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Recycling of garnet solid electrolytes with lithium-dendrite penetration by
thermal healing
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ABSTRACT Solid-state lithium metal batteries (SSLMBs)
have attracted a lot of interest owing to their high safety and
high energy density potential. However, the growth of lithium
dendrite in solid electrolytes still hinders practical applica-
tions of SSLMBs. In this study, we develop a simple heat
treatment method for reviving and recycling garnet oxide
electrolytes with Li dendrite penetration. Interestingly, the
recovered garnet electrolyte exhibits higher relative density,
enhanced ionic conductivity and improved critical current
density compared with the pristine one. The thermal healing is
due to the products of the reaction between dendritic Li metal
and air that contribute to the further densification of garnet
electrolytes during heat treatment. This work demonstrates a
new way to recycle garnet electrolytes, which may further ex-
tend to other various solid electrolytes.
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INTRODUCTION
Metallic lithium (Li) is considered the ultimate anode material of
next-generation high-performance energy storage systems due
to its ultrahigh theoretical specific capacity (3860 mA h g−1),
ultralow electrochemical potential (−3.04 V vs. the standard
hydrogen electrode), and low density (0.534 g cm−3) [1–6].
Solid-state lithium metal batteries (SSLMBs) with Li metal as the
high-capacity anode are becoming one of the most promising
candidates for next-generation energy storage devices due to
their high safety and potentially high energy density. SSLMBs
are expected to be the future of conventional lithium-ion bat-
teries (LIBs) [7,8]. It is predicted that the global demand for
solid-state batteries will reach 500 GW h by 2030. Therefore,
recycling of SSLMBs is of great significance. However, currently
adopted approaches for battery recycling mainly focus on LIBs,
while only a few studies have explored SSLMB recycling [9–17].

Meanwhile, there is still limited development of SSLMBs due
to the severe safety issues caused by uncontrolled Li dendrite
formation and growth [18,19]. Garnet oxide electrolyte
Li7La3Zr2O12 (LLZO) has been considered one of the most
promising solid electrolytes for high-safety and high-perfor-
mance solid-state batteries [20–24]. According to Monroe and
Newman’s prediction [25,26], garnet oxide electrolyte is able to

prevent the growth of Li dendrites due to its high shear modulus
(~60 GPa) and Young’s modulus (~150 GPa). However, several
recent studies have found that at high current densities, Li
dendrites still penetrate through LLZO electrolytes [27–29].
There are several possible mechanisms of dendrite formation
and growth inside ceramic solid electrolytes (CSEs). It is widely
believed that Li dendrites first nucleate at the Li/CSE interface
due to the uneven Li flux distribution caused by poor contact.
The dendrites will then preferentially propagate along the voids
and grain boundaries in polycrystalline CSEs because of their
low mechanical strengths [30]. Moreover, the electronic con-
ductivity of CSEs is also likely to facilitate the formation of Li
dendrites directly inside the CSEs [31,32]. Currently, a vast
majority of studies concentrate on investigating the dendrite
formation mechanism and interface modification of Li/CSE [33–
45]. However, at high current densities or after long cycling, Li
dendrites or Li deposits still form in CSEs, while strategies
focusing on healing or recycling CSEs with Li dendrite pene-
tration are rarely reported [46–48]. Recently, Wang et al. [49]
reported a recovery strategy to recycle shorted LLZO pellets via
one-step annealing.

In this work, we demonstrate a facile method for healing and
recycling garnet electrolytes with Li dendrites through heat
treatment. Excitingly, the recycled garnet ceramic pellets have
increased ionic conductivity with higher relative density. The
higher conductivity is attributed to the dendrite-derived species
in the grain boundaries that are able to promote further densi-
fication of garnet electrolyte pellets during the thermal healing
process as sintering aids (Fig. 1a). Compared with pristine
garnet electrolyte pellets, the relative density of the recycled
garnet pellets is improved from 90.9% to 95.3%, while its ionic
conductivity is improved from 0.39 to 0.62 mS cm−1. A higher
critical current density (CCD) is achieved as a result of the
enhanced relative density and ionic conductivity, suggesting a
better suppression effect on Li dendrite penetration.

