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Fully conjugated two-dimensional sp2-carbon covalent organic
frameworks for efficient photocatalytic hydrogen generation
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ABSTRACT In this paper, two types of conjugated, triazine-
based covalent organic frameworks (COFs) with different
connected linkages (imine bond and sp2-carbon–CN bond) are
presented. The insignificant difference in the linkages creates
a remarkable difference in their performance in visible-light-
driven hydrogen generation. The fully π-conjugated two-di-
mensional (2D) COF with sp2-carbon–CN linkages showed an
external quantum efficiency of 13.48% at 450 nm, which is an
unprecedented result for COF photocatalysts. In contrast, the
imine-linked 2D COF displayed almost no photoactivity.
Further photoelectrochemical and quantum chemical studies
provide an in-depth understanding of the catalytic mechan-
ism. This finding provides new insight into preparing high-
performance organic photocatalysts for solar energy conver-
sion.

Keywords: covalent organic frameworks, photocatalytic hydro-
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INTRODUCTION
Over the last few decades, photocatalytic hydrogen evolution
(PHE) from water has become a promising method of producing
clean and renewable energy sources. Continuous efforts have
been devoted to developing new materials to achieve that pur-
pose, among which photocatalysts are very effective [1–9]. PHE
is a consecutive multistep process that requires systematic
structural management and a suitable bandgap to restrict charge
recombination and facilitate charge carrier generation and
transport [10,11]. Hence, it is crucial to develop a highly efficient
method for enhancing photocatalytic efficiency. Nonetheless, a
simple principle for designing new and efficient photocatalysts is
highly required. However, to date, the relationships between the
atomic-level structures and the performance of photocatalysts
remain unknown due to the lack of knowledge in the structures
of photocatalysts [12–16].

Covalent organic frameworks (COFs) are crystalline organic
porous polymers with well-defined structures and molecular
tunability [17–20]. Moreover, COFs are believed to be potential
photoactive materials for efficient solar energy conversion due

to their long-range ordered structures, large surface areas, and
tunable bandgaps [6,11]. Several COFs with photoactive func-
tionalities, such as triazine [21,22], diacetylene [23], benzothia-
diazole [24,25], thiazolo[5,4-d]thiazole [26], and sulfone [27]
moieties have shown excellent photocatalytic activity. Another
key factor that determines the performance of a photocatalyst is
the linkages, which serve as a connection of the photoactive
moieties. The reason for that is both electron transfer and light-
absorbing behavior depend on the π-conjugation of the linkages.
Imine [28–30], hydrazone [31,32], β-ketoenamine [33–35],
triazine [22,36], and azine [37–39] have been widely used as
typical linkages in the preparation of photoactive COFs for PHE.

Recently, sp2-carbon-based COFs have been successfully
constructed through Knoevenagel and aldol condensation
[40,41]. Compared with the traditional imine-based COFs, the
conjugation of the sp2-carbon-based COFs is effectively
enhanced. The fully conjugated sp2-carbon linkages can improve
the photothermal stability as well as broaden the visible light
absorption range. Meanwhile, exciton migration and electron
delocalization are greatly enhanced, resulting in promoted
charge career mobility, which further facilitates the transfer of
the photogenerated excitons to the surface of the photocatalyst.
Moreover, sp2-carbon-linked COFs are stable in the air under
light illumination. Some remarkable studies [42–46] on the
preparation of sp2-carbon-linked COFs and their photocatalytic
applications have already been reported. Although fully con-
jugated sp2-carbon-linked COFs have many advantages, poor
reversibility of this linkage makes the construction of sp2-car-
bon-linked COFs very challenging. Additionally, the poor self-
adjusting process does not promote the formation of highly
ordered structures. Thus, many problems still exist regarding the
preparation of these –C=C– linked COFs with good PHE
activity and the atomistic structure-property relationships of
COF materials in PHE.

