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ABSTRACT The kagome-lattice crystal hosts various intri-
guing properties including the frustrated magnetism, charge
order, topological state, superconductivity and correlated
phenomena. To achieve high-performance kagome-lattice
compounds for electronic and spintronic applications, careful
tuning of the band structure would be desired. Here, the
electronic structures of kagome-lattice crystal Ni3In2S2 were
investigated by transport measurements, angle-resolved pho-
toemission spectroscopy as well as ab initio calculations. The
transport measurements reveal Ni3In2S2 as a compensated
semimetal with record-high carrier mobility (~8683 and
7356 cm2 V−1 S−1 for holes and electrons) and extreme mag-
netoresistance (15,518% at 2 K and 13 T) among kagome-lat-
tice materials. These extraordinary properties are well
explained by its band structure with indirect gap, small elec-
tron/hole pockets and large bandwidth of the 3d electrons of
Ni on the kagome lattice. This work demonstrates that the
crystal field and doping serve as the key tuning knobs to op-
timize the transport properties in kagome-lattice crystals. Our
work provides material basis and optimization routes for ka-
gome-lattice semimetals towards electronics and spintronics
applications.

Keywords: kagome-lattice, high mobility, extreme magnetore-
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INTRODUCTION
In recent years, kagome-lattice crystals have attracted great
research interest due to their unique magnetic and electronic
properties [1–5]. The kagome-lattice crystals are an ideal plat-
form to seek for the quantum spin liquid ground states due to
the large geometric frustrations [1,6–10]; the kagome-lattice
could host Dirac cone-type dispersions similar to the honey-
comb lattice [11–13], flat bands due to the completely destruc-

tive interference of Bloch wave functions [11,13,14], topological
electronic states (e.g., Weyl cones and topological surfaces
states) as well as electronic instabilities such as charge density
waves and superconductivity [15–19]. These unique properties
render kagome-lattice compounds fascinating candidates for
electronic and spintronic applications.
For device applications, high-performance kagome-lattice

compounds (such as high carrier mobility, robust magnetism,
and high transition temperature (Tc) superconductivity) are
highly desired [20–23]. As an example, kagome-lattice naturally
hosts fast-moving Dirac fermions which are feasible for high-
mobility electronic devices [12–14]. However, the typical
mobility of existing kagome-lattice crystals is ~100 to
1000 cm2 V−1 s−1 [20,24,25], much smaller than those of the
typical Dirac electron systems (such as graphene,
~104 cm2 V−1 s−1) [26–28] and high-performance metal-oxide-
semiconductor field-effect transistor materials (e.g., GaAs,
~104 cm2 V−1 s−1) [29–31]. Therefore, careful material optimi-
zation and tuning of the band structure would be a necessity to
achieve kagome-lattice crystals with superior transport proper-
ties and facilitate the applications of kagome-lattice materials in
electronic and spintronic devices.
Among the kagome-lattice compounds, the great tunability of

the 3d transition metal intermetallic compounds provides a
versatile platform for the search and optimization of the physical
properties in kagome-lattice crystals, including FeSn, CoSn, and
YMn6Sn6 [11,13,14]. In this work, we demonstrate such an effort
in the kagome-lattice shandite Ni3In2S2, a non-magnetic iso-
structural counterpart of the recently discovered magnetic
topological Weyl semimetal (WSM) Co3Sn2S2 [15,16,32,33].
With Ni substituting Co and In for Sn, we effectively tailor the
band structure and achieve record-high mobility (~8683 and
7356 cm2 V−1 S−1 for holes and electrons) and electron-hole
compensated extremely large and unsaturated magnetoresis-
tance (MR) (15,518% at 2 K and 13 T) among all the existing
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kagome-lattice crystals. Via band structure investigation and
analysis using angle resolved photoemission spectroscopy
(ARPES) and ab initio calculations, we attribute these superior
transport properties to (1) the delicate band arrangement under
the crystal field which forms a bandgap via the topological phase
transition (Co3Sn2S2 possesses inverted 3d bands) and restores
the bandwidth of the Ni 3d electrons on the kagome-lattice, and
(2) proper doping which forms small and compensated electron
and hole pockets at the Fermi energy (EF). Our results demon-
strate a compensated semimetal Ni3In2S2 with high mobility and
extreme MR (XMR) and illustrate a possible route in the mod-
ification of the electronic structure of kagome-lattice com-
pounds for achieving superior transport properties, which
render them great potential in high-mobility electronic and
spintronic applications.

