Skip to main content
Log in

Strategies for enhancing the stability of metal halide perovskite towards robust solar cells

面向高稳定性太阳能电池开发的卤化物钙钛矿稳定 性提升策略

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Perovskite is rising as the most promising material for the next generation of solar cells, due to its high efficiency, low cost, and convenient fabrication. However, the stability of perovskite solar cells remains to be a challenge towards large-scale application. Perovskite materials play a key role in improving the stability of PSCs, and tremendous efforts have been committed to stabilizing the perovskite materials, including composition regulation, crystallization control, and interface optimization. Herein we review the state-of-the-art strategies to improve the stability of perovskite layers in PSCs, and important strategies are highlighted. We analyze in-depth the influence of each site ion on perovskite structural stability and summarize the important progress of these structures showing superior stability. We then summarize the use of additives to regulate perovskite crystallization and defect passivation and elaborate the related mechanisms. Furthermore, the pros and cons of different interface treatment methods used in perovskite solar cells are discussed

摘要

钙钛矿因其高效率、低成本、制造方便等优点, 逐渐成为下一 代太阳能电池最具潜力的材料. 然而, 钙钛矿太阳能电池(PSCs)的稳定 性问题仍然是其实现大规模应用的一个挑战. 钙钛矿材料稳定性的提 升对提高PSCs的稳定性起着至关重要的作用, 近年来, 为了进一步提 升钙钛矿材料的稳定性, 研究人员在其组分调控、结晶控制和界面优 化等方向做了许多尝试. 这篇综述总结了近年来提高PSCs中钙钛矿层 稳定性的策略, 并对一些重要的方法做了重点讨论. 我们深入分析了各 位点离子对钙钛矿结构稳定性的影响, 并对一些稳定性较高的体系的 进展进行了总结, 讨论了添加剂对钙钛矿结晶的调控以及缺陷钝化作 用, 并分析了相关机理. 此外, 我们还详细讨论了目前钙钛矿电池中所 使用的界面处理方法的优势与弊端.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Jung EH, Jeon NJ, Park EY, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567: 511–515

    Article  CAS  Google Scholar 

  2. Li L, Zhang X, Zeng H, et al. Thermally-stable and highly-efficient bilayered NiOx-based inverted planar perovskite solar cells by employing a p-type organic semiconductor. Chem Eng J, 2022, 443: 136405

    Article  CAS  Google Scholar 

  3. Siegler TD, Dunlap-Shohl WA, Meng Y, et al. Water-accelerated photooxidation of CH3NH3PbI3 perovskite. J Am Chem Soc, 2022, 144: 5552–5561

    Article  CAS  Google Scholar 

  4. Choi DH, Seok HJ, Kim SK, et al. The effect of Cs/FA ratio on the long-term stability of mixed cation perovskite solar cells. Sol RRL, 2021, 5: 2100660

    Article  CAS  Google Scholar 

  5. Deng Y, Xu S, Chen S, et al. Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat Energy, 2021, 6: 633–641

    Article  CAS  Google Scholar 

  6. Peng Z, Wei Q, Chen H, et al. Cs0.15FA0.85Pbl3/CsxFA1−xPbl3 core/shell heterostructure for highly stable and efficient perovskite solar cells. Cell Rep Phys Sci, 2020, 1: 100224

    Article  CAS  Google Scholar 

  7. Zhang J, Jiang X, Liu X, et al. Maximizing merits of undesirable δ-FAPbI3 by constructing yellow/black heterophase bilayer for efficient and stable perovskite photovoltaics. Adv Funct Mater, 2022, 32: 2204642

    Article  CAS  Google Scholar 

  8. Yu B, Shi J, Tan S, et al. Efficient (>20 %) and stable all-inorganic cesium lead triiodide solar cell enabled by thiocyanate molten salts. Angew Chem Int Ed, 2021, 60: 13436–13443

    Article  CAS  Google Scholar 

  9. Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592: 381–385

    Article  CAS  Google Scholar 

  10. Fu S, Zhang W, Li X, et al. Humidity-assisted chlorination with solid protection strategy for efficient air-fabricated inverted CsPbI3 perovskite solar cells. ACS Energy Lett, 2021, 6: 3661–3668

    Article  CAS  Google Scholar 

  11. Ling X, Zhu H, Xu W, et al. Combined precursor engineering and grain anchoring leading to MA-free, phase-pure, and stable α-formamidinium lead iodide perovskites for efficient solar cells. Angew Chem Int Ed, 2021, 60: 27299–27306

    Article  CAS  Google Scholar 

  12. Zhu J, Qian Y, Li Z, et al. Defect healing in FAPb(I1−xBrx)3 perovskites: Multifunctional fluorinated sulfonate surfactant anchoring enables >21% modules with improved operation stability. Adv Energy Mater, 2022, 12: 2200632