EXPERIMENTAL SECTION

LLZTO pellet synthesis
Li6.4La3Zr1.4Ta0.6O12 (LLZTO) powders were prepared by a tra-
ditional solid-state reaction. First, LiOH·H2O (≥98%, Aladdin),
Ta2O5 (99.99%, Macklin), ZrO2 (99.99%, Aladdin), and La2O3
powders (99.99%, Macklin) were ball milled in isopropanol at
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600 r min−1 for 6 h according to the above stoichiometric ratio.
Then 20 wt% excess of LiOH·H2O was used to compensate for
the lithium loss that occurs during the high-temperature calci-
nation process. The mixture was then dried and calcinated in air
at 950°C for 6 h to synthesize LLZTO powders. To obtain garnet
ceramic pellets, 2 wt% γ-Al2O3 powders (99.99%, Energy Che-
mical) were added to the LLZTO powders, and the mixture was
uniaxially pressed into green pellets. The green pellets were then
sintered in air at 1100°C for 12 h while covered with LLZTO
mother powders. Finally, the LLZTO pellet used in this experi-
ment was carefully polished with sand papers to remove the
surface impurities. The density of the LLZTO pellet was mea-
sured by Archimedes’ method. A theoretical density of
5.5 g cm−3 was used to calculate the relative density of the dif-
ferent samples.

Li dendrite healing through heat treatment
The short-circuited Li symmetric cell was disassembled in air,
and then the Li anodes were polished away using sand papers.
The LLZTO pellets with Li dendrites were stored in air
(humidity: ~50%) for 48 h and then heated at 1000°C for 12 h
for dendrite healing.

Characterizations
High-resolution X-ray diffraction (HRXRD) was carried out
using an X-ray diffractometer PANalytical EMPYREAN with a
Cu Kα (λ = 1.5418 Å). Scanning electron microscopy (SEM)
images were recorded using a JEOL JSM-7800F. For better dis-
tinction of the Li dendrites in the LLZTO pellet, the LLZTO
pellet cross-section was polished using an ion beam (JEOL, IB-

19520CCP). Transmission electron microscopy (TEM) was
conducted using a JEOL F200 equipped with a field emission
gun. The cross-sectional TEM specimens were prepared by using
focused ion beam (FIB) equipment (JEOL JIB-4700F).

Electrochemical measurements
The blocking electrode was formed via sputtering gold for 5 min
on each side of the LLZTO pellet to measure the ionic con-
ductivity. The electrochemical impedance spectrum (EIS) mea-
surement was performed through a Biologic VMP300
potentiostat over a frequency range from 1 to 7 MHz. To
assemble Li symmetric cells, Li foil (Adamas-beta®) was first
melted on a hotplate at ~250°C. LLZTO pellets were then rubbed
in molten Li until the pellets were completely wetted, followed
by cooling down and coin-cell assembling. The CCD value was
measured using the LAND system and Neware battery cycler,
starting with an initial current density of 0.02 mA cm−2 and
increasing in steps of 0.02 mA cm−2. The charge and discharge
times were set to be 30 min.

RESULTS AND DISCUSSION
Ta-doped LLZO (LLZTO) was chosen in this experiment owing
to its high ionic conductivity and high chemical stability toward
the Li anode. Fig. 1b displays the cross-sectional SEM image of
the pristine LLZTO ceramic pellet, which shows a micro-
structure with plenty of intergranular fractures. Following a
short-circuit, Li dendrites could be found inside the LLZTO
pellets (Fig. 1c). The corresponding energy dispersive spectro-
scopy (EDS) mapping shows that the dendrite region was rich in
C and O elements and lacking in La, Zr and Ta elements due to