EXPERIMENTAL SECTION

Crystal growth
Single crystals of Ni3In2S2 were grown through the solid state
chemical reaction route. Mixtures of high-purity elements Ni
(Macklin, 99.99%), In (Aladdin, 99.99%) and Sulfur (Adamas,
99.999%) in a stoichiometric ratio were put into an alumina
crucible and sealed inside an evacuated quartz tube. The
assembly was heated up to 1000°C within 20 h in the furnace
and held at 1000°C for 30 h. Then it is slowly cooled at a rate of
2°C h−1 to 500°C, followed by switching off the furnace to let the
sample cool down to room temperature.

Electrical transport measurements
The electrical transport measurements were carried out in a
physical property measurement system (PPMS, 14T) between
2 K and room temperature, using a sample with a typical
dimension of 0.1 mm × 0.5 mm × 1.5 mm. A standard four-
probe method was applied for the longitudinal resistivity and the
Hall-effect measurements with a current along the a-axis and
magnetic fields parallel to the c-axis. To eliminate the influence
of misalignment of the lead contact, all XR- and Hall-effect
measurements were conducted by scanning both negative and
positive magnetic fields.

Angle-resolved photoemission spectroscopy
ARPES measurements were performed at the Beamline I05 of
the Diamond Light Source (DLS) with a Scienta R4000 analyzer
and Beamline BL03U of Shanghai Synchrotron Radiation
Facility (SSRF) with a Scienta DA30 analyzer. The photon-
energy ranges of data acquisition for DLS and SSRF were 52–200
and 58–114 eV, respectively. The samples were cleaved in situ at
23 K and measured in ultrahigh vacuum with a base pressure of
less than 5 × 10−11 Torr (1 Torr = 133.322 Pa). The energy and
momentum resolution were 10 meV and 0.2°, respectively.

Theoretical calculation
The first-principles calculations were performed using the
Vienna ab initio Simulation Package (VASP) [34]. The interac-
tions between the valence electrons and ion cores are described
by the projector augmented wave method [35,36], and exchange-
correlation potential was formulated by the generalized gradient
approximation with the Perdew-Burke-Ernzerhof (PBE) scheme
[34]. The Γ-centered 10 × 10 × 10 k points were used for the first
Brillouin-zone sampling. The spin-orbit coupling (SOC) was

included in all the calculations. The tight-binding Hamiltonian
was constructed using the maximally localized Wannier func-
tions which were provided by Wannier90 Package [37]. The
surface states (SS) were calculated by the surface Green’s func-
tion method [38] based the tight-binding Hamiltonian. The
experiment lattice constant (Inorganic Crystal Structure Data-
base No. 415258) was used in the calculations.

RESULTS AND DISCUSSION
First, we characterized the basic properties of Ni3In2S2. Ni3In2S2
has a rhombohedral lattice structure with the space group R m3
(No. 166). The conventional cell and primitive cell are shown in
Fig. 1a with the conventional lattice constants to be a = b =
5.37 Å, c = 13.56 Å. The crystal is formed by sequenced In-[S-
(Ni3-In)-S] layers along the c direction, where Ni atoms form a
kagome-lattice (Fig. 1b) sandwiched between two hexagonal S
atoms. The typical samples for our measurement have sizes
around several millimeters and the high quality of the single-
crystalline samples used in this work is demonstrated by the
single-crystal X-ray diffraction (XRD) angle scan (Fig. 1c).
Fig. 1d presents the temperature-dependent longitudinal resis-
tivity ρxx(T) under different magnetic fields. Upon cooling from
room temperature to 2 K, the zero-field ρxx(T) continuously
decreases and then flattens at low temperatures, without any
signature of phase transition, suggesting the absence of long-
range magnetic order in Ni3In2S2. Both the quite low residual
resistivity of 0.018 μΩ cm and the large residual resistance ratio
(RRR) of 215 reflect the very high quality of the studied crystal.
Upon the increasing field, we noticed a significant upturn of the
resistivity at low temperatures, which indicates a large MR effect
of Ni3In2S2, and further, a semi-metallic with small Fermi
pockets. The similar low-temperature resistivity upturn behavior
has also been observed in other semi-metallic compounds, such
as TaAs, PtBi2, and WP2 [39–42]. In addition, the calculated
three-dimensional (3D) Fermi surfaces are shown in Fig. 1e, f.
Electron pockets near the Γ point and hole pockets near the W
point were observed and the electron pockets and hole pockets
possess similar volumes, demonstrating Ni3In2S2 as a nearly
compensated semimetal.
The above analysis hints the similar transport properties as

