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Surfactant-free synthesis of ordered 1D/2D NiZn-LDH heterostructure
through oriented attachment for efficient photocatalytic CO2 reduction
with nearly 100% CO selectivity

Tingshi Zhang1,2†, Xin Zhao1,2†, Mingxiong Lin1,2, Bixia Yang1,2, Jiawei Yan1,2, Zanyong Zhuang1,2* and
Yan Yu1,2*

ABSTRACT Ordered assembly of anisotropic one-dimen-
sional (1D) and 2D nanomaterials is necessary for preparing
delicate heterostructures with close contact to alleviate the
energy and environmental crisis. Here, we exploited oriented
attachment, a non-classical growth mechanism, as a tool for
preparing ordered 1D/2D NiZn layered double hydroxide (Ni-
Zn LDH) heterostructures beyond the use of surfactants.
Lattice matching between the (101) plane of 1D nanoneedles
(NNs) and the (100) plane of 2D nanosheets (NSs) drives the
spontaneous ordered assembly of 1D NiZn-LDH NNs on 2D
NiZn-LDH NSs. Accordingly, the oxygen-deficient 1D NiZn-
LDH capable of CO2 adsorption is, therefore, well dispersed
on the 2D platform. The oriented assembly generates strong
and intimate interactions between the 1D and 2D units, en-
abling the efficient transfer of photogenerated electrons from
2D to 1D NiZn-LDH. The oriented 1D/2D NiZn-LDH het-
erostructure demonstrates superior CO2 photoreduction per-
formance under visible light irradiation, with a CO yield rate
of 16,950 μmol g−1 h−1 and a 100% CO selectivity. The findings
demonstrate that the growth of anisotropic nanomaterials can
be tailored for advanced heterostructure design through or-
iented attachment alone.

Keywords: ordered heterostructure, CO2 photoreduction, or-
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INTRODUCTION
Heterostructures composed of anisotropic nanomaterials con-
stitute one of the most intriguing categories of catalysts in
contemporary science and industry [1]. A growing number of
studies have investigated the use of one-dimensional (1D)/2D
materials as next-generation heterogeneous photocatalysts [2,3]
for hydrogen production [4], water splitting [5], pollutant
scavenging [6], and CO2 reduction [7,8]. With these fascinating
heterostructures, researchers seek to benefit from (1) the fast
charge-carrier mobility along the 1D structure, (2) the con-
finement of electrons within the 2D structure, thereby sup-
pressing charge recombination, and (3) the high surface-to-

volume ratio of the 1D and 2D materials [9–13]. The catalytic
activity of 1D/2D heterostructures is highly dependent on the
close contact and strong interaction between mesoscale 1D and
2D building blocks [14–16]. The deposition of 1D materials on
pre-synthesized 2D substrate by wet chemistry to create the 1D/
2D hybrid typically has limited control over the 1D/2D assem-
bly, and the 1D units are frequently irregularly arranged on the
2D substrates via weak interactions (e.g., electrostatic attraction)
[9,17,18], as the morphologically anisotropic 1D and 2D nano-
materials have distinct growth environments and behaviors.
Although some surfactants or polymers may be used to direct
the assembly of 1D and 2D units [4,19–21], the organic additive
frequently impairs the performance of the catalyst because it can
poison the surface and create steric hindrances that are detri-
mental to charge transport and catalytic activity [8].