    Article  CAS  Google Scholar 

  13. Wei Y, Zhao Y, Liu C, et al. Constructing all-inorganic perovskite/fluoride nanocomposites for efficient and ultra-stable perovskite solar cells. Adv Funct Mater, 2021, 31: 2106386

    Article  CAS  Google Scholar 

  14. Wang M, Sun H, Meng L, et al. A universal strategy of intermolecular exchange to stabilize α-FAPbI3 and manage crystal orientation for highperformance humid-air-processed perovskite solar cells. Adv Mater, 2022, 34: 2200041

    Article  CAS  Google Scholar 

  15. He J, Liu H, Zhang F, et al. In situ synthesized 2D covalent organic framework nanosheets induce growth of high-quality perovskite film for efficient and stable solar cells. Adv Funct Mater, 2022, 32: 2110030

    Article  CAS  Google Scholar 

  16. Kan C, Tang Z, Yao Y, et al. Mitigating ion migration by polyethylene glycol-modified fullerene for perovskite solar cells with enhanced stability. ACS Energy Lett, 2021, 6: 3864–3872

    Article  CAS  Google Scholar 

  17. Chen S, Dai X, Xu S, et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science, 2021, 373: 902–907

    Article  CAS  Google Scholar 

  18. Ding B, Peng J, Chu QQ, et al. Anion exchange-induced crystal engineering via hot-pressing sublimation affording highly efficient and stable perovskite solar cells. Sol RRL, 2021, 5: 2000729

    Article  CAS  Google Scholar 

  19. Li Z, Li B, Wu X, et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 2022, 376: 416–420

    Article  CAS  Google Scholar 

  20. Guo J, Sun J, Hu L, et al. Indigo: A natural molecular passivator for efficient perovskite solar cells. Adv Energy Mater, 2022, 12: 2200537

    Article  CAS  Google Scholar 

  21. Krishna A, Zhang H, Zhou Z, et al. Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy Environ Sci, 2021, 14: 5552–5562

    Article  CAS  Google Scholar 

  22. Guo P, Zhu H, Zhao W, et al. Interfacial embedding of laser-manufactured fluorinated gold clusters enabling stable perovskite solar cells with efficiency over 24%. Adv Mater, 2021, 33: 2101590

    Article  CAS  Google Scholar 

  23. Shi C, Song Q, Wang H, et al. Molecular hinges stabilize formamidinium-based perovskite solar cells with compressive strain. Adv Funct Mater, 2022, 32: 2201193

    Article  CAS  Google Scholar 

  24. Kim H, Lee KS, Paik MJ, et al. Polymethyl methacrylate as an interlayer between the halide perovskite and copper phthalocyanine layers for stable and efficient perovskite solar cells. Adv Funct Mater, 2021, 32: 2110473

    Article  Google Scholar 

  25. Cao Q, Yang J, Wang T, et al. Star-polymer multidentate-cross-linking strategy for superior operational stability of inverted perovskite solar cells at high efficiency. Energy Environ Sci, 2021, 14: 5406–5415

    Article  CAS  Google Scholar 

  26. Zhao Y, Ma F, Qu Z, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377: 531–534

    Article  CAS  Google Scholar 

  27. Guo H, Fang Y, Cheng HB, et al. Robust self-assembled molecular passivation for high-performance perovskite solar cells. Angew Chem Int Ed, 2022, 61: 202204148

    Google Scholar 

  28. Wang J, Ma H, Wang A, et al. An ammonium-pseudohalide ion pair for synergistic passivating surfaces in FAPbI3 perovskite solar cells. Matter, 2022, 5: 2209–2224

    Article  CAS  Google Scholar 

  29. Zhan Y, Yang F, Chen W, et al. Elastic lattice and excess charge carrier manipulation in 1D-3D perovskite solar cells for exceptionally long-term operational stability. Adv Mater, 2021, 33: 2105170

    Article  CAS  Google Scholar 

  30. Liu S, Guan X, Xiao W, et al. Effective passivation with size-matched alkyldiammonium iodide for high-performance inverted perovskite solar cells. Adv Funct Mater, 2022, 32: 2205009

    Article  CAS  Google Scholar 

  31. Li X, Zhang W, Guo X, et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science, 2022, 375: 434–437

    Article  CAS  Google Scholar 

  32. Bai S, Da P, Li C, et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 2019, 571: 245–250

    Article  CAS  Google Scholar 

  33. Lin YH, Sakai N, Da P, et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science, 2020, 369: 96–102

    Article  CAS  Google Scholar 

  34. Moradi S, Kundu S, Rezazadeh M, et al. High-throughput exploration of halide perovskite compositionally-graded films and degradation mechanisms. Commun Mater, 2022, 3: 13