Here, two triazine-based two-dimensional (2D) COFs (PTPA-
COF with imine linkage and TP-COF with sp2-carbon linkage)
were prepared, and their PHE activities were compared. TP-
COF exhibited a superior photocatalytic activity with an external
quantum efficiency (EQE) of 13.48% among the COF photo-
catalysts, while PTPA-COF displayed almost no photoactivity.
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Furthermore, photocurrent, electrochemical impedance spec-
troscopy (EIS), femtosecond transient absorption (fs-TA) spec-
troscopy, and quantum chemical calculations were performed to
explore the mechanism and the different performances between
the two COFs. Moreover, the structure-activity relationship of
the COFs with different linkages was investigated, which enables
us to find a novel approach for improving the photocatalytic
performance of COF materials.

EXPERIMENTAL SECTION

Chemicals and materials
Organic solvents 1,4-dioxane, tris(2-hydroxyethyl)amine
(TEOA), L-ascorbic acid, and n-butyllithium (2.4 mol L−1 solu-
tion in hexanes) were purchased from Adamas. Cesium carbo-
nate was procured from J&K Scientific. 1,4-Phenylenediac-
etonitrile was purchased from Sigma. Tetrahydrofuran (THF)
was redistilled under argon reflux with Na crumbs. All aqueous
solutions were prepared with Milli-Q water. All chemicals were
used as received.

Synthesis of PTPA-COF
A 10-mL pyrex tube was charged with 2,4,6-tris(4-for-
mylphenyl)-1,3,5-triazine (39.9 mg, 0.1 mmol), 2-phenylenedia-
mine (16.3 mg, 0.15 mmol), THF (2 mL), dimethylacetamide

(DMAC) (1 mL), and aqueous acetic acid (0.3 mL, 6 mol L−1).
This mixture was sonicated for 2 min, degassed through three
freeze-pump-thaw cycles, sealed under vacuum, and heated at
120°C for 3 days. The reaction mixture was cooled to room
temperature, and the precipitate was centrifuged and washed
with H2O and THF several times and dried under vacuum at
120°C for 10 h to afford an orange powder with a 87% isolated
yield.

Synthesis of TP-COF
The synthesis of TP-COF was similar to that of PTPA-COF
except that the pyrex tube was charged with 2,4,6-tris(4-for-
mylphenyl)-1,3,5-triazine (25.2 mg, 0.064 mmol), 2-phenylace-
tonitrile (16.0 mg, 0.096 mmol), 1,4-dioxane (2 mL), and cesium
carbonate (124 mg, 0.575 mmol). A yellow powder with a 82%
isolated yield was obtained as TP-COF.

RESULTS AND DISCUSSION
PTPA-COF and TP-COF were prepared according to a pre-
viously reported method (Fig. 1a) [47,48]. The successful for-
mation of the chemical bonds in PTPA-COF and TP-COF was
confirmed by Fourier transform infrared (FT-IR) spectroscopy
and 13C cross-polarization magic angle spinning solid-state
nuclear magnetic resonance (CP-MAS ssNMR) spectroscopy.
Fig. S1a, b illustrate the FT-IR spectra of PTPA-COF, TP-COF,

