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ABSTRACT As a type of wound dressings, adhesive hydrogel
dressings have been studied widely. However, due to the
problems of moisture loss and secondary damage during
dressing changes, the clinical application of adhesive hydrogel
dressing remains a significant challenge. Herein, we developed
a water-retaining and separable adhesive hydrogel wound
dressing composed of methacrylated silk fibroin (SFMA),
tannic acid (TA), and urethane diacrylate (UDA). The addi-
tion of TA with an abundance of catechol groups endowed the
hydrogel with improved mechanical properties, good tissue
adhesion and hemostasis abilities. Then, a hydrophobic
polyurethane diacrylate (PUA) coating encapsulated the hy-
drogel by UDA polymerization, which could maintain the
long-lasting high water content of the hydrogel. Furthermore,
due to the adhesion energy being higher than the fracture
energy of the hydrogel, it could be separated upon peeling.
Finally, the animal experiments indicated that this adhesive
hemostatic hydrogel could increase wound healing efficiency
by maintaining long-lasting moist environment and being
changed without secondary damage. These results showed that
the multifunctional hydrogel might be a promising wound
dressing for clinical application.

Keywords: adhesive hydrogel, water retention, separability, no
secondary damage, wound dressing

INTRODUCTION
Skin is a multilayer organ that covers the surface of the human
body and has the functions of defending the body against bac-
teria attacks, preventing body dehydration, and feeling external
temperature [1,2]. However, skin is susceptible to injury from
multiple factors such as cullet and knives [3]. Once the skin
suffers an injury, it often needs wound dressing to achieve rapid
closure and accelerate wound healing [4]. Due to the low cost
and good hemostatic properties, gauze is the most commonly
used wound dressing [5,6]. Unfortunately, gauze often causes
severe secondary damage to the injured wound during gauze
changes because the newly grown tissue is adhered tightly by
gauze [4,7,8]. In addition, studies have shown that a moist
healing environment facilitates the migration and proliferation
of endothelial cells, fibroblasts, and epithelial cells, whereas
traditional gauzes provide a dry healing environment, which is

not favorable for wound healing [9–11].
Due to the advantages of high water content, biophysical

similarity to natural tissue, and good tissue adhesion, adhesive
hydrogels as wound dressings have aroused the interest of many
researchers [12,13]. Adhesive hydrogels can not only adhere to
the wound to close it and stop bleeding, but also act as a physical
barrier to isolate the external environment and provide a moist
environment to accelerate wound healing [14,15]. Tannic acid
(TA), a natural polyphenol extracted from various plants, has
valuable properties such as antibacterial and anti-inflammation
abilities [16–18]. Importantly, TA can react with many polymers
by hydrogen bonding because of its availability of catechol
groups [19,20]. Since TA-based hydrogels with good adhesion
ability can be obtained simply by mixing TA and polymers, such
hydrogels are widely used in wound healing [18,20,21]. Never-
theless, almost all TA-based adhesive hydrogels typically dehy-
drate and shrink when exposed to open air, leading to the loss of
flexibility and the moist environment, as well as causing unne-
cessary secondary damage to the newly formed tissue during
dressing changes, which extremely limits their clinical applica-
tions [22,23].

Much research shows that the addition of highly hydrated
salts or excess organic solvents can effectively improve the water
retention properties of hydrogels, but these methods usually
result in high osmotic pressure and poor biocompatibility [24–
26]. Currently, a new strategy to improve the water retention
capacity of hydrogel is to encapsulate the hydrogel with a
hydrophobic coating [27–29]. Especially, the hydrophobic
polyurethane diacrylate (PUA) coating polymerized from ure-
thane diacrylate (UDA) using an “inside-out” technology can
encapsulate a wide variety of hydrogels with various types and
shapes easily, thus, preventing the evaporation of water from the
hydrogel [27]. But this strategy has not yet been used in hydrogel
wound dressings. We hypothesize that good water-retaining
ability can also be obtained with adhesive hydrogels by encap-
sulating surfaces that do not contact to the wound with the PUA
coating.