The fundamental difficulty in fabricating heterostructures is
that the particle assembly of anisotropic building blocks to form
an ordered structure must compete with the crystal growth of
the same building blocks. For sufficiently small particles of
several nanometers in size, the particle–particle attachment
occurs due to the electrostatic (Coulombic) field surrounding
the particles [22]. The calescence of particles into larger crystals,
which is generally energetically advantageous, may follow the
attachment and result in uniform crystal growth [23,24].
Nevertheless, during crystal growth, mesoscale repulsion can
prevent large particles from coalescing and allow the assembly of
anisotropic 1D or 2D units to produce heterostructures. The
ordered assembly of large anisotropic particles is direction-
dependent, and the alignment of mesoscale 1D and 2D nano-
materials requires their diffusion, rotation, and attachment, all
of which are accompanied by substantial kinetic barriers. Con-
sequently, the assembly of mesoscale particles relies heavily on
the use of expensive, toxic surfactants (e.g., ethylenediaminete-
traacetic acid [25], trimethylammonium bromide [26], sodium
dodecylbenzene sulfonate [27], DNA [28,29]), as ligand–ligand
attraction can provide the necessary driving force for directing
the alignment of 1D and 2D units and thus the preferential
adsorption on crystal surfaces [30].

Oriented attachment (OA), through which nanometer-scale
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colloidal particles sharing the same crystallographic orientation
can spontaneously form assembled architecture [31–35], is
prevalent both in the formation of nature and in artificial
nanosystems. Recently, we exploited the surfactant-free OA
principle to assemble tiny 0D metal-organic frameworks (MOFs)
with mesoscale 1D TiO2 nanowires [36] and disperse tiny 0D
CuO clusters on mesoscale 2D AlOOH nanosheets (NSs) [37],
paving the way for further investigation of OA as a tool for
complex material design. However, whether the OA principle
can be applied to the ordered assembly of mesoscale 1D and 2D
units to eliminate the need for surfactants remains unclear.

In this work, we disclosed a surfactant-free, spontaneous, and
one-step strategy to fabricate an oriented 1D/2D heterostructure
composed of anisotropic layered double hydroxides (LDHs)
[38,39] of Ni and Zn, with sub-microscale 1D NiZn-LDH
nanoneedles (NNs) arranged on 2D NiZn-LDH NSs in a defined
orientation with intimate contact (Scheme 1). Due to their
spontaneous lattice matching, the underlying mechanism was
closely associated with the OA between the 1D NNs and the 2D
NSs. Additionally, the developed system overcomes the known
limitations of layered LDHs, that is, weak charge transfer ability
and insufficient active edge sites [40–44]. The 1D/2D NiZn-LDH
demonstrates excellent CO2 photoreduction performance.

EXPERIMENTAL SECTION

Materials
Nickel(II) formate dihydrate was purchased from Aladdin
Industrial Corporation. Meanwhile, nickel chloride hexahydrate
(NiCl2·6H2O), zinc chloride (ZnCl2), and urea were purchased
from Sinopharm Chemical Reagent Co., Ltd. All chemicals were
of analytical grade and used as received without further pur-
ification. Deionized (DI) water with a resistivity of 18.2 MΩ cm
was prepared using a Millipore Milli-Q purification system.

Synthesis of 2D NiZn-LDH and 1D/2D NiZn-LDH
Nickel chloride hexahydrate (5.94 g), zinc chloride (0.68 g) and
urea (1.8 g) were dispersed ultrasonically in methanol (50 mL)
for 30 min to give a suspension, which was then subjected to
hydrothermal treatment at 120°C for 4 h. The precipitate was
filtered, washed with DI water and ethanol, and then freeze-
dried in vacuum for 12 h to give the 1D/2D NiZn-LDH. The 2D
NiZn-LDH was produced by conducting the hydrothermal
treatment at 120°C for 1 h using otherwise identical procedures.

Characterization
X-ray diffraction (XRD) patterns were obtained to analyze the
crystal structures using a PANalytical X’pert MPD X-ray dif-
fractometer (Panaco, Netherlands) with Cu Kα radiation (λ =
1.5406 Å) at 36 kV and 30 mA in a continuous scanning mode.
The spectra were recorded at 5° min−1 with a step size of 0.01°