Figure 1 (a) Illustration of synthetic procedures of PTPA-COF and TP-COF by Schiff base condensation and Knoevenagel condensation, respectively.
(b, c) PXRD patterns for PTPA-COF and TP-COF, and the insets are structural models of PTPA-COF and TP-COF assuming the AA stacking mode.
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and monomers. The C=O stretching vibration of the aldehyde
monomers at about 1700 cm−1 was significantly reduced, indi-
cating the occurrence of polymerization. The stretching vibra-
tion peaks of the C=N bond at 1630 cm−1 in PTPA-COF and the
C≡N bond at 2200 cm−1 in TP-COF further confirm the suc-
cessful synthesis of the corresponding COF skeletons. Fig. S2
exhibits the 13C NMR spectra of PTPA-COF and TP-COF. The
corresponding peaks are well assigned. Hence, the chemical
structures of the obtained COFs are well elucidated. The signal
at ∼158 ppm corresponding to imine carbon confirmed the
formation of the imine linkage in PTPA-COF. Moreover, the
signals at ~111 and ~118 ppm indicated the existence of the
–C–CN linkage in TP-COF. Furthermore, the thermogravi-
metric analysis measurement verified the good thermal stability
of PTPA-COF and TP-COF (Fig. S3). Notably, the decomposi-
tion temperature of TP-COF with C=C linkages is up to 500°C
with less than 10% weight loss in N2, indicating its better thermal
stability than PTPA-COF. The two COFs exhibited rod-like
morphology, as seen in their scanning electron microscopy
(SEM) images (Fig. S4a, b). The high-resolution transmission
electron microscopy (HR-TEM) images of TP-COF and PTPA-
COF revealed the honeycomb-like internal structures
(Fig. S4c, d).

Powder X-ray diffraction (PXRD) analyses revealed that the
two COFs were crystalline. Combined with structural simula-
tions, the experimental PXRD patterns of PTPA-COF and TP-
COF were subjected to powder indexing. The diffraction peaks
at 3.01°, 4.89°, 5.62°, 7.55°, and 24.8° were indexed to the (100),
(110), (200), (210), and (001) reflections for PTPA-COF. Simi-
larly, the PXRD pattern of TP-COF showed five distinguishable
peaks at 2.78°, 4.78°, 5.45°, 7.34°, and 24.3°. Materials Studio
software was used for the optimization of the geometric energy
of structural models, and Pawley refinement was performed on
the diffraction patterns. The experimental PXRD pattern was
well-consistent for both of these COFs. Here, the simulated
pattern was obtained from an AA stacking model. The refined
parameters for the unit cells of PTPA-COF and TP-COF were a
= b = 37.502 Å, c = 3.449 Å, α = β = 90°, γ = 120° (residuals Rp =
4.58%, Rwp = 6.21%) and a = b = 37.514 Å, c = 3.488 Å, α = β =
90°, γ = 120° (residuals Rp = 3.51%, Rwp = 4.47%), respectively.

N2 adsorption-desorption was then conducted to evaluate the
porous characteristics of the two COFs (Fig. S5). By employing
the Brunauer-Emmett-Teller (BET) model, the surface areas of
PTPA-COF and TP-COF were calculated to be 582 and
232 m2 g−1, respectively. A nonlocal density functional theory
(NLDFT) cylindrical pore model was employed to elucidate the
pore size distributions. Prominent distribution peaks at 2.41 and

2.32 nm were found for PTPA-COF and TP-COF, respectively.
The experimental values are consistent with the theoretical
values based on the Connolly surface in the AA stacking models.

Next, we studied the photophysical properties of PTPA-COF
and TP-COF. PTPA-COF and TP-COF were orange and yellow
in color, respectively, visible to the naked eye (Fig. S6). In
Fig. 2a, PTPA-COF shows slightly red-shifted absorption
(540 nm) compared with TP-COF (514 nm), as observed from
the ultraviolet-visible (UV-vis) diffuse reflectance spectrum. The
bandgaps of PTPA-COF and TP-COF were determined to be
2.31 and 2.43 eV, respectively, from the absorption spectra
(Fig. 2b) [44]. The lowest unoccupied molecular orbital (LUMO)
levels of PTPA-COF and TP-COF were estimated to be −3.35
and −3.23 eV by cyclic voltammetry measurements (Fig. S7)
[42]. The highest occupied molecular orbital (HOMO) levels of
both PTPA-COF and TP-COF were then calculated to be
−5.66 eV (Fig. 2c). With the knowledge of the suitable bandgaps
and the unique 2D conjugated structures of the obtained COFs,
light-induced photocatalytic hydrogen evolution reaction (HER)
of the two COFs was then executed.