    Article  CAS  Google Scholar 

  35. Eperon GE, Stranks SD, Menelaou C, et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7: 982–988

    Article  CAS  Google Scholar 

  36. Schwenzer JA, Hellmann T, Nejand BA, et al. Thermal stability and cation composition of hybrid organic-inorganic perovskites. ACS Appl Mater Interfaces, 2021, 13: 15292–15304

    Article  CAS  Google Scholar 

  37. Lee JW, Tan S, Seok SI, et al. Rethinking the A cation in halide perovskites. Science, 2022, 375

  38. Eperon GE, Paternò GM, Sutton RJ, et al. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A, 2015, 3: 19688–19695

    Article  CAS  Google Scholar 

  39. Yu P, Zhang W, Ren F, et al. Strategies for highly efficient and stable cesium lead iodide perovskite photovoltaics: Mechanisms and processes. J Mater Chem C, 2022, 10: 4999–5023

    Article  CAS  Google Scholar 

  40. Dong X, Chao L, Niu T, et al. Phase-pure engineering for efficient and stable formamidinium-based perovskite solar cells. Sol RRL, 2022, 6: 2200060

    Article  CAS  Google Scholar 

  41. Kim M, Kim GH, Lee TK, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 2019, 3: 2179–2192

    Article  CAS  Google Scholar 

  42. Lin D, Shi T, Xie H, et al. Ion migration accelerated reaction between oxygen and metal halide perovskites in light and its suppression by cesium incorporation. Adv Energy Mater, 2021, 11: 2002552

    Article  CAS  Google Scholar 

  43. Knight AJ, Borchert J, Oliver RDJ, et al. Halide segregation in mixedhalide perovskites: Influence of A-site cations. ACS Energy Lett, 2021, 6: 799–808

    Article  CAS  Google Scholar 

  44. Sánchez S, Carlsen B, Škorjanc V, et al. Thermodynamic stability screening of IR-photonic processed multication halide perovskite thin films. J Mater Chem A, 2021, 9: 26885–26895

    Article  Google Scholar 

  45. Susic I, Gil-Escrig L, Palazon F, et al. Quadruple-cation wide-bandgap perovskite solar cells with enhanced thermal stability enabled by vacuum deposition. ACS Energy Lett, 2022, 7: 1355–1363

    Article  CAS  Google Scholar 

  46. Ji Y, Zhang JB, Shen HR, et al. Improving the stability of α-CsPbI3 nanocrystals in extreme conditions facilitated by Mn2+ doping. ACS Omega, 2021, 6: 13831–13838

    Article  CAS  Google Scholar 

  47. Ustinova MI, Mikheeva MM, Shilov GV, et al. Partial substitution of Pb2+ in CsPbI3 as an efficient strategy to design fairly stable all-inorganic perovskite formulations. ACS Appl Mater Interfaces, 2021, 13: 5184–5194

    Article  CAS  Google Scholar 

  48. Chen X, Sun Z, Cai B, et al. Substantial improvement of operating stability by strengthening metal-halogen bonds in halide perovskites. Adv Funct Mater, 2022, 32: 2112129

    Article  CAS  Google Scholar 

  49. Cho SH, Byeon J, Jeong K, et al. Investigation of defect-tolerant perovskite solar cells with long-term stability via controlling the self-doping effect. Adv Energy Mater, 2021, 11: 2100555

    Article  CAS  Google Scholar 

  50. Debnath T, Sarker D, Huang H, et al. Coherent vibrational dynamics reveals lattice anharmonicity in organic-inorganic halide perovskite nanocrystals. Nat Commun, 2021, 12: 2629

    Article  CAS  Google Scholar 

  51. Raval P, Kennard RM, Vasileiadou ES, et al. Understanding instability in formamidinium lead halide perovskites: Kinetics of transformative reactions at grain and subgrain boundaries. ACS Energy Lett, 2022, 7: 1534–1543

    Article  CAS  Google Scholar 

  52. Ma J, Qin M, Li Y, et al. Unraveling the impact of halide mixing on crystallization and phase evolution in CsPbX3 perovskite solar cells. Matter, 2021, 4: 313–327

    Article  CAS  Google Scholar 

  53. Cheng R, Chung CC, Zhang H, et al. Tailoring triple-anion perovskite material for indoor light harvesting with restrained halide segregation and record high efficiency beyond 36%. Adv Energy Mater, 2019, 9: 1901980

