Skip to main content
Log in

Size-engineered noble metal nanoclusters synthesized by impregnation for size-dependent catalysis

浸渍法制备尺寸均一可调的贵金属纳米团簇及其尺 寸依赖的催化性质

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Noble metal nanoclusters, as a bridge between atoms and nanoparticles, show extraordinary catalytic activities because of their unique electronic structures. Such nanoclusters are usually synthesized by a wet chemical approach through unfavorable surface passivation by ligands and have not been obtained by an impregnation approach with satisfactory size uniformity. Herein, we report highly uniform ligand-free noble metal nanoclusters, such as Pd nanoclusters, synthesized each in a silica capsule by an impregnation strategy, with their size accurately engineerable in the range of 0.9–2.9 nm. The key is to ensure the impregnation synthesis with strict control over the nucleation and growth of noble metal nanoclusters by involving hollow silica nanoreactors and non-noble metal competitor ions, thereby showing unprecedented advantages of operational simplicity, scalability, and excellent size controllability. These Pd nanoclusters exhibit a strong size effect on catalysis exemplified by the alcohol oxidation-Knoevenagel condensation sequential reaction, with those of 1.3 nm exhibiting the highest catalytic activity. We believe this novel strategy opens new opportunities for rationally designing efficient noble metal nanocluster-type catalysts for a broad range of important reactions and bringing laboratory-quality nanoclusters into large-scale applications.

摘要

贵金属纳米团簇作为原子和纳米颗粒的中间形态, 表现出特殊 的电子结构和优异的催化性能. 目前, 这类纳米团簇通常通过湿化学法 合成, 其表面常被配体所钝化, 而通过浸渍法合成的贵金属纳米团簇通 常表现出较宽的尺寸分布. 本研究以钯为例, 发展了基于浸渍法精准合 成尺寸介于0.9和2.9 nm、无表面配体的贵金属纳米团簇的新范式. 该 方法关键在于采用二氧化硅纳米胶囊为纳米反应器并引入非贵金属竞 争吸附离子, 从而达到严格控制贵金属纳米团簇成核和生长的目的, 因 此具有操作便利、合成可放大及纳米团簇尺寸精准可调等优势. 钯纳 米团簇在醇氧化-Knoevenagel缩合连续反应中表现出显著的尺寸效应, 其中1.3 nm的钯纳米团簇具有最优的催化活性. 这一新颖的合成策略 为贵金属纳米团簇型催化剂的开发提供了新思路, 为实验室级高品质 纳米团簇催化剂的规模应用提供了可行方案.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan J, Teo BK, Zheng N. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc Chem Res, 2018, 51: 3084–3093

    Article  CAS  Google Scholar 

  2. Gao C, Lyu F, Yin Y. Encapsulated metal nanoparticles for catalysis. Chem Rev, 2021, 121: 834–881

    Article  CAS  Google Scholar 

  3. Chen X, Peng M, Cai X, et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat Commun, 2021, 12: 2664

    Article  CAS  Google Scholar 

  4. Wang L, Diao J, Peng M, et al. Cooperative sites in fully exposed Pd clusters for low-temperature direct dehydrogenation reaction. ACS Catal, 2021, 11: 11469–11477

    Article  CAS  Google Scholar 

  5. Liu M, Liu M, Wang X, et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule, 2019, 3: 1703–1718

    Article  CAS  Google Scholar 

  6. Kuhn JN, Huang W, Tsung CK, et al. Structure sensitivity of carbon-nitrogen ring opening: Impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over mono-disperse platinum nanoparticles loaded onto mesoporous silica. J Am Chem Soc, 2008, 130: 14026–14027

    Article  CAS  Google Scholar 

  7. Yamamoto K, Imaoka T, Chun WJ, et al. Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem, 2009, 1: 397–402

    Article  CAS  Google Scholar 

  8. Bai L, Wang X, Chen Q, et al. Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions. Angew Chem Int Ed, 2016, 55: 15656–15661

    Article  CAS  Google Scholar 

  9. Wang H, Gu XK, Zheng X, et al. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci Adv, 2019, 5: eaat6413

    Article  Google Scholar 

  10. Guan Q, Zhu C, Lin Y, et al. Bimetallic monolayer catalyst breaks the activity-selectivity trade-off on metal particle size for efficient chemo-selective hydrogenations. Nat Catal, 2021, 4: 840–849

    Article  CAS  Google Scholar 

  11. Mistry H, Reske R, Zeng Z, et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc, 2014, 136: 16473–16476

    Article  CAS  Google Scholar 

  12. Liu Y, Tsunoyama H, Akita T, et al. Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: Size effect in the sub-2 nm regime. ACS Catal, 2010, 1: 2–6