The PHE of PTPA-COF and TP-COF was evaluated by taking
a suspension of each COF material (5 mg) in water (25 mL) and
irradiating it with visible light (λ > 420 nm) at 5°C. TEOA
(10 vol%, pH 10.30) was chosen as the sacrificial electron donor
(SED). H2PtCl6 (8 wt%) was added for the in situ formation of
the Pt co-catalyst to facilitate hydrogen gas evolution from the
surface of the materials. Consequently, the average HER yield of
TP-COF reached as high as 29.12 mmol h−1 g−1. In sharp con-
trast, PTPA-COF, structurally similar to TP-COF, presented a
relatively low HER yield of 36 μmol h−1 g−1 (Fig. 3a). Subse-
quently, the PHE performances of TP-COF and PTPA-COF
with different SEDs were investigated. In Fig. S8, TP-COF
exhibited the best performance for H2 evolution when TEOA
was used as the SED. Meanwhile, when 0.1 mol L−1 ascorbic acid
solution was used as the SED, the HER rate of TP-COF
decreased sharply to about 1/10 of the value in the presence of
TEOA. Moreover, when a mixture of Na2S/Na2SO3 aqueous
solution was used as the SED, the PHE performance almost
disappeared. For PTPA-COF, the HER yields were all poor in
the presence of these three SEDs. The correlation between the
HER yields of TP-COF and the Pt loading amount was then
studied. The HER yields of 6, 12, 25, 37, and 50 μL H2PtCl6
(8 wt%)-modified TP-COF were 140.1, 169.5, 188.3, 122.8, and
117.8 μmol h−1, respectively (Fig. S9), among which the HER
yield corresponding to the 25 μL H2PtCl6-modified TP-COF is
the best, which was thus selected to evaluate the stability. The
reaction was run for 20 h in total and recorded every 5-h interval

Figure 2 (a) Solid-state UV-vis spectra; (b) Tauc plots; and (c) band positions of PTPA-COF and TP-COF.
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under visible light irradiation (Fig. 3b). The total amount of H2
evolved after 20 h was approximately 3620 μmol, which is far
better than the previously reported HER yields of COF materials.
These results also clarified that H2O provided the prime source
of hydrogen instead of COF itself. Moreover, FT-IR and PXRD
analyses further demonstrated the good stability of TP-COF
under prolonged light exposure (Fig. S10). The chemical com-
position and crystal structure of TP-COF showed no obvious
change after the 20-h test. In addition, the SEM (Fig. S11a, b)
and TEM (Fig. S11c) results of the recycled TP-COF after
photocatalysis indicated no obvious changes, hence supporting
the favorable stability of TP-COF in the HER process. Moreover,
highly dispersed Pt nanoparticles were observed by TEM
(Fig. S11d). Furthermore, we assessed the influence of the TP-
COF dosage on photocatalytic activity. In Fig. S12, reducing the
TP-COF dosage from 5 to 3 mg led to a slight reduction in HER
yields from 29.12 to 28.53 mmol h−1 g−1. However, increasing
the TP-COF dosage from 5 to 10 mg significantly decreased the
HER yields from 29.12 to 23.41 mmol h−1 g−1. Moreover, the
HER unexpectedly decreased from 23.41 to 14.86 mmol h−1 g−1

as the dosage of TP-COF increased from 10 to 20 mg. Under the
same conditions, the presence of more catalysts lowers the HER
yields, which may be caused by the aggregation of large amounts
of TP-COF to form larger particles. Hence, this aggregation
reduces the dispersion of TP-COF in the reaction solution,
resulting in poor light absorption and transmittance and a low
utilization rate of the active site of the photocatalyst. In addition,
EQE is a key parameter for evaluating the ability of hydrogen
generation by solar energy. This value is considered a standard
for comparing the activities of different photocatalysts. In this
study, the highest EQE obtained for TP-COF was 13.48% at

450 nm, which is an unprecedented value in organic COF
materials (Table S1).