over 2θ = 5°–65°. The morphology and size of the samples were
examined using a Philips XL30 scanning electron microscope
(SEM) and transmission electron microscope (TEM Titan G2
60-300, FEI, USA, with probe corrector). Elemental energy-
dispersive spectroscopy (EDS) measurements were carried out
using an FEI Tecnai F30 (USA) microscope at 300 kV. Mean-
while, a PHI 5000 Versa Probe spectrometer (Thermo Fisher
Scientific, USA) was used to record the X-ray photoelectron
spectrum (XPS). The Brunauer-Emmett-Teller (BET, ASAP
2460) method was used to calculate the specific surface area. The
electron paramagnetic resonance (EPR) experiments for radical
detection were carried out on a Bruker A300 spectrometer
(Germany) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as
the spin-trapping agent. The thermogravimetric and differential
scanning calorimetry (TG-DSC) analyses were performed on a
Setaram Setsys 16/18 thermo-analyzer with an air flow rate of
10 K min−1. The photoluminescence (PL) spectroscopy was
observed using a FluoroMax-4 (Tianmei, China). N2 adsorption-
desorption measurements were conducted on a Tristar II 3020.
The surface structures and pore distributions of all obtained
materials were obtained using a specific surface area and pore
size analyzer at 77 K. Ultraviolet-visible (UV-vis) diffuse
reflectance spectroscopy (DRS) (Varian Cary 500 UV-vis spec-
trophotometer, Varian, USA) tests were carried out with an
integrating sphere attachment ranging from 200 to 800 nm and
BaSO4 (AR 99.99%, Aladdin Bio-Tech) as a reflectance standard.
The transient photocurrent measurements were performed on
an electrochemical workstation (CHI-660C, Chenhua, China)
using aqueous Na2SO4 (1 mol L−1) as the electrolyte solution.
Photocurrent test (I-t) was conducted on the F-doped tin oxide
(FTO) glass filled with 0.5 mL dimethyl formamide (DMF)
solution. Moreover, ParSTAT MC electrochemical workstation
was used to perform Mott-Schottky tests or electrochemical
impedance spectra (EIS) in 0.2 mol L−1 Na2SO4 solution or a
mixed resolution of 5 mmol L−1 K3[Fe(CN)6]/5 mmol L−1

K4[Fe(CN)6]/0.1 mol L−1 KCl (AR, Sinopharm Group). 1H
nuclear magnetic resonance (NMR) spectra were obtained using
a Bruker AVANCE III NMR spectrometer at 400 MHz and
tetramethyl silane (TMS) as an internal standard. Meanwhile,
13CO2 isotopic labeling was confirmed using a gas chromato-
graphy-mass spectrometer (GC-MS, GC-7890B, Agilent).

Photocatalyzed CO2 photoreduction reaction (CRR)
The photocatalytic CO2 reduction was evaluated in a 25-mL
quartz reactor (Zhengmao Glass Instrument Company, Fuzhou,
China), where 1 mg catalyst and 8 mg [Ru(bpy)3]Cl2·6H2O
(abbreviated as Ru, bpy = 2,2′-bipyridine, Aladdin Biotech) were
dispersed in a mixure of 2.0 mL water, 3.0 mL acetonitrile
(MeCN) and 1.0 mL triethanolamine (TEOA). This system was
thoroughly degassed and then backfilled with pure CO2, repe-
ated three times. Then the quartz reactor was put in the pho-
tocatalytic reaction system with a 300-W Xe lamp (>420 nm) at
25°C. After the reaction for a certain time, 0.5 mL product gases
were analyzed by GC (GC-7890B, Agilent). 13CO2 isotopic
experiment was performed under the same conditions by
replacing 12CO2 gas with 13CO2 and was measured by a GC-MS
(Agilent 7890B and Agilent 5977B MSD). The cycle example was
measured by adding fresh Ru.

The apparent quantum yield (AQY) was measured by using a
300-W Xe lamp with a wavelength of 450 nm. The number of
incident photons was measured using a radiant power energy

Scheme 1 Preparation of the 2D NiZn-LDH and the 1D/2D NiZn-LDH
heterojunction.
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meter (Ushio spectroradiometer, USR40). The AQY was calcu-
lated according to the following equation:

N

M N c
S P t

AQY(CO) = 2 (CO)
number of incident photons × 100%

= 2 × × × ×
× × × × 100%,A

where M is the amount of CO molecules (mol), NA is the
Avogadro constant (6.022 × 1023 mol−1), h is the Plank constant
(6.626 × 10−34 J s), c is the speed of light (3 × 108 m s−1), S is the
irradiation area (cm−2), P is the intensity of irradiation light
(W cm−2), t is the photoreaction time (s), and λ is the wave-
length of the monochromatic light (m).