Recently, the method of on-demand removal has often been
used to decrease secondary damage [4,30,31]. For example, Jiang
et al. [30] developed a skin-friendly and painless removable
adhesive hydrogel patch composed of polymerized gallic acid
and gelatin methacryloyl (GelMA). The patch could adhere
tightly to the warm skin and be removed on-demand through
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the shrinkage of the thermoresponsive GelMA chain after pla-
cing an ice bag above the patch. Based on the pH-sensitive
coordination bond (catechol-Fe) and dynamic Schiff base bonds,
Liang et al. [31] developed an adhesive hydrogel with on-
demand removal or dissolution after the intervention of defer-
oxamine mesylate (DFO) solution. Generally, the on-demand
removal of adhesive hydrogels was triggered by additional fac-
tors, which is inconvenient in practical application. In this study,
we designed an adhesive hydrogel, whose adhesion energy was
higher than its fracture energy, allowing it to be separated into
parts upon peeling, and causing little wound damage during
dressing changes, which has barely been reported.

In this work, a PUA-coated methacrylated silk fibroin/TA
(SFMA/TA (ST)) hydrogel wound dressing with good tissue
adhesion, long-lasting water retention, and separable abilities
was prepared (Fig. 1). Firstly, SF was modified with glycidyl
methacrylate (GMA) to obtain the SFMA, followed by preparing
the SFMA hydrogel by ultraviolet (UV) crosslinking [32]. Then,
the SFMA hydrogel was immersed in TA solution, and by
varying the TA concentration and immersion time, the adhesion
energy of the ST hydrogel was adjusted and optimized to ensure
that the hydrogel had good tissue adhesion and separable abil-
ities. Next, a PUA coating encapsulated the ST hydrogel to
prepare a PUA-coated ST hydrogel with improved water
retention capability. In addition, the swelling ratio, blood coa-

gulation, in vivo hemostasis, and biocompatibility of the
hydrogel were evaluated. Finally, by establishing a full-thickness
model of rats, the effect of the PUA-coated ST hydrogel on
promoting wound healing efficiency was examined.

RESULTS AND DISCUSSION

Adhesion properties of the hydrogel
Silk is a natural protein polymer that has been approved for
medical use by the U.S. Food and Drug Administration (FDA)
[33]. SF was processed from mulberry silk, which possesses
excellent biocompatibility, controllable biodegradability,
remarkable mechanical strength, and low immunogenicity
[32,34,35]. Most importantly, the SF had remarkable mechanical
strength and could induce the formation of thrombin to accel-
erate blood coagulation [17,35,36]. Therefore, SF has been
widely used for wound healing [14,17,37]. After being modified
by GMA, the UV-cross-linkable SFMA was synthesized
(Fig. S1a). As shown in Fig. S1b, new peaks (in the region of
5.8–6.2 ppm) ascribed to C=C double bonds could be observed
in the 1H nuclear magnetic resonance (NMR) spectrum of
SFMA, indicating the successful modification. With the presence
of lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as a
photoinitiator, SFMA hydrogel was formed by exposing 15 wt%
SFMA solution to UV light for 15 s. However, the SFMA

Figure 1 (a) Comparison of traditional hydrogel dressing and PUA-coated ST hydrogel dressing. (b) Schematic of the structure of the PUA-coated ST
hydrogel.
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hydrogel had almost no adhesion properties. TA, an FDA-
approved polyphenol from nature involving abundant pyrogallol
and catechol groups, allows strong adhesion between hydrogels
and various materials through hydrogen bonding, π–π interac-
tion, and metal chelation (Fig. 2a) [14,34,38]. By immersing
SFMA hydrogel in TA solution, the ST hydrogel with adhesive
properties could be obtained [17].

The 180-degree peel test was applied to quantify the adhesion
energy of the SFMA/TA hydrogel. As shown in Fig. 2c, d, with
the increasing concentration of TA and immersion time, the
adhesion energy increased initially and then decreased. When
the concentration of TA was 5 wt% and the immersion time was
2 h, the adhesion energy of the ST hydrogel reached a peak (52.6
± 3.8 J m−2). The ST hydrogel with peak adhesion energy was
selected to do next experiments. Moreover, this ST hydrogel
could tightly adhere to the fingers with different bending angles
(0°, 45°, 90°, and 135°) and to other materials such as rubber,
metal, glass, and plastic (Fig. 2b). Interestingly, this hydrogel
adhered to fingers could be separated upon peeling and then
leave a residual adhesive to the skin (Fig. 2e), possibly because
the adhesion energy of this hydrogel was higher than its fracture
energy [39]. The next fracture energy test showed that the

