIO-T22-GFP-H6) for drug conjugation and
in a humanized alternative intended for clinical applications
(T22-HSNBT-H6). Thus, we produce very stable, homogeneous
and fully functional antitumoral nanoconjugates (THIO-T22-
GFP-H6-MMAE and T22-HSNBT-H6-MMAE) that selectively
eliminate target cancer cells via CXCR4-receptor. Altogether,
the developed methodology appears as a powerful tool for the
rational engineering of emerging non-antibody, cell-targeted
protein nanocarriers that contain disulfide bridges together
with a solvent-exposed reactive cysteine (THIOCAP). This
should pave the way for the development of a new generation of
stable, homogeneous and efficient nanomedicines.
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INTRODUCTION
Fine-tuning of the specific drug and payload binding location is
one of the main challenges in the development of a new gen-
eration of protein-based targeted drug delivery systems [1–4].
This is important since precisely controlled production proce-
dures allow the obtention of homogeneous, reproducible, pre-
dictable and efficient nanomedical tools [5]. Therefore, site-
directed drug conjugation has emerged as a promising alter-
native to the use of random lysine-amine-mediated binding
methodologies as the ones used in the first generation of Food
and Drug Administration (FDA)-approved targeted protein-
based nanomedicines such as the antibody drug conjugate
(ADC), Kadcyla [5–7]. For that, engineered cysteines have
appeared as an interesting approach to generate coupling targets.
Being this amino acid highly reactive, native cysteines are pre-
sent in relatively low abundance and are usually buried or in
form of disulfide bridges within non-catalytic proteins, con-
tributing to their proper folding and thermodynamic stability
[8,9]. Thus, the genetic addition of a recombinant cysteine at the
solvent-exposed position of a protein makes it suitable for site-
specific thiol-mediated coupling [10–12]. However, the intro-
duction of unpaired cysteines in such exposed positions usually
generates protein instability by disulfide cross-linking, resulting
not only in cysteine capping but also in protein precipitation
[8,13]. Although the addition of thiol reducing agents (such as
dithiothreitol (DTT) or tris (2-carboxyethyl)phosphine (TCEP))
to the protein formulation could solve this problem, disulfide-
containing nanocarriers such as ADCs and other non-antibody
protein carriers face an additional challenge: the presence of
reducing agents immediately breaks their native disulfide
bridges. Importantly, such links are essential for both structural
stability and functional integrity. This was already reported in
the development of cysteine-coupled ADCs, known as THIO-
MABs [12,14,15]. Here, unpaired cysteine residues of cys-
mutant antibodies were found to form disulfide interactions
with other cysteine or glutathione residues. This fact caps the
engineered cysteine and prevents its conjugation [12,15], while
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also producing antibody instability and aggregation [16]. This
issue was solved by using methodologically demanding partial
reduction (using TCEP or DTT) plus re-oxidation (using CuSO4
or dehydro-ascorbic acid) procedures that reduces interchain S–
S bridges (as well as the engineered cysteine) to allow then, the
formation of native antibody disulfide bonds [12,14–17]. How-
ever, although these procedures have allowed some cysteine-
coupled ADCs to go into the clinics [18], potential undesired
effects such as disulfide shuffling (also called disulfide scram-
bling) need to be avoided [17,19]. Moreover, these processes
introduce additional steps to their industrial scale up which,
following the KISS (keep it simple, stupid) principle, are meant
to be kept as simple as possible [20].

Apart from that, even though drug targeting is currently
mainly explored through ADCs, with around 14 products
already in the market since 2000 [18,21], they still do not reach
the desired clinical performance as some unsolved challenges
remain. This is because although showing some targeting
capacity, still a low percentage of the injected material is loca-
lized into the target cells, showing low penetrability and dose-
limiting off-target toxicity [18,21–24]. Therefore, there is an
increasing interest for the development of alternative non-anti-
body, protein-based nanomedical tools not only to allow better
biodistribution of therapeutic molecules but also to achieve
better penetration into target cells. In the last decades, several
emerging non-antibody carrier proteins have been developed,
based on both exogenous and human proteins [25–31] and have
been successfully used in the first generation of targeted drug
delivery systems [32–36]. However, as many of such scaffold
proteins and targeting ligands contain disulfide bridges
[26,31,37–40], it is mandatory to find appropriate methodolo-
gical tools to allow site-directed cysteine coupling while pre-
serving their structural and functional integrity. Since the multi-
step methodologies previously described for THIOMABs have
been very poorly explored in these types of emerging non-
antibody nanomaterials and might also show some limitations,
we aimed at developing a simpler and straightforward procedure
for the one-step production and site-directed cysteine coupling
of disulfide-containing non-antibody thio-carrier proteins
(THIOCAPs), avoiding more demanding partial reduction and
re-oxidation processes.

This has been explored in a self-assembling, protein-only
multivalent nanocarrier (T22-GFP-H6) that targets the cell
surface C-X-C chemokine receptor 4 (CXCR4) [40,41], which is
a clinically relevant marker for tumor cells [30,42,43]. This
fluorescent nanocarrier contains two intramolecular disulfide
bridges that are essential for the structural integrity of T22, the
targeting ligand of CXCR4 [44], and has been previously used
for the targeted delivery of different antitumoral payloads into
CXCR4+ tumor cells in form of a first generation of random
lysine-amine coupled heterogeneous nanoconjugates
[33,34,36,45].