Figure 1 Utilization and recycling process for LLZTO solid electrolytes. (a) Schematic diagram showing the formation and healing process for Li dendrites.
(b) Cross-sectional SEM image of the pristine LLZTO pellet. (c) Cross-sectional SEM image and the corresponding EDS mapping of the LLZTO pellet with
dendrites (inset: optical picture of the LLZTO pellet with dendrites). (d) Cross-sectional SEM image of the recycled LLZTO pellet (inset: optical picture of the
recycled LLZTO pellet).
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the reaction between Li dendrite and air during the dis-
assembling process in air [30]. Additionally, several black lines
appeared on the surface, as shown from the optical picture of the
LLZTO pellet with dendrites. After heat treatment, the black
lines disappeared (inset of Fig. 1d), indicating the healing of Li
dendrites. The cross-sectional SEM image of the recycled
LLZTO pellet presents a denser microstructure with massive
transgranular fractures (Fig. 1d).

The reaction products between Li dendrite and air may
influence the recycling process. The reaction products were
characterized by low-angle grazing incidence HRXRD. As shown
in Fig. 2a, the pristine LLZTO pellet exhibited a standard cubic
garnet crystal structure, while for the LLZTO pellet with den-
drite, some peaks corresponding to LiOH and Li2CO3 appeared
after contacting with air. Similar reports from literature show
that LiOH and Li2CO3 are the reaction products between Li
dendrites and air [30]. Additionally, the Li2CO3 and LiOH peaks

all disappeared in the recycled LLZTO pellet, implying successful
dendrite removal. The dendrite-derived LiOH and Li2CO3 spe-
cies formed through the reactions between Li dendrites and air
as follows:
2Li + 2H2O = 2LiOH + H2,
2LiOH + CO2 = Li2CO3 + H2O.

To further investigate the product of the reaction between the
dendrites and air, FIB-TEM was employed. Li dendrites at grain
boundaries have darker contrast in SEM; hence it is possible to
prepare a cross-sectional specimen of the Li dendrite region. To
make sure the selected area contains Li dendrites, the LLZTO
pellets were further confirmed by using an optical microscope
before thinning the lamella. The black areas shown in Fig. 2b
represent the regions with dendrites, one of which was selected
for TEM sample preparation. Fig. 2c shows the TEM image of
the specimen obtained from the red circle area in Fig. 2b. There
are numerous voids and grain boundaries between LLZTO

Figure 2 Characterizations of the dendrite derivatives. (a) HRXRD patterns of various LLZTO samples. (b) Optical image of the surface of the LLZTO pellet
with dendrites. The FIB specimen was picked up from the red circle region. (c) TEM images of the LLZTO pellet with dendrites. The four regions highlighted
with orange squares were observed to portray the reaction product between Li dendrites and air. The SAED patterns were taken from the area within orange
circles in regions 1–4, respectively.
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grains, which are the breeding grounds for dendrite growth.
Therefore, four different void regions were investigated. The
corresponding selected area electron diffraction (SAED) patterns
are all consistent with LiOH viewed along the zone axis [131],
indicating that in this region, the product of the reaction
between Li dendrites and the air is LiOH, which is in agreement
with the HRXRD result.

Li dendrites tend to grow along the grain boundaries of the
LLZTO pellets; hence exposure to air leads to the in-situ for-
mation of dendrite-derived LiOH and Li2CO3 inside the grain
boundaries and voids. We suspect that the LiOH and Li2CO3
may contribute to the healing and recycling of the shorted
LLZTO pellets as sintering additives, leading to better electro-
chemical performances. As shown in Fig. S1, abnormal grain
growth of LLZTO pellets occurred when the recycling tem-
perature was 1100°C. Therefore, we chose a lower temperature
(1000°C) for the recycling process. The ionic conductivities of
LLZTO pellets were measured by using two ion-blocking elec-
trodes. Considering that heat treatment may also influence ionic
conductivity, LLZTO pellets without dendrite penetration were
also subjected to the same heat treatment process and were
named “LLZTO(2)”. The EIS curves of the pristine LLZTO,
LLZTO(2) and recycled LLZTO are shown in Fig. 3a. The curves
are characterized by a semicircle at high frequencies and an
oblique line at low frequencies. Since the semicircle does not
start from the origin, the real axis intercepts of the semicircle at
higher and lower frequencies represent the LLZTO bulk resis-
tance and grain boundary resistance, respectively. As displayed