fracture energy of the hydrogel was 32.7 ± 2.4 J m−2, which was
lower than its adhesion energy. Meanwhile, the inseparable
control group was obtained by adding 10 wt% methacrylated
polyethylene glycol (PEGMA) to the ST hydrogel to increase its
mechanical properties [40]. Fig. S1c shows the 1H NMR spec-
trum of PEGMA, and the degree of substitution of methacrylate
groups in PEGMA was approximately 65.83%. Similar to ST
hydrogel, after being immersed in 5 wt% TA solution for 2 h, the
PEGMA/ST (PST) hydrogel could reach a peak of adhesion
energy (55.9 ± 6.6 J m−2), which was lower than its fracture
energy (228.7 ± 44.5 J m−2) (Fig. S2). Contrary to the ST
hydrogel, the PST hydrogel was inseparable upon peeling
(Fig. 2f). Based on the above data, this separable ST hydrogel
might be suitable as wound dressing to reduce the damage to the
wound during dressing changes.

Mechanical properties of the hydrogel
Not only increasing the adhesion energy, but also the addition of
TA could enhance the mechanical strength of the ST hydrogel
due to the hydrogen bonding interactions between SFMA chains
and TA [14,17]. This interaction endowed the ST hydrogel with
a smaller pore size than that of the SFMA hydrogel (Fig. S3). To

Figure 2 (a) Adhesion mechanism of the hydrogel treated by TA solution. (b) Photographs showed the ST hydrogels adhered to fingers with different
bending angles (0°, 45°, 90°, and 135°) and to other materials (rubber, metal, glass, and plastic). (c) Adhesion energy of ST hydrogel with different
concentrations of TA. (d) Adhesion energy of ST hydrogel with different immersion times. (e) Photo and scheme of the separable ST hydrogel upon peeling.
(f) Photo and scheme of the inseparable PST hydrogel upon peeling. (g) Storage/loss (G′, G′′) modulus of SFMA and ST hydrogels. (h) Typical tensile stress-
strain curves of SFMA and ST hydrogels.
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determine the rheological properties of SFMA and ST hydrogels,
a 1% strain frequency (0.1–10 Hz) sweep test was carried out to
monitor the G′ and G′′ after the hydrogels were formed. As
shown in Fig. 2g, the G′ values were higher than the G′′ in the
whole frequency range, which indicated that the formed
hydrogels exhibited a significantly elastic behavior. In addition,
the G′ values of the ST hydrogel were always higher than that of
the SFMA hydrogel. Furthermore, the tensile tests (Fig. S4a) of
the two hydrogels were also performed. Fig. 2h shows that the
maximum tensile strengths of the SFMA and ST hydrogels were
about 22.3 and 40.3 kPa, respectively. The rheological and tensile
tests both demonstrated that TA could improve the mechanical
strength of the ST hydrogel. Next, a fifty-cycle tensile test was
carried out at a strain of 80% (Fig. S4b). A similar hysteresis
curve was observed for all cycles, demonstrating that the ST
hydrogel had good fatigue resistance.

Formation and functions of PUA coating
Fig. 3a schematically shows the formation of the PUA coating on
the surfaces of the ST hydrogel. In the first step, the cylinder-
shaped ST hydrogel (diameter = 15 mm, thickness = 2 mm) was
placed in a bath, and then immersed in the 0.5 wt% I2959 (a
water/oil soluble photoinitiator) solution for 5 min. The
hydrogel was taken out and the residual I2959 solution on the
surface was wiped off. As shown in Fig. S5, through the rever-
sion procedure, the hydrogel could obtain better water-retention
capability, so, in the second step, the hydrogel was reversed and
suspended in the oligomeric UDA bath. By exposing the bottom
of the UDA bath to the UV light (365 nm), the free-radical
polymerization of the UDA oligomer would be triggered by the
I2959 photoinitiator to form the PUA coating. Finally, except for
the surface 2, the hydrogel was encapsulated by a transparent
and shape-fitted PUA coating.