The simple and particular methodology developed here
allowed the successful conjugation of a maleimide-functiona-
lized antitumoral drug, namely monomethyl auristatin E
(MMAE), to a reactive cysteine residue carefully placed into a
solvent-exposed loop of the carrier protein (THIO-T22-GFP-
H6). The presence of reducing agents during the purification
process produced completely dysfunctional nanoconjugates with
broken intramolecular disulfide bridges and a lack of targeting.
However, limiting the presence of the reducing agent (TCEP) to

very particular steps of the process and the following fine-tuning
of the reaction stoichiometry allowed the efficient one-step
purification and selective cysteine conjugation of a structurally
stable and fully functional THIOCAP (THIO-T22-GFP-H6)
with MMAE. The optimized method was also validated in an
alternative human-derived THIOCAP designed for clinical
applications (T22-HSNBT-H6) [25,32], allowing its efficient
one-step purification and selective conjugation of MMAE into a
solvent-exposed reactive cysteine. Optimized THIO-T22-GFP-
H6-MMAE and T22-HSNBT-H6-MMAE nanoconjugates
proved to be therapeutically active and highly selective for
CXCR4-overexpressing (CXCR4+) cancer cells.

EXPERIMENTAL SECTION

Protein design and 3D structure prediction
T22-GFP-H6, THIO-T22-GFP-H6 and T22-HSNBT-H6 pro-
teins were designed in house and their three-dimensional (3D)
structures predicted in silico by AlphaFold2 [46] algorithm
integrated in ColabFold [47] from their primary FASTA
sequence. Relative solvent-exposure of the native and engineered
cysteines was calculated in Chimera v1.16 [48] by normalizing
the surface area of the residues in the protein by the area of the
same cysteines in a reference state (Gly-Cys-Gly) [49]. Main
physicochemical properties of the proteins were also calculated
from their primary FASTA sequences by ProtParam protein
analysis Tool (Expasy) [50].

Protein production
Genes encoding for all proteins were provided by Geneart
(ThermoFisher) cloned in a pET22b plasmid (Novagen) and
transformed into an Escherichia coli (E. coli) Origami B (DE3,
OmpT- , Lon- , TrxB- , Gor-; Novagen) by heat shock (42°C,
45 s). Cells were incubated at 37°C in presence of 100 μg mL−1

ampicillin, 12.5 μg mL−1 tetracycline and 15 μg mL−1 kanamycin
and the temperature changed at the beginning of the exponential
phase (OD550: 0.5–0.7). Proteins were then produced overnight
at 20°C upon induction with 0.1 mmol L−1 isopropyl β-D-1-
thiogalactopyranoside (IPTG) and finally, cells were harvested
by centrifugation at 5000 ×g. The percentage (%) of proteins in
the cell soluble and insoluble fractions was determined by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and Western-blot immunodetection with an anti-his
monoclonal antibody (Santa Cruz Biotechnology, sc-58598)
upon cell disruption (by sonication) and cell fraction separation
by centrifugation at 15,000 ×g.

Protein purification

Standard protocol (SP)
Cell pellets, from recombinant protein-producing bacteria, were
first resuspended in aqueous buffer (20 mmol L−1 Tris-HCl,
500 mmol L−1 NaCl, 10 mmol L−1 imidazole, pH 8) supple-
mented with protease inhibitors (cOmplete EDTA free, Roche
Diagnostics) and subsequently disrupted in an EmulsiFlex C5
cell disruptor (Avestin Biopharma) by two sequential rounds at
8000–10,000 psi (1 psi = 0.155 cm−2). The soluble fraction of the
cells was then separated by centrifugation (45 min at 20,000 ×g)
and recombinant protein purified by immobilized metal affinity
chromatography (IMAC) with a 1-mL HisTrap HP column
(Cytiva) in an Äkta pure chromatography system (Cytiva).
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Protein elution was achieved by a linear gradient of elution
buffer (20 mmol L−1 Tris-HCl, 500 mmol L−1 NaCl,
500 mmol L−1 imidazole, pH 8), and the obtained protein was
finally dialyzed against a sodium bicarbonate solution with salt
(166 mmol L−1 NaHCO3, 333 mmol L−1 NaCl, pH 8).