nearly compensated semimetal and encourages us to explore the
magneto-transport properties of Ni3In2S2, which is summarized
in Fig. 2. Fig. 2a shows the magnetic-field-dependent MR for
Ni3In2S2 single crystal at different temperatures. The MR is
greatly enhanced with the applied external magnetic field along
the c-axis direction, displaying no signature of saturation and
reaching a high value of 15,518% at 2 K and 13 T, representing
an XMR effect in a semimetal. This XMR effect is rarely
observed in other kagome-lattice materials, suggesting the
unique magneto-transport property in Ni3In2S2. Upon raising
the temperature, the MR decreases dramatically and becomes
negligible at 50 K. In the inset of Fig. 2a, we fitted the MR at T =
2 K by AHn where n is estimated to be 1.9, which further indi-
cates Ni3In2S2 may be a nearly compensated semimetal with high
carrier mobility (the perfectly compensated semimetal with
equal density of electron (ne) and hole (nh) type carriers gives
MR = μeμhH2, where μe/μh are the electron/hole mobility,
respectively).
Furthermore, to evaluate the carrier-related parameters, we

estimated the carrier density and mobility from the Hall resis-
tivity (ρyx) and magneto-resistivity (ρxx) at different tempera-
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Figure 1 Basic characterization of Ni3In2S2. (a) Conventional (solid lines) and primitive (dotted lines) cell of Ni3In2S2. (b) Illustration of the kagome-lattice
formed by Ni. (c) XRD pattern of Ni3In2S2 measured at room temperature. Inset: photograph of the high-quality Ni3In2S2 single crystal. (d) Temperature-
dependent resistivity under different magnetic fields. Inset: configuration of the applied electrical current and magnetic fields. (e) 3D map and (f) top view of
the calculated Fermi surface. Purple and green sheets represent electron pockets and gray sheets represent hole pockets.

Figure 2 Magnetic transport measurement of Ni3In2S2. (a) MR as a function of the magnetic field at 2–50 K. In the inset, the experimental data at 2 K have
been fitted using MR = AHn, yielding n = 1.9. (b) Hall resistivity as a function of magnetic field at different temperatures. (c) Carrier mobility as a function of
temperature. (d) Carrier concentration as a function of temperature. (e) Comparison of carrier concentrations and mobilities of typical kagome-lattice
materials. Data for other typical kagome-lattice materials are from Refs. [20,43].
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tures. The ρyx at high temperatures is almost linear and positive,
implying that the majority carrier is the hole type (see Supple-
mentary information Fig. S1). Fig. 2b plots ρyx vs. magnetic field
at various temperatures, which exhibits a nonlinear behavior and
persists down to 2 K, reflecting the typical characteristic of
multi-type carriers. We thus extracted the carrier density and
mobility of Ni3In2S2 at low temperatures using the two-band
model, by simultaneously fitting:
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where nh(ne) and μh(μe) are the hole (electron) density and
mobility, respectively, and B is the magnetic field. Fig. 2c and d
display the fitting results of the mobility of the carriers and
carrier density at different temperatures. At 2 K, nh = 2.49 ×
1021 cm−3 and ne = 2.42 × 1021 cm−3, which are quite close to
each other, and are highly consistent with the results obtained by
band calculations (nh = 1.37 × 1021 cm−3 and ne = 1.36 ×
1021 cm−3), respectively (the difference may be due to simplified
nature of the two-band model). These results indicate Ni3In2S2 is
indeed a compensated semimetal. Besides, the hole and electron
mobility at 2 K are 8683 and 7356 cm2 V−1 s−1, respectively,

which are the highest values among all reported kagome-lattice
materials (Fig. 2e) [20,43]. The large carrier mobility and com-
pensated carrier concentration in turn explains the above
mentioned XMR effect in this system, in the similar mechanism
as proposed in compensated semimetals [44]. Interestingly, we
note the mobility in Ni3In2S2 is multiple times higher than that
in the isostructural Co3Sn2S2 [20], suggesting the role of crystal
field and doping in tuning the band structure and the transport
properties, as elaborated later. These excellent transport prop-
erties observed in Ni3In2S2 could provide an ideal platform for
studying the electronic transport behavior for advanced elec-
tronic or spintronic devices based on kagome physics.
In order to trace the origin of the high mobility and non-