    Article  Google Scholar 

  13. Li G, Jin R. Gold nanocluster-catalyzed semihydrogenation: A unique activation pathway for terminal alkynes. J Am Chem Soc, 2014, 136: 11347–11354

    Article  CAS  Google Scholar 

  14. Li G, Jiang D, Kumar S, et al. Size dependence of atomically precise gold nanoclusters in chemoselective hydrogenation and active site structure. ACS Catal, 2014, 4: 2463–2469

    Article  CAS  Google Scholar 

  15. Bai L, Zhang S, Chen Q, et al. Synthesis of ultrasmall platinum nanoparticles on polymer nanoshells for size-dependent catalytic oxidation reactions. ACS Appl Mater Interfaces, 2017, 9: 9710–9717

    Article  CAS  Google Scholar 

  16. Zhao H, Yao S, Zhang M, et al. Ultra-small platinum nanoparticles encapsulated in sub-50 nm hollow titania nanospheres for low-temperature water-gas shift reaction. ACS Appl Mater Interfaces, 2018, 10: 36954–36960

    Article  CAS  Google Scholar 

  17. Yao Q, Chen T, Yuan X, et al. Toward total synthesis of thiolate-protected metal nanoclusters. Acc Chem Res, 2018, 51: 1338–1348

    Article  CAS  Google Scholar 

  18. Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem Rev, 2017, 117: 8208–8271

    Article  CAS  Google Scholar 

  19. Jin R, Zeng C, Zhou M, et al. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem Rev, 2016, 116: 10346–10413

    Article  CAS  Google Scholar 

  20. Yamamoto K, Imaoka T, Tanabe M, et al. New horizon of nanoparticle and cluster catalysis with dendrimers. Chem Rev, 2019, 120: 1397–1437

    Article  Google Scholar 

  21. Ye R, Zhukhovitskiy AV, Kazantsev RV, et al. Supported Au nanoparticles with N-heterocyclic carbene ligands as active and stable heterogeneous catalysts for lactonization. J Am Chem Soc, 2018, 140: 4144–4149

    Article  CAS  Google Scholar 

  22. Deraedt C, Ye R, Ralston WT, et al. Dendrimer-stabilized metal nanoparticles as efficient catalysts for reversible dehydrogenation/hydrogenation of N-heterocycles. J Am Chem Soc, 2017, 139: 18084–18092

    Article  CAS  Google Scholar 

  23. Sun N, Wang C, Wang H, et al. Multifunctional tubular organic cage-supported ultrafine palladium nanoparticles for sequential catalysis. Angew Chem Int Ed, 2019, 58: 18011–18016

    Article  CAS  Google Scholar 

  24. Yang X, Sun JK, Kitta M, et al. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nat Catal, 2018, 1: 214–220

    Article  CAS  Google Scholar 

  25. Fang Y, Xiao Z, Li J, et al. Formation of a highly reactive cobalt nanocluster crystal within a highly negatively charged porous coordination cage. Angew Chem Int Ed, 2018, 57: 5283–5287

    Article  CAS  Google Scholar 

  26. Mondal B, Acharyya K, Howlader P, et al. Molecular cage impregnated palladium nanoparticles: Efficient, additive-free heterogeneous catalysts for cyanation of aryl halides. J Am Chem Soc, 2016, 138: 1709–1716

    Article  CAS  Google Scholar 

  27. McCaffrey R, Long H, Jin Y, et al. Template synthesis of gold nanoparticles with an organic molecular cage. J Am Chem Soc, 2014, 136: 1782–1785

    Article  CAS  Google Scholar 

  28. Zhao H, Wang D, Gao C, et al. Ultrafine platinum/iron oxide nanoconjugates confined in silica nanoshells for highly durable catalytic oxidation. J Mater Chem A, 2016, 4: 1366–1372

    Article  CAS  Google Scholar 

  29. Zhang T, Zhao H, He S, et al. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis. ACS Nano, 2014, 8: 7297–7304

    Article  CAS  Google Scholar 

  30. Lu L, Zou S, Fang B. The critical impacts of ligands on heterogeneous nanocatalysis: A review. ACS Catal, 2021, 11: 6020–6058

    Article  CAS  Google Scholar 

  31. Bryant K, West CW, Saunders SR. Impacts of calcination on surface-clean supported nanoparticle catalysts. Appl Catal A-Gen, 2019, 579: 58–64

    Article  CAS  Google Scholar 

  32. Donoeva B, de Jongh PE. Colloidal Au catalyst preparation: Selective removal of polyvinylpyrrolidone from active Au sites. ChemCatChem, 2018, 10: 989–997