TCEP all buffer (AB) protocol
Cell pellets were resuspended in a TCEP-supplemented wash
buffer (20 mmol L−1 Tris-HCl, 500 mmol L−1 NaCl,
10 mmol L−1 imidazole, 2 mmol L−1 TCEP, pH 8) in presence of
protease inhibitors (cOmplete EDTA free, Roche Diagnostics)
and subsequently disrupted in an EmulsiFlex C5 cell disruptor
(Avestin Biopharma) by two sequential rounds at 8000–
10,000 psi. The soluble fraction of the cells was then separated by
centrifugation (45 min at 20,000 ×g) and subsequently charged
in a 1-mL HisTrap HP IMAC column (Cytiva) with an Äkta
pure chromatography system (Cytiva). The column-bound
protein was then first washed with a TCEP-supplemented wash
buffer (20 mmol L−1 Tris-HCl, 500 mmol L−1 NaCl, 2 mmol L−1

TCEP, pH 8) and elution achieved by a linear gradient of TCEP-
supplemented elution buffer (20 mmol L−1 Tris-HCl,
500 mmol L−1 NaCl, 500 mmol L−1 imidazole, 2 mmol L−1

TCEP, pH 8). The obtained protein was finally thoroughly
dialyzed against a sodium bicarbonate solution with salt
(166 mmol L−1 NaHCO3, 333 mmol L−1 NaCl, pH 8) for THIO-
T22-GFP-H6 and sodium bicarbonate solution (166 mmol L−1

NaHCO3, pH 8) for T22-HSNBT-H6 in order to completely
remove any trace of TCEP.

TCEP lysis buffer (LB) protocol
Cell pellets were resuspended in a TCEP-supplemented wash
buffer (20 mmol L−1 Tris-HCl, 500 mmol L−1 NaCl,
10 mmol L−1 imidazole, 2 mmol L−1 TCEP, pH 8) in presence of
protease inhibitors (cOmplete EDTA free, Roche Diagnostics)
and subsequently disrupted in an EmulsiFlex C5 cell disruptor
(Avestin Biopharma) by two sequential rounds at 8000–
10,000 psi. The soluble fraction of the cells was then separated by
centrifugation (45 min at 20,000 ×g) and subsequently charged
in a 1-mL HisTrap HP IMAC column (Cytiva) with an Äkta
pure chromatography system (Cytiva). The column-bound
protein was then washed with a TCEP-free wash buffer
(20 mmol L−1 Tris-HCl, 500 mmol L−1 NaCl, pH 8) in order to
remove any trace of TCEP and then eluted in a linear gradient of
elution buffer (20 mmol L−1 Tris-HCl, 500 mmol L−1 NaCl,
500 mmol L−1 imidazole, pH 8). The obtained protein was finally
dialyzed against a sodium bicarbonate solution with salt
(166 mmol L−1 NaHCO3, 333 mmol L−1 NaCl, pH 8) for THIO-
T22-GFP-H6 and sodium bicarbonate solution (166 mmol L−1

NaHCO3, pH 8) for T22-HSNBT-H6.
In all cases, protein purity was analyzed by SDS-PAGE and

Western-blot immunodetection using an anti-His mouse
monoclonal antibody (Santa Cruz Biotechnology, sc-58598 ).
Protein integrity and presence of covalent disulfide-dimer was
determined by matrix-assisted laser desorption/ionization time
of flight (MALDI-TOF) mass spectrometry. The amount of
purified protein was finally determined by Bradford assay.

Antitumor drug conjugation
Maleimide-functionalized MMAE was purchased at Med-
ChemExpress (HY-15575) and resuspended in anhydrous
dimethyl sulfoxide (DMSO). THIO-T22-GFP-H6 and parental

T22-GFP-H6 carrier proteins were incubated in presence of
different protein:drug molar ratios (1:1, 1:1.5, 1:2 and 1:50) for
4 h, in aqueous solution (166 mmol L−1 NaHCO3, 333 mmol L−1

NaCl, 0.8 mmol L−1 EDTA pH 8) at room temperature. T22-
HSNBT-H6 carrier protein was incubated at different protein:
drug molar ratios of 1:1, 1:1.5 and 1:2. Finally, excess of non-
conjugated MMAE molecules were completely removed from
the nanoconjugates by IMAC re-purification using a HisTrap
HP 1 mL column in an ÄKTA pure (Cytiva) chromatography
system and dialyzed against sodium bicarbonate with salt solu-
tion (166 mmol L−1 NaHCO3, 333 mmol L−1, pH 8).

Morphometric characterization
Size distributions of THIO-T22-GFP-H6 nanoparticles and
THIO-T22-GFP-H6-MMAE nanoconjugates were determined
by dynamic light scattering (DLS) in a Zetasizer Ultra Red
(Malvern Instruments) at 633 nm and a backscattered detector
(173°). Samples were measured in triplicate (n = 3) and the
average intensity size values are expressed as mean ± standard
error.

Fluorescence determination
Fluorescence of T22-GFP-H6 carrier protein, THIO-T22-GFP-
H6 thio-carrier protein and THIO-T22-GFP-H6-MMAE nano-
conjugates (LB and AB protocols) at 0.1 mg mL−1 was measured
in a 96-well plate reader upon excitation at 485 nm and emission
detection at 535 nm. Samples were measured in triplicate.