saturated XMR effect, we systematically investigated the elec-
tronic structure of Ni3In2S2 by ARPES. The 3D Brillouin zone
(BZ) of the primitive cell and the projected surface BZ of the
conventional cell in the (001) plane are shown in Fig. 3a, with
the momentum axis labelled. After cleaving, flat and shiny
surface was created, ideal for ARPES measurement, and the high
crystal quality was confirmed by the Laue pattern and the
topography image of the cleaved surface measured by scanning
tunneling microscopy (STM) (Fig. 3b), which confirmed the
cleavage surface as the (001) surface. The measured high sym-
metry dispersion along the K K and M M derections
are shown in Fig. 3c(i) and d(i). Due to the significant kz
broadening effect observed (see Supplementary information
Fig. S2 for the photon-energy-dependent ARPES measurement),

Figure 3 The electronic structure of Ni3In2S2 measured by ARPES. (a) The bulk BZ and its projection on the (001) surface. (b) STM topography image of the
cleaved (001) surface. Left inset: cleaved surface of Ni3In2S2 single crystal. Right inset: Laue pattern showing the high quality of the Ni3In2S2 crystal. (c) (i, ii)
High-symmetry cut along the K K direction and the corresponding calculated band dispersion. (d) (i, ii) High-symmetry cut along the M M
direction and the corresponding calculated band dispersion. Data are mirror symmetrized according to the crystal symmetry. (e) The calculated bulk band
structure in the BZ of the primitive cell with their orbital compositions labelled in different colors. (f) (i–iv) Photoemission intensity maps of CECs at 0, 0.1,
0.2 and 0.5 eV below EF, respectively. (g) (i–iv) Corresponding calculated CECs at the same energies. BCB: bulk conduction band; BVB: bulk valence band.
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ARPES data captures both dispersions from Γ and T points.
Therefore, hole pockets from W and electronic pockets from Γ
(labeled as BVB/BCB in Fig. 3c(ii), see the calculated band
structure in the primitive cell in Fig. 3e) are observed near K and
, respectively, showing excellent agreement with the projected

band structure from the slab calculations (Fig. 3c, d). The con-
stant energy contours (CECs) further reveal clear hole pockets
near K and electron pocket near (Fig. 3f), identical to the
calculation results in Fig. 3g (see detailed comparison in Fig. S3,
which gives the estimate of 3D hole/electron concentration as nh
= 1.37 × 1021 cm−3 and ne = 1.36 × 1021 cm−3, respectively,
further proving the electron-hole compensation nature in
Ni3In2S2). We also note the sharp SS near the M point chould be
identified, contributing to the parallel lines near the M point (the
SS are marked by the red arrows, see Fig. S4 for detail). The
excellent agreement between experiments and calculations
proves the validity of the calculation. Combining the transport
and calculation results of the electron and hole concentrations,
we further confirmed the nearly compensated semimetal nature
in Ni3In2S2, which is key to the high mobility and non-saturated
XMR effect in Ni3In2S2.
We interpret the superior transport behavior based on the

calculated band structure as presented in Fig. 3e. The orbital
analysis suggests the electron pockets near Γ and hole pockets
near W originate from the Ni 3d orbitals on the kagome-lattice,
which indicates that the excellent transport properties are closely
related to the kagome structure. To further elaborate the relation
between the unique electronic structure and the transport
properties in Ni3In2S2, we further performed systematic calcu-