DFT calculation
All density functional theory (DFT) calculations were performed
using the Vienna ab initio Simulation Package (VASP). The
Perdew-Burke-Ernzerhof (PBE) functional within the general-
ized gradient approximation (GGA) method was used to
describe the exchange-correlation effects. Meanwhile, the core-
valence interactions were accounted for by the projected aug-
mented wave (PAW) method. The energy cutoff for plane wave
expansions was set to 450 eV, and the Brillouin zone integration
was sampled using 2 × 2 × 1 Monkhorst-Pack grid k-points. The
vacuum space was adopted 15 Å above the surfaces to avoid
periodic interactions. The structural optimization was completed
for energy and force convergence set at 1.0 × 10−4 eV and
0.02 eV Å−1, respectively.

RESULTS AND DISCUSSION

Generation of the 1D/2D NiZn-LDH heterostructure
A one-pot surfactant-free synthesis at 120°C using NiCl2·6H2O
(0.5 mol L−1), ZnCl2 (0.1 mol L−1), and urea (0.6 mol L−1) allows
for the spontaneous formation of well-defined 1D/2D NiZn-
LDH heterostructures via hydrothermal coprecipitation. The
pure 2D NiZn-LDH (JCPDS No. 38-0715), which is composed

of cross-linked thin 2D NSs weaved into ca. 16 μm microspheres
(Fig. 1a), appears at about 1 h. In the SEM and TEM images
(Fig. S1), the 2D NSs have a hexagonal hydrotalcite-like LDH
phase that displays the (100) and (010) facets of NiZn-LDH,
both with a d-spacing of 0.26 nm and an interfacial angle of 60°.
The Ni, Zn, and O elements are distributed homogeneously in
the NiZn-LDH NSs, as shown by the elemental mapping
(Fig. S2).

The self-assembly of 1D NiZn-LDH NNs on 2D NiZn-LDH
NSs begins around 2 h, and an increasing amount of 1D NNs
become delicately decorated on the surfaces and edges of the
pristine 2D NSs (Fig. 1b). The XRD analysis of a 1D/2D NiZn-
LDH heterostructure shows no change in phase and still yields
hexagonal NiZn-LDHs (Fig. 1d). Indeed, in the TG analysis
(TGA), both 1D/2D NiZn-LDHs and the pristine 2D NiZn-
LDHs have nearly the same weight loss (27–30 wt%) at 350°C
(Fig. 1f), which is consistent with the TGA data of other NiZn-
LDH structures reported in the literature [45,46].

Distinct orientations
The TEM images (Fig. 2a, b) show that the interplanar lattice
spacing of the 2D NSs in the 1D/2D hybrid remains the same as
in the pristine 2D NiZn-LDH. According to the fast Fourier
transform (FFT) analysis of the TEM images, each individual NS
is single crystalline (Fig. S1f). The selected area electron dif-
fraction (SAED) results show that the {001} plane of the NS is
exposed (Fig. S1c). The NiZn-LDH is also identified in the newly
generated 1D NNs on 2D NSs. Elemental mapping (Fig. 1c)
demonstrates that the elements of Ni, Zn, and O are distributed
evenly throughout the entire 1D/2D microsphere as well as in
domains with only 2D NSs. The d-spacings of the 1D NiZn-LDH
NNs in the (006) and (101) planes are 0.39 and 0.26 nm,
respectively (Fig. 2c, d), and the NNs grow along the <101>
direction of the 1D NiZn-LDH. That is, the 1D and 2D NiZn-
LDHs have different growth orientations in the 1D/2D hetero-
structure.