Cell culture, protein internalization and competition assay
UM-SCC-22A-CXCR4+ cells, kindly provided by Dr. Gregory
Oakley and further transducted with a lentiviral CXCR4-luci-
ferase plasmid (pLenti-III-UbC-CXCR4- 2A-luc, Abm), were
cultured in 12-well plates in Dulbecco’s modified Eagle’s med-
ium (DMEM, Gibco) containing 10% fetal bovine serum (FBS,
Gibco) at 37°C and 5% CO2. Cells were then incubated in pre-
sence of 20 nmol L−1 of THIO-T22-GFP-H6-MMAE nano-
conjugates (LB and AB protocols) or parental THIO-T22-GFP-
H6 and T22-GFP-H6 carrier proteins for 3 h. A potent CXCR4
receptor antagonist AMD3100 (octahydrochloride hydrate, Sig-
ma) was incubated for 1 h before sample addition for competi-
tion assays. Cells were then washed with phosphate buffer saline
(PBS) and treated with “harsh” trypsin digestion (1 mg mL−1,
15 min) to remove externally attached proteins. Finally, inter-
nalized fluorescence was recorded in a MACSQuant10 flow
cytometer (Miltenyi Biotec) with 488 nm laser and 525/50 nm
detector. All samples were analyzed in duplicate and the results
are expressed in internalized mean fluorescence ± standard
error.

In vitro cell viability assay
UM-SCC-22A-CXCR4+ cells were cultured in 96-well plates in
DMEM medium (Gibco) containing 10% FBS (Gibco) at 37°C
and 5% CO2. Cells were then incubated in presence of different
concentrations of THIO-T22-GFP-H6-MMAE and T22-
HSNBT-H6-MMAE nanoconjugates (0–50 nmol L−1) for 48 h.
Cell viability was finally tested by XTT Cell Proliferation Kit II
(Roche) on a multi-well spectrophotometer at 490 nm
(FLUOstar Optima, BMG, Labtech). THIO-T22-GFP-H6 and
T22-HSNBT-H6 carrier proteins were added as negative con-
trols. All samples were analyzed in triplicate and data are
expressed as mean of viability ± standard error.
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Statistical analysis
Differences in relative specific fluorescence and hydrodynamic
size were assessed using one-way ANOVA with post-hoc Tukey
test. Specificity studies and cell viability assays that required the
comparison between two conditions were approached using
multiple t-tests. Threshold of significance was set at *p ≤ 0.05,
**p ≤ 0.01, and ***p ≤ 0.001. Statistical analyses were performed
in GraphPad Prism 8.0.2.

RESULTS

Production and standard purification of T22-GFP-H6 based
THIOCAP
T22-GFP-H6 is a 30.6-kDa disulfide-containing carrier protein
that selectively targets the CXCR4 cell-surface chemokine
receptor and efficiently internalizes into CXCR4+ target cells via
receptor-mediated endocytosis [40]. This fluorescent protein
contains two completely buried cysteine residues within its beta-
barrel structure and four solvent-exposed cysteines at the T22
ligand, which are capped in form of structural disulfide bridges
(Fig. S1). Therefore, to allow the cysteine-directed site-selective
conjugation of T22-GFP-H6, an additional unpaired cysteine
residue was engineered at the position 199 of the carrier protein
and named as THIO-T22-GFP-H6 (Fig. 1). This position was

selected as it is located in a solvent-exposed loop (Fig. S1) that
admits peptide insertions without affecting protein folding [51–
53], and that is placed at the opposite position from T22 within
the tertiary structure (Fig. 1).

Recombinant production of the novel THIOCAP (THIO-T22-
GFP-H6) in E. coli resulted in a fully fluorescent protein that was
mainly present in the soluble fraction of the cell lysate, in an
amount comparable to the parental T22-GFP-H6 (Fig. 2a,
Fig. S2). However, the SP of cell disruption and IMAC pur-
ification resulted in a dramatic reduction in the yield of THIO-
T22-GFP-H6, which was mainly due to drastic protein pre-
cipitation induced by intermolecular disulfide cross-linking
upon purification (Fig. 2a). This was reflected in the mass
spectrum of the remaining soluble fraction (5%), which showed
a full-length protein of 30.8 kDa and a relevant presence of
covalent dimers (61.2 kDa), the combination of which had a
high tendency to precipitate (Fig. 2b). In this regard, precipitated
THIO-T22-GFP-H6 protein could be fully resuspended upon
addition of strong reducing agents such as DTT or TCEP,
resulting in stable protein monomers with low presence of
dimers (Fig. 2c) but with disrupted intramolecular disulfide
bridges (Fig. S3), which are essential for nanocarrier function-
ality.