The excellent photocatalytic performance of TP-COF was
achieved from its sp2-carbon-linked fully π-conjugated struc-
tures. The more effortless the transfer of the photogenerated
excitons is, the higher the charge carrier mobility is. PTPA-COF,
in which the only structural difference from TP-COF is the
linkage, is a perfect reference to verify this speculation. To fur-
ther gain a deep understanding of the mechanism, first, the
carrier generation and transport behavior of TP-COF was
investigated upon irradiation. Photoluminescence decay curves
were used to estimate the excited state lifetimes for the two
COFs (Fig. 3d). The average weighted lifetime of TP-COF was
measured to be 3.11 ns, which was remarkably longer than that
of PTPA-COF (τavg = 0.25 ns). This result is consistent with the
better photocatalytic ability of TP-COF. The much longer life-
time of TP-COF indicates the suppressed radiative recombina-
tion of photogenerated excitons due to its fully π-conjugated
system. The transient photocurrent density of TP-COF is about
11 times as high as that of PTPA-COF (Fig. 3e), indicating that
the fully π-conjugated system contributes to separating the
photogenerated charges. The charge transfer process was further
evaluated by the internal resistance through EIS measurement.
In Fig. 3f, the EIS Nyquist plots manifest that TP-COF has a
much smaller semicircle diameter than PTFT-COF, demon-
strating the lower charge transfer resistance of TP-COF than that
of PTFT-COF, which warrants efficient transportation and
separation of charge carriers. Additionally, the frontier mole-
cular orbitals and transmission functions of TP-COF and PTPA-
COF were calculated to understand the effect of different lin-
kages on the charge transport capability. In Fig. S13, two lin-

Figure 3 (a) Time-course hydrogen evolution using PTPA-COF and TP-COF as photocatalysts under visible-light (λ > 420 nm) irradiation. (b) Hydrogen
production monitored over 20 h with TP-COF as the photocatalyst under visible-light (λ > 420 nm) irradiation (evacuation every 5 h). (c) EQEs of TP-COF
under irradiation with monochromatic light at 410, 450, 525, and 630 nm. (d) Photoluminescence decay spectra of PTPA-COF and TP-COF. (e) Chopped
photocurrent density vs. time recorded on PTPA-COF and TP-COF films. (f) EIS Nyquist plots of PTPA-COF and TP-COF film photoelectrodes.
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kages led to a clear difference in the transmission gap. The
largest HOMO-LUMO gap is usually associated with charge
carrier conductance. Generally, a narrower gap suggests a
facilitated charge transport process [49]. The P11 (HOMO) and
P12 (LUMO) peaks for the C=C linkage are located at −1.56 and
1.65 eV, respectively, indicating a gap of 3.21 eV. The P21 and P22
peaks at −1.59 and 1.89 eV, respectively, for the C=N linkage,
correspond to a gap of 3.48 eV. The C=C linkage affords a
narrower gap, indicating a more efficient charge transport pro-
cess over the 2D conjugated molecular skeleton compared with
the C=N COF (PTPA-COF).

To further clarify the role of the linkages in PHE activity and
study the charge carrier dynamics, fs-TA was performed on the
two COFs [50,51]. In Fig. 4a, upon excitation at 450 nm, TP-
COF presents a strong positive signal in the 500–760 nm range,
which can be attributed to a higher electron polaron yield and
more efficient charge separation and accumulation of long-lived
electrons. Meanwhile, for PTPA-COF, only a weak absorption
on a shorter timescale of 2–8 ps was observed (Fig. 4b). The
negligible absorption indicates a weak absorption cross-section
for the trapped electrons. From the kinetic analysis of the two
COFs (Fig. 4c, d), TP-COF displays a long-lived excited state
absorption decay of 319.5 ps, which is much longer than that
(18.1 ps) of PTPA-COF. These are achieved from the larger
photogenerated electron population in TP-COF (electron
polarons). In principle, the long lifetime of the excited state
absorption is consistent with the highly efficient charge
separation and transfer [52,53]. The different linkage structures
in the COFs become a major contributory factor for the different
photophysical properties. Moreover, the electron-withdrawing
cyano group and triazines act as electron acceptors and benzene