Figure 1 SEM images of (a) 2D NiZn-LDHs and (b) 1D/2D NiZn-LDHs. (c) EDX mapping of 1D/2D NiZn-LDHs. (d) XRD pattern, (e) BET, and (f) TG-
differential thermal analysis ( TG-DTA) spectra of 1D/2D NiZn-LDHs.
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Oriented growth of elongated 1D NNs on thin 2D NSs by lattice
matching
The elongated 1D NiZn-LDH NNs, which are 75–260 nm in
length and 6–24 nm in diameter (Fig. 2f), align themselves in a
defined manner on the thin 2D NS surface. We discovered that
when the reaction time is 2 h, only a small amount of the
emerging 1D NNs are anchored on the surface of the pre-formed
2D NiZn-LDH. With the passage of time, the elongated NNs
self-organize to form triangular architectures on the 2D NSs
surface, intersecting at ca. 60° (Fig. 2e, f). The high-resolution
TEM (HRTEM) image (Fig. 2g) shows that the <100> direction
of the 2D NSs is parallel to the <101> direction of the 1D NNs,
owing to the strong interfacial interaction between the highly
crystalline NSs and NNs. The unit cell models (Fig. 2h) show
that the (101) d-spacing of the 1D NNs (0.265 nm) is very close
to the (100) d-spacing of the 2D NSs (0.266 nm). Furthermore,
in the HRTEM image (Fig. S3), the {100} facets of the 2D NS are
in parallel contact with the 101 facets of the 1D NN, forming a
tightly-bonded interface. The attachment between 1D NNs and
2D NSs with a defined direction of the same d-spacing can be
identified as an OA process. The OA growth mechanism can
account for the assembly and good dispersion of sub-microscale
1D NNs on the 2D NSs with a defined orientation. According to
the HRTEM images, the exposed surfaces of the 1D NNs and the
2D NSs of the NiZn-LDH are the (010) plane and the (001)
plane, respectively.

The 1D/2D NiZn-LDH hybrid has a significantly larger sur-
face area (115 m2 g−1) than the pristine 2D NiZn-LDH
(46 m2 g−1) according to the N2 adsorption-desorption isotherm
(Fig. 1e), which can be attributed to the good dispersion and
oriented assembly of the 1D NNs on the 2D NSs. Furthermore,
we used XPS to examine the oxidation states of the elements in
the 1D/2D hybrid, as the OA mechanism is known to cause

defects due to imperfect particle alignment at the interface
[37,47,48]. Ni exists mostly as Ni2+ (856.03 eV) in both the
pristine 2D NiZn-LDH and the 1D/2D NiZn-LDH, with a trace
amount of Ni3+ (857.69 eV) (Fig. 3a) [49], and Zn exists only as
Zn2+ (Fig. 3b) [50,51]. The hydroxyl groups are responsible for
the XPS signal of O 1s (Fig. S4) at 531.8 eV. The EPR of NiZn-
LDHs was also measured to determine the presence of oxygen
vacancies (OVs) in the LDHs. The EPR signal at g = 2.004, which
is caused by electrons trapped in the OVs of the catalyst [52], is
much stronger for the 1D/2D NiZn-LDH than for the 2D NiZn-
LDH, indicating that the former has more OVs than the latter
(Fig. 3c).

Strong CO2 adsorption capacity
Fig. 4a shows that the CO2 adsorption capacity of the 1D/2D
hybrid (12.85 cm3 g−1) is twice that of the 2D NSs (6.97 cm3 g−1).
We additionally ran theoretical calculations to examine the
adsorption behavior of CO2 on the exposed surface of the 1D
NNs and the 2D NSs. Fig. 4e, f show that the adsorption energy
of CO2 on the NiZn-LDH is lower on the (010) plane (Ead =
−0.84 eV) than on the (001) plane (Ead = −0.75 eV). That is, with
its (010) plane exposed, the 1D NNs can provide more active
sites for CO2 capture.