Figure 1 Design and physicochemical properties of THIO-T22-GFP-H6 carrier protein. Modular protein design and in silico 3D structure prediction of
THIO-T22-GFP-H6 THIOCAP. Box size of the modules is only indicative. In the structure, the peptides T22 and H6 are displayed in red and blue,
respectively. The inset on the right shows the intramolecular disulfide bridges present in T22. At the bottom, the amino acid sequence of the THIO-T22-GFP-
H6 protein following the same color code and a table showing the main physicochemical parameters of THIO-T22-GFP-H6 and parental T22-GFP-H6
proteins are attached.
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Fine tuning of THIO-T22-GFP-H6 purification and site-directed
drug conjugation
At that point, to avoid the use of more methodologically
demanding reduction and re-oxidation processes to selectively
restore protein intramolecular disulfide bridges, two alternative
purification protocols were explored to obtain high yields of
stable and fully functional THIOCAP with intact intramolecular
disulfide pairs. We first tested the addition of a reducing agent
(TCEP) during the whole cell disruption and IMAC purification
process, to finally remove it in the last step of the buffer
exchange (AB), as previously done in other disulfide-lacking
carrier proteins [10]. Then, we also tested the addition of TCEP
just during a particular step of the cell lysis process to imme-
diately remove it during the IMAC (LB) (Fig. 3a). In this con-
text, both protocols (AB and LB) successfully stabilized THIO-
T22-GFP-H6 protein by avoiding intermolecular disulfide cross-
linking and subsequent precipitation, which provided protein
yields comparable to that of the parental T22-GFP-H6 (Fig. 3a).
Then, to evaluate if the unpaired cysteine within the THIOCAP
was available for an efficient site-directed cysteine coupling, we
tried to selectively conjugate a single maleimidocaproyl-func-
tionalized MMAE, a widely used microtubule-disrupting anti-
tumor drug [54], to THIO-T22-GFP-H6. For that, fine-tuning of
the reaction stoichiometry was key to achieve an efficient but
still selective Michael addition of the maleimide-drug (thioether
bond) to the engineered cysteine (Cys199), while avoiding non-
selective cross-reactivity (alkylamine bonds) with solvent-
exposed lysine-amines as observed when using an excess of drug
in high ratios (Fig. S4). In this sense, three different protein-drug

molar ratios (1:1, 1:1.5 and 1:2) were tested and the obtained
conjugation payloads were then analyzed by MALDI-TOF mass
spectrometry (Fig. 3b). Using the LB protocol, the incubation of
THIO-T22-GFP-H6 at the lowest ratios (1:1 and 1:1.5) resulted
in the selective but still partial conjugation of MMAE to the
Cys199 of the carrier protein (high presence of unconjugated
protein). It was necessary to increase the protein-drug molar
ratio up to 1:2 to observe an efficient protein conjugation with a
single MMAE molecule (Fig. 3b). In contrast, no MMAE con-
jugation was observed in the Cys199-lacking parental T22-GFP-
H6 under any of the tested conditions (Fig. 3b). Interestingly,
mass spectra also revealed that the AB protocol, although being
very efficient in avoiding protein precipitation, still generated
THIOCAPs with broken disulfide bridges, as a heterogeneous
mixture of proteins with up to 5 MMAE molecules (5 available
cysteines) could be observed at all ratios (Fig. 3b). Therefore, the
LB protocol revealed to be the only methodology able to produce
fully folded THIO-T22-GFP-H6 THIOCAP with acceptable
yields. Moreover, conjugation at a protein-drug molar ratio of
1:2 was determined to be the best stoichiometry to selectively
bind a single MMAE molecule to the engineered cysteine. In this
regard, an alternative maleimide-functionalized drug was also
efficiently conjugated to the reactive cysteine at the optimized
conditions to confirm the wide applicability of the engineered
THIOCAP (Fig. S5).

Functional characterization of THIO-T22-GFP-H6-MMAE
nanoconjugates
Functional characterization of the THIOCAP and generated

Figure 2 Recombinant production and purification of THIO-T22-GFP-H6 THIOCAP (SP). (a) Quantitative data of THIO-T22-GFP-H6 and parental T22-
GFP-H6 protein recombinant production in the soluble and insoluble cell lysate fractions and percentages of protein precipitation and yield upon SP IMAC
purification. Unstable disulfide dimers are depicted on the right. (b) MALDI-TOF spectrum of THIO-T22-GFP-H6 THIOCAP in the cell soluble fraction
upon purification with the SP. A mixture of protein monomers and disulfide dimers are depicted on the right. (c) MALDI-TOF spectrum of THIO-T22-GFP-
H6 THIOCAP upon resuspension from the cell insoluble fraction with DTT. Reducing agent-stabilized protein monomers are depicted on the right.
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MMAE-nanoconjugates was performed in order to evaluate the
suitability of the developed methodology for biomedical appli-
cations. In this sense, while the insertion of the recombinant
cysteine had no impact on the tertiary structure of the carrier
protein, the conjugation of MMAE into the engineered cysteine
(Cys199) resulted in a mild reduction in the protein-specific
fluorescence (Fig. 4a). However, generated THIO-T22-GFP-H6-
MMAE nanoconjugates conserved their pseudospherical
nanoscale structure with an average size distribution of around
14 nm, making them suitable for multivalent ligand presentation
(Fig. 4b, Fig. S6). Of note, disulfide-disrupted MMAE-nano-
conjugates (AB protocol) showed larger nanoparticle size com-
pared with unfolded and MMAE-conjugated T22 (Fig. 4b). In
consequence, THIO-T22-GFP-H6-MMAE nanoconjugates (LB

protocol) efficiently internalized into CXCR4+ Head and Neck
UM-SCC-22A-CXCR4+ cancer cells by receptor-mediated
endocytosis to a similar extent as THIO-T22-GFP-H6 and par-
ental T22-GFP-H6 nanoparticles (Fig. 4c). This fact confirmed
the correct folding of intramolecular disulfide bridges within
T22, the CXCR4 ligand. Related to that, internalization of the
nanoconjugate was efficiently blocked by the CXCR4 antagonist
AMD3100 (Fig. 4c). In contrast, disulfide-disrupted THIOCAP,
generated following the AB protocol, produced completely
dysfunctional nanoconjugates that failed to induce internaliza-
tion into target cells (Fig. 4c). Thus, in vitro incubation of the
functional THIO-T22-GFP-H6-MMAE nanoconjugates over
UM-SCC-22A-CXCR4+ cancer cells resulted in a potent and
CXCR4-selective cytotoxic effect (Fig. 4d) with a half maximal