in Table 1, the ionic conductivities for pristine LLZTO, LLZTO
(2) and recycled LLZTO were 0.39, 0.45 and 0.62 mS cm−1,
respectively. One can see that heat treatment enhanced the ionic
conductivity of LLZTO pellets without dendrites to a certain
extent. Importantly, the recycled LLZTO exhibited the highest
ionic conductivity, indicating that the existence of LiOH and
Li2CO3 could lead to better densification and, thus, a higher
ionic conductivity, which was in agreement with the relative
density results. The relative densities of the pristine LLZTO,
LLZTO(2) and recycled LLZTO were 90.9%, 92.9% and 95.3%,
respectively. Moreover, as presented in Fig. 3b, the activation
energies for the pristine LLZTO, LLZTO(2) and recycled LLZTO
were 0.43 ± 0.01, 0.41 ± 0.02 and 0.37 ± 0.02 eV, respectively.
The recycled LLZTO pellets also exhibited the lowest ion-dif-
fusion barrier. The CCD, at which the cell would abruptly short-
circuit, is a vital parameter for the LLZTO electrolyte. As shown
in Fig. 3c, d, the CCD values for the pristine LLZTO and
recycled LLZTO were 0.32 and 0.44 mA cm−2, respectively,
showing that the recycled LLZTO had better inhibition of
dendrite growth.

The sintering roles of LiOH and Li2CO3 were further inves-

Figure 3 Electrochemical performances of different LLZTO samples. (a) EIS curves of different LLZTO pellets. (b) Arrhenius plots of different LLZTO
pellets. (c) Li plating-stripping performances of Li|LLZTO|Li symmetric cell at different current densities. (d) Li plating-stripping performances of Li|recycled-
LLZTO|Li symmetric cell at different current densities.

Table 1 Performances of various LLZTO solid electrolytes

Samples Relative density σ (mS cm−1) Active energy (eV)

Pristine LLZTO 90.9% 0.39 0.43 ± 0.01

LLZTO(2) 92.9% 0.45 0.41 ± 0.02
Recycled LLZTO 95.3% 0.62 0.37 ± 0.02
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Figure 4 Effects of LiOH and Li2CO3 sintering aids. (a–c) Cross-sectional SEM images of the 100%LLZTO, 98%LLZTO-2%LiOH and 98%LLZTO-2%Li2CO3

pellets. (d) Corresponding ionic conductivities. (e) Assisted sintering mechanism of Li dendrite derivatives.

Figure 5 TEM characterization of the second phase of (a–f) 98%LLZTO-2%LiOH and (g–j) 98%LLZTO-2%Li2CO3, respectively. (a, g) Morphologies of α-
Li5AlO4 (grain boundary) and LLZTO (grain). (b, h) SAED patterns of α-Li5AlO4 along the [112] zone axis. (c) HRTEM image of α-Li5AlO4. (d, i) ADF-
scanning TEM images of α-Li5AlO4. (e, j) Corresponding EDS mapping. (f) EELS result for the grain boundary in (a).
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tigated. LLZTO pellets without sintering additives and with
2 wt% LiOH or 2 wt% Li2CO3 powders were prepared, named
“100%LLZTO”, “98%LLZTO-2%LiOH”, and “98%LLZTO-2%
Li2CO3”, respectively. The 100%LLZTO sample displayed a loose
cross-sectional morphology (Fig. 4a), while both 98%LLZTO-2%
LiOH and 98%LLZTO-2%Li2CO3 displayed a dense micro-
structure (Fig. 4b, c), which proved the previous conjecture that
LiOH and Li2CO3 could work as sintering additives. As dis-
played in Fig. S2 and Fig. 4d, the ionic conductivities for the
100%LLZTO, 98%LLZTO-2%LiOH and 98%LLZTO-2%Li2CO3
were 4.0 × 10−6, 5.3 × 10−4 and 4.7 × 10−4 S cm−1, demonstrating
that adding LiOH and Li2CO3 to LLZTO could effectively
improve its relative density and ionic conductivity.