Oriented electron injection from 2D to 1D NiZn-LDH
Using the 2D NSs as a reference, we then investigated the light-
harvesting behavior and band structure of the 1D/2D hybrid.
While both the 2D NSs and the 1D/2D hybrid respond to visible
light (Fig. S5), the intensity of light adsorption is stronger for the
1D/2D hybrid because the presence of 1D NNs increases the
amount of OVs [53]. Theoretical derivations from the Kubelka-
Munk function and the Mott-Schottky plots (Fig. S6) show that
the conduction bands of both the 2D NSs and the 1D/2D hybrid

Figure 2 (a–d) TEM images of the 1D/2D NiZn-LDH. (e) Schematic illustration of the 1D/2D NiZn-LDH. (f, g) HRTEM images corresponding to the 1D
NNs and 2D NSs, with the corresponding FFT in the inset. (h) Crystallographic parameters of the unit cells of the (001) and (010) planes of NiZn-LDHs.
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are suitable for the conversion of CO2 to CO (−0.51 eV) and
H2O to H2 (−0.41 eV). Based on the EIS, I-t data, and PL spectra,
the charge transfer capability of the catalysts was then compared
(Fig. 4b–d and Fig. S7). The 1D/2D hybrid has a much lower
charge transfer resistance and a stronger photocurrent response
than pure 2D NSs, allowing for superior carrier migration cap-
ability [54]. The lattice matching-driven ordered assembly of 1D
NNs on 2D NSs can facilitate the transport of electrons from 2D
NSs to the 1D NNs [55].

In theory, 1D nanostructures allow for rapid charge transfer
along their axes, while 2D nanostructures can confine electrons
in their unique atomic layers, both of which can promote charge
transfer in the resulting 1D/2D heterostructure [56,57]. As the
previous experiments demonstrated that CO2 preferentially
accumulates on the surface of the 1D NNs, it is critical to
determine whether electrons can accumulate in the hybrid 1D
NNs, as the direction of electron movement can vary in the
heterostructure. In the Bi2O3/Bi2WO6 heterostructure, for
example, electrons transfer from the 2D Bi2O3 NSs to the 1D
Bi2WO6 nanowires [56], whereas in the graphene/CNs hetero-

junction, electrons transfer from the 1D carbon nitride (CN)
nanorods to the 2D graphene [8]. Fermi energy can be used to
calculate the charge transfer between two semiconductors.
Fig. 4e, f show that work functions of the (001) and (010) planes
of NiZn-LDHs are 1.02 and 0.79 eV, respectively, from which
the Fermi energy can be calculated as follows:

E E= , (1)vac F

where Φ is the work function, Evac and EF are the electrostatic
potential of vacuum energy and Fermi energy, respectively.
Hence, the (010) plane of the NiZn-LDH has a higher Fermi
energy than the (001) plane of the NiZn-LDH. Upon the for-
mation of the heterostructure by attachment, the hybridization
of the (001) and (010) planes of the NiZn-LDH will cause
electron redistribution until their Fermi energies reach equili-
brium. Consequently, the electron density decreases in the (010)
plane and increases in the (001) plane, which generates a built-in
electric field at the interface that can render the directed charge
transfer from the (001) to (010) plane in the NiZn-LDH
(Fig. 4d). The results of the selective Pt photo-deposition

Figure 3 (a) Ni 2p XPS, (b) Zn 2p XPS, and (c) EPR spectra of 2D NiZn-LDHs and 1D/2D NiZn-LDHs.

Figure 4 (a) CO2 adsorption capabilities, (b) EIS Nyquist plots, and (c) photocurrents of 2D NiZn-LDHs and 1D/2D NiZn-LDHs. (d) Built-in electric fields
of 2D NiZn-LDHs and 1D/2D NiZn-LDHs. (e, f) CO2 adsorption energies and the electrostatic potentials of the (001) and (010) planes of NiZn-LDHs.
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experiment (Fig. S8) also confirm that electrons prefer to
accumulate on the 1D NNs rather than the 2D NSs [37]. In the
well-defined 1D/2D NiZn-LDH assembled architecture, elec-
trons can therefore transfer from the 2D NSs to the 1D NNs,
thereby creating a potential platform for CO2 reduction.