Figure 3 Fine-tuning of THIOCAP production and cysteine-directed drug conjugation. (a) Schematic representation of the THIO-T22-GFP-H6 production
and purification following AB or LB protocols, in comparison with parental T22-GFP-H6 protein purified following the SP. The table shows the percentage of
protein precipitation and obtained yield upon IMAC purification. (b) MALDI-TOF spectra of parental T22-GFP-H6 and THIO-T22-GFP-H6 THIOCAP
produced by AB or LB method upon conjugation with different protein-drug molar ratios (1:1, 1:1.5 and 1:2) of maleimide-functionalized MMAE. Numbers
above each peak indicate the amount of MMAE molecules (1.3 kDa) incorporated over the THIOCAP (30.8 kDa).
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inhibitory concentration (IC50) in the nanomolar range (Fig. S7),
demonstrating the full functionality and potential biomedical
applications of the generated THIOCAP.

Methodology validation in a humanized THIOCAP
Lastly, the broad applicability of the developed methodology was
also validated in an alternative THIOCAP derived from the
human nidogen (T22-HSNBT-H6) that has been designed for
biomedical applications [25,32]. T22-HSNBT-H6 is a 30.3-kDa
protein that contains two structural disulfide bridges within the
CXCR4 ligand T22 and an intrinsic unpaired reactive cysteine
placed in a solvent-exposed loop at position 215 (Fig. S8). As
expected, its recombinant production in E. coli following the SP
resulted in a strong intermolecular disulfide cross-linking and
subsequent protein precipitation upon purification (Fig. S8).
Again, both protocols (AB and LB) successfully stabilized the
T22-HSNBT-H6 THIOCAP by significantly reducing inter-
molecular disulfide cross-linking and subsequent protein pre-
cipitation (Fig. 5a). However, the MMAE conjugation again
revealed that although the AB protocol is slightly more efficient
in avoiding protein precipitation, it still generates disulfide-
disrupted THIOCAPs, as a heterogeneous mixture of protein

with up to five MMAE molecules could be observed at all the
tested molar ratios (Fig. 5b). On the other hand, the LB protocol
produced fully folded T22-HSNBT-H6 THIOCAPs where the
unpaired cysteine (Cys 215) was fully available for its selective
conjugation with a single MMAE molecule, as expected. Here,
the 1:2 protein-drug molar ratio showed again to be the lowest
ratio that allowed efficient site-directed cysteine conjugation
while still avoiding significant unspecific lysine-amine nucleo-
philic attack (Fig. 5b). Finally, the generated T22-HSNBT-H6-
MMAE nanoconjugates (LB protocol, 1:2 ratio) also presented a
pseudospherical nanoscale structure with an average size dis-
tribution of around 32 nm (Fig. S6) and induced a strong
CXCR4-dependent antitumoral effect over UM-SCC-22A-
CXCR4+ cancer cells (Fig. 5c) with an IC50 in the nanomolar
range (Fig. S7).

DISCUSSION
Reactive cysteine residues fulfill a wide spectrum of functions
within proteins, ranging from structural roles in disulfide folding
to enzymatic activities such as redox catalysis, hydrolysis, redox
signaling, metal binding or even antioxidant defense [55,56]. In
consequence, unless exposed in the active site of enzymes,

Figure 4 Functional characterization of THIO-T22-GFP-H6-MMAE nanoconjugates. (a) Relative specific fluorescence of THIO-T22-GFP-H6 thio-carrier
protein (THIOCAP), functional THIO-T22-GFP-H6-MMAE nanoconjugates (THIOCAP-MMAE) and disulfide-disrupted THIO-T22-GFP-H6-MMAE
nanoconjugates (THIOCAP-MMAE, AB) compared with parental T22-GFP-H6 carrier protein (CAP). (b) Size distributions of T22-GFP-H6 carrier protein
(CAP), THIO-T22-GFP-H6 (THIOCAP), functional THIO-T22-GFP-H6-MMAE nanoconjugates (THIOCAP-MMAE) and disulfide-disrupted THIO-T22-
GFP-H6-MMAE nanoconjugates (THIOCAP-MMAE, AB) determined by DLS. Data are represented as mean ± standard error. (c) Relative intracellular
accumulation of parental T22-GFP-H6 carrier protein (CAP) and THIO-T22-GFP-H6 thio-carrier protein (THIOCAP) compared with functional THIO-T22-
GFP-H6-MMAE nanoconjugates (THIOCAP-MMAE) and disulfide-disturbed THIO-T22-GFP-H6-MMAE nanoconjugates (THIOCAP-MMAE, AB) upon
incubation over UM-SCC-22A-CXCR4+ cancer cells at 20 nmol L−1 for 3 h in absence (− AMD) or presence (+ AMD) of the CXCR4 antagonist AMD3100.
(d) Cytotoxic effect of the functional THIO-T22-GFP-H6-MMAE nanoconjugates (THIOCAP-MMAE) measured as UM-SCC-22A-CXCR4+ cancer cell
viability determined by XTT upon incubation at 20 nmol L−1 for 48 h in absence (− AMD) or presence (+ AMD) of the CXCR4 antagonist AMD3100.
Parental THIO-T22-GFP-H6 thiolated carrier protein (THIOCAP) was used as a negative control. Significant differences between relevant data pairs are
indicated as *** for p < 0.001.
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cysteine residues are usually present in relatively low abundance
and are generally capped in form of disulfide bridges or buried
within the tertiary structure of proteins [57]. In this scenario,
cysteines have become the primary choice to be strategically
placed in a solvent-exposed position of a carrier protein to be
used as a site-selective conjugation target for thiol-reacting
therapeutic drugs. However, being their sulfhydryl group highly