    Article  CAS  Google Scholar 

  54. Wang K, Jin Z, Liang L, et al. Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%. Nano Energy, 2019, 58: 175–182

    Article  Google Scholar 

  55. Bu T, Li J, Li H, et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372: 1327–1332

    Article  CAS  Google Scholar 

  56. Wu T, Qin Z, Wang Y, et al. The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett, 2021, 13: 152

    Article  CAS  Google Scholar 

  57. Park B, Kwon HW, Lee Y, et al. Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat Energy, 2021, 6: 419–428

    Article  CAS  Google Scholar 

  58. Lu H, Liu Y, Ahlawat P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science, 2020, 370: eabb8985

    Article  CAS  Google Scholar 

  59. Fu S, Wang J, Liu X, et al. Multifunctional liquid additive strategy for highly efficient and stable CsPbI2Br all-inorganic perovskite solar cells. Chem Eng J, 2021, 422: 130572

    Article  CAS  Google Scholar 

  60. Ma L, Yan Z, Zhou X, et al. A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals. Nat Commun, 2021, 12: 2023

    Article  CAS  Google Scholar 

  61. Xu Y, Liu G, Hu J, et al. In situ polymer network in perovskite solar cells enabled superior moisture and thermal resistance. J Phys Chem Lett, 2022, 13: 3754–3762

    Article  CAS  Google Scholar 

  62. Sanchez-Diaz J, Sánchez RS, Masi S, et al. Tin perovskite solar cells with >1,300 h of operational stability in N2 through a synergistic chemical engineering approach. Joule, 2022, 6: 861–883

    Article  CAS  Google Scholar 

  63. Ni Z, Bao C, Liu Y, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science, 2020, 367: 1352–1358

    Article  CAS  Google Scholar 

  64. Meggiolaro D, Mosconi E, De Angelis F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett, 2019, 4: 779–785

    Article  CAS  Google Scholar 

  65. Gong X, Li H, Liu X, et al. Enhanced hole mobility and decreased ion migration originated from interface engineering for high quality PSCs with average FF beyond 80%. Small Methods, 2022, 6: 2200260

    Article  CAS  Google Scholar 

  66. Wang M, Zhao Y, Jiang X, et al. Rational selection of the polymeric structure for interface engineering of perovskite solar cells. Joule, 2022, 6: 1032–1048

    Article  CAS  Google Scholar 

  67. Xi J, Wu Y, Chen W, et al. Cross-linkable molecule in spatial dimension boosting water-stable and high-efficiency perovskite solar cells. Nano Energy, 2022, 93: 106846

    Article  CAS  Google Scholar 

  68. Dong W, Qiao W, Xiong S, et al. Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett, 2022, 14: 108

    Article  CAS  Google Scholar 

  69. Chen Y, Wei N, Miao Y, et al. Inorganic CsPbBr3 perovskite nanocrystals as interfacial ion reservoirs to stabilize FAPbI3 perovskite for efficient photovoltaics. Adv Energy Mater, 2022, 12: 2200203

    Article  CAS  Google Scholar 

  70. Fu X, He T, Zhang S, et al. Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics. Chem, 2021, 7: 3131–3143

    Article  CAS  Google Scholar 

  71. Yu D, Wei Q, Li H, et al. Quasi-2D bilayer surface passivation for high efficiency narrow bandgap perovskite solar cells. Angew Chem Int Ed, 2022, 61: 202202346

    Google Scholar 

  72. Chen H, Teale S, Chen B, et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat Photon, 2022, 16: 352–358

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA0715502), the National Natural Science Foundation of China (61935016, 92056119, and 22175118), the Double First-Class Initiative Fund of ShanghaiTech University, and the Science and Technology Commission of Shanghai Municipality (20XD1402500 and 20JC1415800).

Author information

Authors and Affiliations

Authors

Contributions

Zhou W, Pan T, and Ning Z proposed the topic and outline of the manuscript. Zhou W collected the related information and wrote the manuscript with support from Ning Z. All authors contributed to the general discussion and revision.

Corresponding author

Correspondence to Zhijun Ning  (宁志军).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Wei Zhou is a graduate student at the School of Physical Science and Technology, ShanghaiTech University, under the supervision of Prof. Zhijun Ning. His research focuses on perovskite solar cells.

Zhijun Ning is a tenured associate professor at the School of Physical Science and Technology, ShanghaiTech University. He received his PhD degree from the East China University of Science and Technology in 2009. From 2009 to 2014, he worked as a postdoctoral scholar fellow at the Royal Institute of Technology and the University of Toronto. He joined ShanghaiTech University in 2014. His group focuses on the development of high-performance solution-processed optoelectronic materials and devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Pan, T. & Ning, Z. Strategies for enhancing the stability of metal halide perovskite towards robust solar cells. Sci. China Mater. 65, 3190–3201 (2022). https://doi.org/10.1007/s40843-022-2277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2277-9

Keywords

Navigation