Superior efficiency and selectivity in CO2 reduction
CRR was carried out in CH3CN/H2O with the 1D/2D hybrid and
2D NSs as the catalysts, TEOA as an electron donor, and Ru as
the visible-light photosensitizer. Fig. 5a, b show that the 1D/2D
hybrid has nearly twice the CO yield (16,950 μmol h−1 g−1)
compared with the 2D NSs (9740 μmol h−1 g−1) and outperforms
many other CO2 conversion systems with its superior CO yield
(e.g., Ni-TpBpy, 811 μmol h−1 g−1; Ni-covalent-organic frame-
works (COFs), 5310 μmol h−1 g−1; NiCo2O4 hollow nanocages
(HCs), 10,500 μmol h−1 g−1, Fig. S9, see detail in Table S1 [58–
68]). The gas production and selectivity of 1D/2D NiZn-LDHs
in CRR with different masses were investigated as a function of
the number of catalytic sites participating in the catalytic reac-
tion and the ability to accept excitation light and electrons [64]
(Fig. S10). The highest CRR efficiency (VCO = 16.95 μmol h−1) is
achieved with 1 mg of 1D/2D NiZn-LDHs while maintaining
100% CO selectivity.

The wavelength-dependent gas yield in accordance with the
light absorption spectrum of Ru photosensitizer (Fig. S11)
indicates that the CO2 photoreduction starts from the light
absorption of Ru [64,67]. Of note, 1D/2D NiZn-LDHs display a
superior AQY of approximately 2.41% at 450 nm, better than
many other reported photocatalytic systems under comparable
conditions (Table S2). In addition, both the 2D NSs and the 1D/
2D hybrid attain 100% CO selectivity, giving CO as the sole
reaction product.

To identify the key factors in the CRR, we performed a series
of control experiments (Fig. 5d). Currently, photoreduction
systems rely primarily on the use of photosensitizers to generate

enough photogenerated electrons for CO2 photoreduction.
When CRR was performed without Ru or TEOA, in the dark, or
in N2, negligible CO and H2 were detected. As a result, the first
step in developing CRR is to excite the photosensitizer. The
catalytic redox reaction will occur on the catalyst due to the
injection of electrons from the photosensitizer. To achieve peak
performance, not only must CO2 be adopted and activated on
the catalyst, but also an efficient electron transfer to the cata-
lytically active site should be present (Fig. 5d). As shown in
Fig. S12, no liquid byproduct (e.g., CH3OH and HCOOH) is
formed as measured by 1H NMR in the following redox reaction.
The generated CO product must have originated from the CO2
reactant, because when pure 13CO2 is used as the carbon source,
the product is 13CO of m/z = 29 peak in the mass spectroscopy
(Fig. 5c). Notice that the 1D/2D hybrid is also stable, giving
minimal change in CO yield and nearly 100% CO selectivity
after four catalytic cycles (Fig. S13), and the retrieved 1D/2D
hybrid shows no phase or structural change in XRD and SEM
(Fig. S14).

Impact on the rational design of delicate heterostructures
In materials science, manipulating the growth of fine particles
for advanced catalyst design is rudimentary [69]. OA produces
anisotropy in particle growth, whereas classical Ostwald ripening
(OR) produces isotropy. Reported initially in 1998 [70], the OA
mechanism has been demonstrated as a key driving force as well
as a facile tool in the fabrication of delicate oxides (TiO2 [71],
SnO2 [23], and ZnO [72]), hydroxides (Cu(OH)2 [73]), carbo-
nates (NaY(CO3)2·6H2O and (NH4)Y(CO3)2·H2O [74]), sulfides
(PbS [75] and Cu1.94S [76]), and various other compounds (e.g.,
CsPbBr3 [77], PbSe [78], and Au [79]) catalysts. In principle, the
OA mechanism can allow primary particles to self-organize into
complex hierarchical architecture [70,72]. Extending the OA
principle to engineer the spontaneous assembly of anisotropic
1D and 2D materials has the potential to significantly expand the