nucleophilic [57,58], introduction of unpaired cysteines into
carrier proteins is usually accompanied by structural instability,
aggregation and low protein yields as a consequence of inter-
molecular disulfide cross-linking [10,13,16]. This was also
observed in our cysteine-engineered THIOCAP variant (THIO-
T22-GFP-H6), which, although being perfectly produced in the
cell soluble fraction (93.22%) of E. coli, showed a very strong rate

Figure 5 T22-HSNBT-H6 THIOCAP production, MMAE-conjugation and functional characterization. (a) Schematic representation of T22-HSNBT-H6
THIOCAP production and purification following the AB and LB protocols. The table shows the percentage of protein precipitation and obtained yield upon
IMAC purification. (b) MALDI-TOF spectra of T22-HSNBT-H6 THIOCAP produced by AB or LB method upon conjugation with different molar ratios (1:1,
1:1.5 and 1:2) of maleimide-functionalized MMAE. Numbers above each peak indicate the amount of MMAE molecules (1.3 kDa) incorporated over the
THIOCAP (30.3 kDa). (c) Cytotoxic effect of T22-HSNBT-H6-MMAE nanoconjugate (LB, 1:2 ratio) measured as UM-SCC-22A-CXCR4+ cancer cell viability
determined by XTT upon incubation at 20 nmol L−1 for 48 h in absence (− AMD) or presence (+ AMD) of the CXCR4 antagonist AMD3100. Parental T22-
HSNBT-H6 THIOCAP was used as a negative control. Significant differences between relevant data pairs are indicated as *** for p < 0.001 and ** for p < 0.01.
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of precipitation (94.99%) upon protein purification (Fig. 2a). In
this sense, as both the engineered THIOCAP and the parental
T22-GFP-H6 share similar physicochemical properties (Fig. 1),
the observed behavior was revealed to be due to inter-molecular
disulfide cross-linking (via introduced reactive cysteine), as
generated insoluble fraction could be efficiently resuspended
upon addition of a reducing agent (Fig. 2b, c).

Unlike other disulfide-lacking protein carriers that have easily
solved this situation by the addition of a thiol reducing agent in
the protein formulation before conjugation [59,60], disulfide-
containing protein carriers such as antibodies or innovative
THIOCAPs face a more challenging scenario as they need to
prevent capping of engineered cysteines and intermolecular
disulfide cross-linking, while maintaining intact intramolecular
disulfide folding. In this sense, our novel engineered THIOCAP
(THIO-T22-GFP-H6) contains one unpaired reactive cysteine
strategically placed in an exposed position of the protein
(Cys199) and four additional solvent-accessible cysteines, in
form of two intramolecular disulfide bridges (Cys5/Cys18 and
Cys9/Cys14) that are essential for its functional folding and
CXCR4-targeting (Fig. 1, Fig. S1). As expected, addition of thiol-
reducing agents (TCEP) to purified protein (SP) efficiently sta-
bilized protein formulation (Fig. 2c) but also resulted in the full
disulfide bridge disruption, as all five cysteines were available for
MMAE conjugation (Fig. S3). Therefore, to avoid the use of
more methodologically demanding partial reduction and re-
oxidation procedures used in THIOMABs [12,14–17], which can
potentially face some disulfide scrambling problems [17,19,61]
and which have been very poorly explored in alternative dis-
ulfide-containing carrier proteins, we aimed to develop a simpler
and straightforward procedure for the one-step production and
site-directed cysteine-conjugation of THIOCAPs.