knots in the COF as the electron-donating moiety enable the
formation of the A1–D–A2 system. The push-pull interactions
and the fully π-conjugated linkages between D and A moieties
successfully facilitate the transfer process of the photoexcited
electrons from D to A moieties, thereby advancing the spatial
electron-hole separation [54]. Finally, the hydrophilicity of the
two COF structures was measured. The results revealed that the
contact angle decreased from 123.1° for PTPA-COF to 91.3° for
TP-COF (Fig. S14), indicating the better hydrophilicity of TP-
COF. This may be due to the better hydrophilicity of sp2-car-
bon–CN linkages. The high hydrophilicity facilitates the contact
between the COF surface and the photocatalytic reaction solu-
tion, thus further enhancing the photocatalytic activity. Hence,
TP-COF with cyano-based-sp2 C=C linkages has better efficient
charge separation and transfer kinetics and leads to higher PHE
performance.

COF photocatalysis is a complicated and synergistic process
determined by multiple electronic and structural factors. As
demonstrated above, the correlation of crystallinity, porosity,
and optical bandgaps between the two COFs was first explored.
Similar crystallinity, stacking modes, and optical bandgaps were
obtained for both COFs. However, compared with PTPA-COF,
TP-COF featured a smaller BET value and weakened light
energy collection but exhibited superior PHE activity to PTPA-
COF. Thus, charge separation and transfer efficiency must be the
core factors determining the PHE activity of COFs among the
above-mentioned multiple elements [9]. The superior PHE
activity of TP-COF should be derived from the excellent electron
delocalization of the cyano-substituted sp2 C=C linkages and the
push-pull D–A interaction, which creates favorable molecular
heterojunctions for highly efficient charge separation and

Figure 4 fs-TA spectra obtained from suspensions of (a) TP-COF and (b) PTPA-COF in 0.1 mg mL−1 aqueous solution containing 10 vol% TEOA. The
corresponding kinetics of characteristic fs-TA absorption bands observed at 700 nm for the spectra of (c) TP-COF and (d) PTPA-COF.
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transfer.

CONCLUSIONS
In conclusion, two COF materials linked by an imine bond
(PTPA-COF) and an sp2-carbon–CN bond (TP-COF), respec-
tively, were synthesized. TP-COF yielded an EQE of 13.48% at
450 nm and a drastically higher HER yield of 29.12 mmol h−1 g−1

than its imine-linked counterpart (36 μmol h−1 g−1). fs-TA
spectroscopy and quantum chemical calculations revealed the
key role of cyano-substituted sp2 C=C linkages toward high-
efficiency charge separation and transfer. The superior PHE
performance of TP-COF was ascribed to the strong electron
delocalization promoted by the fully conjugated linkages. This
study provides a general guideline for the simple, effective and
practical design of highly efficient COF-based photocatalytic
materials.
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二维sp2碳共价有机框架及高效光催化制氢
刘辉1, 王丹博1, 于泽芳1, 陈雅静2, 李旭兵2, 张瑞玲3, 陈雄4,
吴骊珠2, 丁乃秀1*, 王元成1*, 赵英杰1*

摘要 本文设计合成了两种具有不同连接方式(亚胺键和sp2-C–CN键)
的三嗪基共价有机框架(COFs)材料. 连接单元的微小变化导致可见光
驱动制氢性能的巨大差异. 具有sp2碳连接方式的全π共轭二维COFs在
450 nm波长处表现出13.48%的外量子效率, 优于已报道的COFs光催化
剂. 而亚胺键的二维COFs几乎没有光活性. 借助光电化学研究和量子
化学计算进一步研究了二维COFs的催化机理, 为太阳能转化高性能有
机光催化剂的制备提供了新的见解.
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