Figure 3 Formation and functions of PUA coating. (a) Schematic diagram of the PUA coating fabrication around ST hydrogel except for the surface 2.
(b) SEM images of coatings formed by different UV exposure times (10, 30, and 60 min). (c) Photos at given times (0, 10, 24, and 48 h) of hydrogels with
varying thicknesses of coatings formed by different UV exposure times (0, 10, 30, and 60 min). (d) Weight ratio of hydrogels with time. (e) Swelling ratio of
hydrogels with time.
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Scanning electron microscopy (SEM) images (Fig. 3b) indi-
cated that by extending the polymerization time from 10 to
60 min, the thickness of PUA coating increased from about 54.4
to 139.2 μm. Next, the water retention capability of hydrogels
with varying thicknesses of coatings was tested (Fig. 3c, d). The
hydrogel without coating noticeably shrank, and the weight ratio
of it was only 28.3 ± 1.1 wt% at 10 h due to the quick water
evaporation, and then reached equilibrium (19.9 ± 0.4 wt%) at
about 24 h. In comparison, the water retention capability of
hydrogels with coatings significantly increased. When the
polymerization time of PUA coating was 10 min, the hydrogel
could maintain its shape till 24 h, but it would shrink obviously
at 48 h, and the weight ratio was only 48.0 ± 6.0 wt%. When the
polymerization time was prolonged to 30 and 60 min, the size of
corresponding hydrogels showed almost no change at 48 h.
Besides, there was no noticeable difference between the weight
ratios of the two hydrogels. Based on the water retention cap-
ability and polymerization efficiency, we selected the 30 min
polymerization time for all subsequent studies, and the ST
hydrogel encapsulated by the coating was named PUA-coated
ST hydrogel. The low swelling ratio property was also essential
to hydrogel dressings because it could decrease the weak
mechanical toughness caused by absorbing wound exudate
[41,42]. As shown in Fig. 3e, due to the interactions between
SFMA chains and TA molecules, the ST hydrogel had a lower
swelling ratio than the SFMA hydrogel. The existence of PUA
coating could further decrease the swelling ratio by encapsu-
lating the ST hydrogel. In summary, because of the good water
retention capability and low swelling ratio, the PUA-coated ST
hydrogel could be a hydrogel dressing for wound healing.

Hemostasis properties of the hydrogel
Generally, hydrogel’s good tissue adhesive property will give it
good hemostatic properties [43]. The in vitro hemostatic prop-
erty of the hydrogel was evaluated by the blood coagulation

index (BCI), where the higher BCI value showed a lower clotting
rate. Fig. 4a shows the control and gauze groups had higher BCI
values than the hydrogel group. Next, the tail amputation model
of mice was further established to evaluate the in vivo hemostatic
property of the hydrogel (Fig. 4b). As shown in Fig. 4c, the blood
loss from the control group (135.0 ± 9.5 mg) was the highest.
After being treated with gauze and hydrogel, the blood loss
reduced to 78.7 ± 18.7 and 41.3 ± 5.0 mg. Fig. 4d shows that the
hemostasis time of the adhesive hydrogel group (126.7 ± 21.4 s)
was distinctly shorter than that of the blank (254.3 ± 18.4 s) and
gauze (163.3 ± 6.5 s) groups. Gauze had hemostasis properties by
absorbing blood plasma to concentrate red blood cells (RBCs)
and coagulation factors [44,45]. On the one hand, the hydrogel
could stick to the blood area and act as a physical barrier to
prevent blood loss. On the other hand, the hydrogen bonding
interactions between TA and proteins in blood might also
decrease bleeding [16]. Furthermore, SF could induce the for-
mation of thrombin to accelerate blood coagulation [36]. Based
on the above data, this adhesive hydrogel had good hemostatic
properties.

Biocompatibility of the hydrogel
Good biocompatibility was a precondition for wound-healing
biomaterials. The rupture of RBCs would lead to the release of
platelet, hemoglobin, and even thrombus formation, so the RBCs
compatibility was of great importance to wound dressing in
contact with blood [46]. A hemolytic activity assay was used to
evaluate the hemolysis ratio of the hydrogel. Fig. 5a shows that
the hemolysis ratio of the hydrogel was considerably lower than
that of the ddH2O group. Besides, the cytocompatibility test of
the hydrogel with L929 cells was evaluated. As shown in Fig. 5b,
the optical density at 450 nm (OD450) indicated that over 85% of
cells of the hydrogel group remained survival at 12, 24, and 48 h,
which was much higher than the lowest acceptable standard of
nontoxicity of biomaterials (70%) [47,48]. The confocal images

Figure 4 Hemostasis properties of the hydrogel. (a) Blood clotting indexes in the control group, gauze group, and hydrogel group. (b) Pictures of blood
collected during hemostasis among different groups. (c) Blood losses and (d) hemostasis times for different groups.
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of live/dead cell staining (Fig. 5c) indicated that the density of
live cells (green fluorescence) of the control and hydrogel groups
continuously increased with culturing, and almost no dead cells
(red fluorescence) were found. Overall, these hemocompatibility
and cytocompatibility results suggest the good biocompatibility
of the hydrogel.