Li dendrites tend to penetrate through the grain boundaries
and voids in LLZTO ceramic electrolytes because of their low
mechanical strengths. The in-situ formed Li dendrite derivatives
can promote sintering during heat treatment, thus strengthening
the weak regions and increasing the relative density. The assisted
sintering mechanism of Li dendrite derivatives (LiOH and
Li2CO3) is displayed in Fig. 4e. In the high-temperature sintering
process, LiOH and Li2CO3 first decompose into Li2O. As a
sintering aid, Li2O also proved to be a good binder, which could
lead to liquid phase sintering behavior [50]. The liquid phases
formed in grain boundaries could eliminate the residual pores
and improve the relative density.

To investigate the microstructure of the second phase for the
98%LLZTO-2%LiOH and 98%LLZTO-2%Li2CO3 samples, TEM
characterization was carried out. Fig. 5a shows the morphology
of the LLZTO grains and grain boundaries of the 98%LLZTO-
2%LiOH sample. Due to the difference in atomic number,
LLZTO grains have darker contrast. Fig. 5b displays the SAED
pattern of the grain boundary region, which matches α-Li5AlO4
along the zone axis [112], while Fig. 5c shows the corresponding
HRTEM image of the grain boundaries. The annular dark-field
(ADF) image (Fig. 5d) and the corresponding EDS mapping
(Fig. 5e) show the elemental distribution of the grain bound-
aries. Unlike the LLZTO grains, Al and O elements are mainly
distributed in this region. To further confirm the chemical
composition of the second phase, electron energy-loss spectro-
scopy (EELS) was conducted and shown in Fig. 5f. Li-K and Al-
K edges can be observed in the spectrum. The TEM character-
ization of the 98%LLZTO-2%Li2CO3 sample has similar results.
The SAED pattern (Fig. 5h) and EDS mapping (Fig. 5j)
demonstrate that the crystal structure of this region is also α-
Li5AlO4. The α-Li5AlO4 second phase can fill the original voids
and thus enhance relative density, which also proves that the
liquid sintering process exists.

CONCLUSIONS
In summary, we applied a simple method based on heat treat-
ment for healing dendrites and recycling LLZTO electrolytes.
The recycled LLZTO pellets exhibited a denser microstructure,
enhanced ionic conductivity, and higher CCD value. Through
HRXRD and FIB-TEM characterizations, the reaction product
between Li dendrites and air was identified to be LiOH and
Li2CO3, which could contribute to further densification of the
LLZTO electrolyte during heat treatment. This work provides a
new recycling method for CSEs.
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通过热愈合方法回收被锂枝晶刺穿的石榴石型固态
电解质
陈邵杰1†, 胡祥辰1†, 聂璐1, 于奕1,3, 刘巍1,2,3*

摘要 固态锂金属电池(SSLMBs)因其高安全性和潜在的高能量密度引
起了广泛的兴趣 . 然而 , 锂枝晶在固态电解质中的生长严重阻碍了
SSLMBs的实际应用. 在本文中, 我们开发了一种简单的方法, 通过热处
理修复和回收被锂枝晶刺穿的石榴石氧化物电解质. 与初始对照样相
比, 回收后的石榴石电解质表现出更高的相对密度、离子电导率和临
界电流密度. 热愈合是基于树突状锂枝晶和空气间的反应产物, 其有助
于在热处理过程中石榴石电解质的进一步致密化. 这项工作为石榴石
型固态电解质的回收利用开辟了一条新的途径.
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