The addition of a thiol-reducing agent (TCEP) during the cell
lysis and IMAC purification process, to be meticulously removed
at the final step of the buffer exchange (AB process), drastically
increased protein stability (from 94.99% to 0.85% precipitation)
and the obtained yield (from 4.05 mg mL−1 to 35.86 mg L−1) to a
level comparable to that of the parental T22-GFP-H6 (Figs 2 and
3a). However, the removal of TCEP at the final step of the
process, just prior to protein conjugation, was not sufficient for
the efficient refolding of the native disulfides, and all five sol-
vent-exposed cysteines were therefore available for MMAE
conjugation (Fig. 3b). This generated completely dysfunctional
THIO-T22-GFP-H6-MMAE nanoconjugates that failed in
CXCR4-targeting and cell internalization (Fig. 4c). This was not
anticipated from previous work where a non-antibody carrier
protein was conjugated to an Auristatin derivative (MMAF)
using a similar methodology, as they used a disulfide-lacking
protein carrier [10]. On the other hand, limiting the presence of
TCEP to a very particular step of the cell lysis process to be
immediately removed during the IMAC purification steps (LB
process) significantly improved protein stability (6.78% pre-
cipitation) and the obtained yield (32.08 mg L−1), although in a
slightly lesser extent than the AB process (Fig. 3a). However,
such more refined methodology allowed the successful refolding
of the TCEP-disrupted T22 structure to obtain a fully folded
THIO-T22-GFP-H6 THIOCAP with unaltered disulfide bridges,
as just the engineered cysteine (Cys199) was available for MMAE
conjugation (Fig. 3b).

Then, fine-tuning of the reaction stoichiometry revealed that a
slight excess of maleimide-functionalized drug (1:2 molar ratio)

was necessary to obtain an efficient thio-Michael addition of the
drug to Cys199 (Fig. 3b), while avoiding non-selective cross-
nucleophilic attack on protein lysine-amines, as it occurs in
presence of a high excess (1:50 ratio) of the drug (Fig. S4)
[62,63]. As expected, the parental T22-GFP-H6, which lacks
exposed cysteines, only showed non-selective lysine-amine
cross-reactivity at high conjugation ratios (Fig. S4) but no
MMAE coupling at lower ratios (1:1, 1:1.5 and 1:2) (Fig. 3b),
corroborating the sulfhydryl-selectivity of the maleimide at low
conjugation ratios under physiological conditions [63].

Thus, the particular methodology here developed allowed the
efficient production and successful site-specific conjugation of a
disulfide-containing THIOCAP. This approach generates a fully
functional nanoconjugate (THIO-T22-GFP-H6-MMAE) that
delivers its therapeutic payload into CXCR4+ cancer cells
(Fig. 4c) to induce a very potent and CXCR4-dependent cyto-
toxic effect within the nanomolar range (Fig. 4d, Fig. S7). This is
achieved without preventing the cation-coordinated self-assem-
bling capacity of the nanocarrier (Fig. 4b, Fig. S6) [64], which is
very convenient for multivalent ligand presentation and receptor
super-selectivity, a property highly desired in clinics [65–67].

Finally, the broader applicability of the developed methodol-
ogy has been validated in an alternative disulfide-containing
humanized THIOCAP (T22-HSNBT-H6), which is meant to
avoid nanocarrier related immune-toxicities in targeted delivery
settings [25,32]. This is highly relevant as exogenous proteins
such as GFP can trigger strong immune reactions that severely
limit their clinical use [68–70]. Here, the LB protocol showed
again to efficiently stabilize the T22-HSNBT-H6 protein
(Fig. 5a) to obtain a fully folded CXCR4-targeted THIOCAP that
allowed its site-directed cysteine-coupling of a maleimide-
functionalized MMAE at the 1:2 molar ratio (Fig. 5b). Then, the
generated T22-HSNBT-H6-MMAE nanoparticles (Fig. S6)
showed again strong CXCR4-dependent antitumoral effect
(Fig. 5c) within a nanomolar range comparable to its GFP-based
counterpart (Fig. S7). Moreover, the obtained high product
homogeneity also paves the way for its future clinical applica-
tions, which compared with the first generation of CXCR4-tar-
geted nanoconjugates [32,33,36,45] presents a more refined
product characterization and enhanced batch-to-batch repro-
ducibility.

CONCLUSIONS
In the context of emerging nanomedicines, we have developed
here a novel and highly demanded procedure for the successful
production and site-directed cysteine-conjugation of innovative,
cell-targeted drug delivery systems based on disulfide-containing
non-antibody thio-carrier proteins (THIOCAPs). This simple
yet refined methodology has allowed the unpaired cysteine sta-
bilization and high-yield purification of different CXCR4-tar-
geted THIOCAPs (THIO-T22-GFP-H6 and T22-HSNBT-H6),
avoiding the use of methodologically demanding partial reduc-
tion and re-oxidation procedures to conserve their intramole-
cular disulfide bridges, which are mandatory for their functional
and conformational stability. Then, together with a fine tuning
of the reaction stoichiometry, we have generated highly homo-
geneous and fully functional cysteine-coupled nanoconjugates
that not only conserved their supramolecular nanoscale struc-
ture, but also, selectively internalized into CXCR4+ cancer cells
to efficiently induce a potent therapeutic action. Therefore,
THIOCAP technology and its associated methodologies appear
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as an emerging biomedical tool for the rational engineering of
new generation of disulfide-containing non-antibody targeted
nanomedicines. Moreover, their enhanced homogeneity,
improved batch-to-batch reproducibility and simplified indus-
trial scale-up will pave the way towards clinical application.
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