Acceleration of PUA-coated ST hydrogel for wound healing
Before the animal experiments, the thickness of the residual
adhesive after ten dressing changes was tested. Fig. S6 shows that
the thicknesses of the residual adhesives with no patch change
and ten patch changes were almost the same. This indicated that
the residual adhesive contact on the skin would not be thicker
with dressing changes. To assess the practical therapeutic effect
of the PUA-coated ST hydrogel, in vivo full-thickness skin
defects (diameter = 10 mm) were created on the back of SD rats.
These rats were randomly divided into five groups: blank, gauze,
ST hydrogel, PUA-coated PST hydrogel, and PUA-coated ST
hydrogel groups. The wound healing processes of the five groups
were recorded on days 0, 3, 6, and 12 with a digital camera
(Fig. 6a). To further visually illustrate the difference in wound
healing efficiency between these groups, their dynamic healing
processes are shown in Fig. 6c. It was clear that three hydrogel
groups had higher healing efficiency than the blank and gauze
groups mainly because of the moist environment provided by
the hydrogels [15,49]. It could also be seen in Fig. 6b, the wound
closure rate of the PUA-coated ST hydrogel group on day 12 was
96.9% ± 0.6%, which was higher than that of the PUA-coated
PST hydrogel group (92.2% ± 0.6%), ST hydrogel group (89.1%
± 0.7%), gauze group (82.4% ± 1.2%), and the blank group
(86.4% ± 1.2%).

The wound healing efficiency of the gauze group was the
lowest because the gauze easily adhered to the wound after

absorbing the wound exudate, leading to severe secondary
damage to the wound during removal [7,50]. Although ST
hydrogel had the advantage of a moist environment in wound
healing, this advantage would quickly disappear because ST
hydrogel dehydrated rapidly. Owing to the adhesion energy
being lower than the fracture energy, the PUA-coated PST
hydrogel dressing was inseparable, which would cause damage
to the wound during dressing changes. In particular, the PUA-
coated ST hydrogel group achieved the highest wound healing
efficiency among the three hydrogel groups. On the one hand,
the PUA coating endowed the PUA-coated ST hydrogel dressing
with a long-lasting water retention capability, allowing for more
efficient wound healing by providing a long-lasting moist heal-
ing environment. On the other hand, because the adhesion
energy was higher than the fracture energy, the PUA-coated ST
hydrogel was separable, and residual hydrogel still adhered to
the wound, so there was almost no damage to the wound during
dressing changes. In conclusion, the wound healing efficiency of
the PUA-coated ST hydrogel group was the highest among the
five groups.

The quality of the wound healing in the five groups on day 12
was further evaluated by hematoxylin and eosin (H&E) and
Masson staining (Fig. 7a). The shorter the wound width, the
better tissue healing [7]. Fig. 7b demonstrates that the wound
width of the PUA-coated ST hydrogel group (0.558 ± 0.021 mm)
was the shortest among all groups, and the figures for the PUA-
coated PST hydrogel group, ST hydrogel group, gauze group,
and blank group were 1.375 ± 0.239, 1.940 ± 0.164, 2.940 ±
0.453, and 2.126 ± 0.155 mm, respectively. Furthermore, the
higher the collagen index, the better collagen deposition in the
wound [47]. The collagen index results (Fig. 7c) showed that the
hydrogel groups, especially the PUA-coated ST hydrogel group
(66.5% ± 6.0%), significantly enhanced the deposition of col-

Figure 5 Biocompatibility properties of hydrogel. (a) Hemolysis ratios for different groups. (b) OD450 values and (c) Live/dead staining pictures of control
and hydrogel groups at 12, 24, and 48 h.
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Figure 6 (a) Photos of wound at days 3, 6, and 12. (b) Wound closure rates of the five groups at days 3, 6, and 12. (c) Wound trace of the five groups.

Figure 7 (a) H&E and Masson staining results on day 12. Black two-way arrows indicate the wound width. Blue color represents collagen deposition.
(b) Wound width and (c) collagen index on day 12.
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lagen compared with the PUA-coated PST hydrogel (58.5% ±
1.2%), ST hydrogel (51.0% ± 2.7%), gauze (42.2 ± 2.4%), and
blank (48.8% ± 2.6%) groups. These histological data agreed well
with the observation on wound healing.