Figure 5 (a) CO2 photoreduction performances over 2D and 1D/2D NiZn-LDHs. (b) Time-dependent CO evolution over 1D/2D NiZn-LDHs. (c) Mass
spectrum of 13CO (m/z = 29) produced over 1D/2D NiZn-LDHs in the photocatalytic reduction of pure 13CO2. (d) Gas generation rates of the control
experiments. (e) Proposed mechanism for the visible-light-driven CO2 photoreduction catalyzed by 1D/2D NiZn-LDHs.
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family of functional materials while avoiding the surface passi-
vation caused by surfactants in conventional synthesis [69]. In
this study, we discovered that in the absence of surfactant, the
1D NiZn-LDH that emerges on the 2D NiZn-LDH platform can
self-organize in a defined and moderate manner thanks to OA.
The (101) direction of the ordered 1D/2D LDH assembly can be
parallel to the (100) direction of the pre-formed 2D LDH. The
findings show that even when no surfactant or artificial control
is used, inorganic nanomaterials can adjust their growth and
assembly behavior to provide a delicate, sterically stable assem-
bled architecture. Through the surfactant-free OA principle, the
intimate attachment and strong interaction of mesoscale units
allow access to complex catalysts with optimal physicochemical
properties, chemical performance, and structural stability [69].

CONCLUSIONS
We demonstrated the oriented assembly of 1D and 2D NiZn-
LDHs of morphologically anisotropic particles that can sponta-
neously regulate their growth directions in this work. Based on
lattice matching, a large-scale, well-defined, ordered 1D/2D
NiZn-LDH assembly composed of 1D NNs and 2D NSs was
created, which has superior photocatalytic performance in the
CRR (16,950 μmol g−1 h−1 CO yield and 100% CO selectivity).
As shown in Fig. 5e, the presence of oxygen-deficient and
orderly arranged 1D NNs can significantly improve CO2
adsorption, while the built-in electric field at the 1D/2D interface
can direct electron transfer from the 2D NSs to the 1D NNs. The
findings may contribute to our understanding of OA as an
appealing tool for advancing efficient catalyst design with dif-
ferent low-dimensional materials as building blocks.
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无表面活性剂定向一维/二维NiZn-LDH异质结实现
100%高效选择性光催化CO2还原
张庭士1,2†, 赵鑫1,2†, 林铭雄1,2, 杨碧霞1,2, 颜家伟1,2, 庄赞勇1,2*,
于岩1,2*

摘要 构建高度定向、有序的一维/二维异质结催化材料是解决能源和
环境危机的重要途径. 本工作报道了在不添加表面活性剂条件下, 纳米
层状双金属氢氧化物(NiZn-LDHs)可以在生长过程中自发调控其生长
晶面, 并通过一种非经典取向结合生长机制, 形成高度定向、有序的一
维/二维异质结构. 定向、有序异质结结构的形成源于一维NiZn-LDH
纳米针的(101)面和二维NiZn-LDH纳米片的(100)面之间的晶格匹配.
定向、有序异质结结构促使一维基元在二维基元上高度分散, 而高度
分散的一维NiZn-LDH富含缺陷, 具有较强的CO2吸附和活化能力. 定
向一维/二维异质结强化了一维和二维基元之间的相互作用, 可加速光
生电子从二维基元向含活性位点一维基元的定向传输, 赋予催化材料
优 异 的 可 见 光 光 催 化 还 原 C O 2 性 能 ( C O 的 产 出 速 率 达
16,950 μmol g−1 h−1; CO选择性高达100%). 本工作展示了各向异性纳米
结构材料可以自发调控其生长行为, 为高效、定向、有序的异质结催
化材料的设计提供了新的思路.
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