lations on the band structure of four isostructural compounds:
Co3Sn2S2, Ni3Sn2S2, Ni3In2S2 and Co3In2S2, and explore their
band evolution to uncover the origin of the superior transport
properties in Ni3In2S2. As Fig. 4a–d show, in Co3Sn2S2, Ni3Sn2S2,
and Ni3In2S2, the dz2 electron-like bands and dx2-y2 hole-like
bands are cutting through EF, while the dz2 hole-like bands
dominate in Co3In2S2 due to the lack of electrons. Due to the
different crystal fields and spin orbit coupling strengths, there is
clear band inversion between dx2-y2 and dz2, leading to the
topological WSM phase in the ferromagnetic Co3Sn2S2 [32] and
topological insulator (TI) phase in the paramagnetic Ni3Sn2S2.
The inverted band structure creates local band gaps and reduces
the band width of the dx2-y2 and dz2 bands. In Ni3In2S2 and
Co3In2S2, the band inversion between dx2-y2 and dz2 was cancelled
and their bandwidth restored, leading to an indirect semi-
conductor-like gap around the Fermi level and allowing fast
moving carriers from the spherical Fermi surfaces in indirect
gaps (Fig. 4e). These characteristic carriers bring about high
mobility, long mean free path, and XMR effect. Meanwhile, the
different valence electrons in Co/Ni and In/Sn tune the Fermi
level and control the carrier concentration. In Co3Sn2S2, Ni3Sn2S2
and Ni3In2S2, the calculated concentrations of electron/hole
carriers are less than the 2 × 1021 cm−3 and almost compensated,
while in Co3In2S2, the hole type carrier dominates and has a
concentration of 8 × 1021 cm−3 (Fig. 4f). Combining the band-
width and EF position together, Ni3In2S2 is the optimal system
among the family with large bandwidth, small carrier con-
centration and compensated carrier, which explains its excellent
high mobility and non-saturated XMR effect.

Figure 4 Electronic origin of the transport properties in Ni3Sn2S2. (a–d) Plots of the projected band structure of Co/Ni 3d orbitals for Co3Sn2S2, Ni3Sn2S2,
Ni3In2S2, and Co3In2S2, respectively. 1 and 2 label the bands with dz2 and dx2-y2 orbitals, and red circles indicate the band inversion points. Shaded area indicates
the local band gaps between bands 1 and 2. (e) Summary of the local band gap between bands 1 and 2 at the L point, and bandwidths of 1 and 2 bands for the
four compounds. (f) Summary of the carrier concentrations for the four compounds.
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CONCLUSIONS
In summary, we have investigated the kagome-lattice material
Ni3In2S2 by magneto-transport measurement and electronic
structure analysis. Our results reveal the high-mobility and non-
saturated XMR in this compound which could be explained by
the large bandwidth and electronic structure in compensated
semimetal with an indirect gap. Such superior property could be
attributed to the crystal field and spin-orbit interaction strength
which controls the bandwidth via the topological phase transi-
tion, as well as the chemical doping which tunes the carrier type
and concentration. Our results illustrate the key tuning knob of
the electronic structure and key transport properties in the
kagome-lattice crystals. (Co,Ni)3(Sn,In)2S2 provides an ideal
platform to investigate magnetism and topological property, as
well as achieve high-mobility electronic and spintronic appli-
cations in kagome-lattice materials.
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Kagome晶格补偿型半金属Ni3In2S2创纪录的高迁移
率和极大磁电阻现象
房红伟1,2†, 吕孟3†, 苏豪1,2, 袁健1,2, 李一苇1, 徐丽璇4, 刘帅1,2,
魏立阳1,2, 刘馨琪1,5, 杨海峰1, 姚岐1,5, 王美晓1,5, 郭艳峰1,
史武军6,7*, 陈宇林1,5,8*, 刘恩克3*, 柳仲楷1,5*

摘要 具有Kagome晶格的晶体有很多有趣的性质, 包括受挫磁阻、电
荷有序、拓扑态、超导和关联现象. 为了在电子学和自旋电子学应用
中实现高性能Kagome晶格化合物, 需要对能带结构仔细调整. 本文采
用输运测量、角分辨光电子能谱和从头计算等方法研究了Kagome晶
格晶体Ni3In2S2的电子结构.输运测量表明, Ni3In2S2是一种在Kagome晶
格材料中具有创纪录的高载流子迁移率(空穴和电子迁移率分别约为
8683和7356 cm2 V−1 S−1)和极大磁电阻(在2 K和13 T时为15,518%)的补
偿半金属. Ni在Kagome晶格中的3d电子导致的非直接带隙、小的电
子/空穴口袋和大的带宽的能带结构特征很好地解释了这些特殊的性
质. 这项工作表明, 晶体场和掺杂是优化Kagome晶格晶体输运特性的
关键因素. 我们的工作为Kagome晶格半金属在电子学和自旋电子学方
面的应用提供了材料基础和优化路径.
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