The evaluation of secondary damage
The secondary damage of the five groups was further evaluated
to reveal the mechanism of PUA-coated ST hydrogel for accel-
erating wound healing (Fig. 8a). Because of the re-damage to the
wound, secondary damage during dressing changes could be
seen as a new injury to the wound and result in secondary
bleeding and increased relative gene expression of inflammation
factors [22]. Fig. 8b shows that the secondary bleeding of the
PUA-coated ST hydrogel group was the lowest at any changing
dressings. In addition, the related inflammation factors (TNF-α
and IL-1β) markedly increased at about 12 h after a new injury
[13,51,52]. Therefore, the relative gene expression of TNF-α and
IL-1β at 12 h after the first changing dressings was tested by real
time quantitative polymerase chain reaction (RT-qPCR). The
primer sequences for RT-qPCR are listed in Table S1. The results
(Fig. 8c, d) indicated that the PUA-coated ST hydrogel group
had the lowest relative gene expression of the two inflammation
factors. These results were most likely due to the long-lasting
water retention and separable abilities of the PUA-coated ST
hydrogel.

CONCLUSIONS
In this study, we developed a water-retaining and separable
adhesive PUA-coated ST hydrogel wound dressing with good
hemostatic properties and biocompatibility. The evaluation of
adhesion energy and fracture energy showed that the separable
ST hydrogel could be obtained by immersing the SFMA
hydrogel in 5 wt% TA solution for 2 h. Next, the hydrophobic
PUA coating was formed on the surfaces of the hydrogel to
prevent water evaporation. Compared with the blank, gauze, ST
hydrogel, and PUA-coated PST hydrogel dressings, the PUA-

coated ST hydrogel dressing could improve the wound healing
efficiency by not only providing a long-lasting moist environ-
ment but also being separated without secondary damage during
dressing changes. Besides, it should be noted that the residual
adhesive could not be removed, so for wounds that need
cleaning, such as infected wounds, this hydrogel dressing might
be not suitable. In summary, the PUA-coated ST hydrogel
promoted wound healing and brought a new strategy for the
next-generation design of adhesive hydrogel wound dressings.
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用于伤口修复的无二次损伤的保水可撕断粘附水凝
胶
张壮壮1,2, 张雅洁2*, 刘远山1,2, 郑鹏辉2, 高童2, 罗冰清1,2, 柳星竹2,
马凡舒2, 王金娥1,2*, 裴仁军1,2*

摘要 作为新型伤口敷料, 粘附性水凝胶已被广泛研究. 然而, 由于易失
水和敷料更换时二次损伤的问题, 粘附水凝胶敷料的临床应用仍然是
一个重大挑战. 本文中, 我们设计了一种基于双键化丝素蛋白、单宁酸
和聚氨酯二丙烯酸酯的具有保水性能和可撕断性能的粘附水凝胶敷
料. 通过复合具有大量儿茶酚基团的单宁酸, 使得水凝胶具有增强的机
械性能、良好的组织粘附性能、止血性能以及生物相容性能. 随后将
疏水性的聚氨酯二丙烯酸酯涂层聚合在水凝胶表面, 该涂层的存在可
以使水凝胶长时间保持高含水量. 此外, 由于该水凝胶的粘附能高于断
裂能, 其在剥离时可以被撕断, 并最大程度减小对伤口部位的影响. 动
物实验结果表明, 这种具有粘附止血性能的水凝胶可以通过提供长久
的湿性愈合环境和无二次损伤的换料来加速伤口愈合. 这些结果表明
这种多功能水凝胶是一种具有临床应用前景的伤口敷料.

ARTICLES SCIENCE CHINA Materials

3346 August 2023 | Vol. 66 No.8© Science China Press 2023


	Water-retaining and separable adhesive hydrogel dressing for wound healing without secondary damage 
	INTRODUCTION
	RESULTS AND DISCUSSION
	Adhesion properties of the hydrogel
	Mechanical properties of the hydrogel
	Formation and functions of PUA coating
	Hemostasis properties of the hydrogel
	Biocompatibility of the hydrogel
	Acceleration of PUA-coated ST hydrogel for wound healing
	The evaluation of secondary damage

	CONCLUSIONS