    Article  CAS  Google Scholar 

  33. Fan Q, Liu K, Liu Z, et al. A ligand-exchange route to nobel metal nanocrystals with a clean surface for enhanced optical and catalytic properties. Part Part Syst Charact, 2017, 34: 1700075

    Article  Google Scholar 

  34. Geus JW, van Dillen AJ. Supported catalysts. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (Eds.). Handbook of Heterogeneous Catalysis. Weinheim: Wiley-VCH, 2008. 428–655

    Google Scholar 

  35. Munnik P, de Jongh PE, de Jong KP. Recent developments in the synthesis of supported catalysts. Chem Rev, 2015, 115: 6687–6718

    Article  CAS  Google Scholar 

  36. Wang N, Sun Q, Zhang T, et al. Impregnating subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets. J Am Chem Soc, 2021, 143: 6905–6914

    Article  CAS  Google Scholar 

  37. Kou Y, Sun LB. Size regulation of platinum nanoparticles by using confined spaces for the low-temperature oxidation of ethylene. Inorg Chem, 2018, 57: 1645–1650

    Article  CAS  Google Scholar 

  38. Shi LY, Li YX, Xue DM, et al. Facile fabrication of small-sized palladium nanoparticles in nanoconfined spaces for low-temperature CO oxidation. Ind Eng Chem Res, 2020, 59: 19145–19152

    Article  CAS  Google Scholar 

  39. Gao C, Lu Z, Yin Y. Gram-scale synthesis of silica nanotubes with controlled aspect ratios by templating of nickel-hydrazine complex nanorods. Langmuir, 2011, 27: 12201–12208

    Article  CAS  Google Scholar 

  40. Gao C, Zhang Q, Lu Z, et al. Templated synthesis of metal nanorods in silica nanotubes. J Am Chem Soc, 2011, 133: 19706–19709

    Article  CAS  Google Scholar 

  41. Haynes WM. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2017

    Google Scholar 

  42. Wang H, Wang Y, Zhu Z, et al. Influence of size-induced oxidation state of platinum nanoparticles on selectivity and activity in catalytic methanol oxidation in the gas phase. Nano Lett, 2013, 13: 2976–2979

    Article  CAS  Google Scholar 

  43. Sun Y, Zhuang L, Lu J, et al. Collapse in crystalline structure and decline in catalytic activity of Pt nanoparticles on reducing particle size to 1 nm. J Am Chem Soc, 2007, 129: 15465–15467

    Article  CAS  Google Scholar 

  44. Hu Y, Zhang Q, Goebl J, et al. Control over the permeation of silica nanoshells by surface-protected etching with water. Phys Chem Chem Phys, 2010, 12: 11836–11842

    Article  CAS  Google Scholar 

  45. Li YA, Yang S, Liu QK, et al. Pd(0)@UiO-68-AP: Chelation-directed bifunctional heterogeneous catalyst for stepwise organic transformations. Chem Commun, 2016, 52: 6517–6520

    Article  CAS  Google Scholar 

  46. Cao CC, Chen CX, Wei ZW, et al. Catalysis through dynamic spacer installation of multivariate functionalities in metal-organic frameworks. J Am Chem Soc, 2019, 141: 2589–2593

    Article  CAS  Google Scholar 

  47. Sun Q, Aguila B, Ma S. A bifunctional covalent organic framework as an efficient platform for cascade catalysis. Mater Chem Front, 2017, 1: 1310–1316

    Article  CAS  Google Scholar 

  48. Feng D, Dong Y, Zhang L, et al. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew Chem Int Ed, 2020, 59: 19503–19509

    Article  CAS  Google Scholar 

  49. Lackmann A, Mahr C, Schowalter M, et al. A comparative study of alcohol oxidation over nanoporous gold in gas and liquid phase. J Catal, 2017, 353: 99–106

    Article  CAS  Google Scholar 

  50. Meher S, Rana RK. A rational design of a Pd-based catalyst with a metal-metal oxide interface influencing molecular oxygen in the aerobic oxidation of alcohols. Green Chem, 2019, 21: 2494–2503

    Article  CAS  Google Scholar 

  51. Wei Q, Yu C, Song X, et al. Recognition of water-induced effects toward enhanced interaction between catalyst and reactant in alcohol oxidation. J Am Chem Soc, 2021, 143: 6071–6078

    Article  CAS  Google Scholar 

  52. Xin P, Li J, Xiong Y, et al. Revealing the active species for aerobic alcohol oxidation by using uniform supported palladium catalysts. Angew Chem Int Ed, 2018, 57: 4642–4646

    Article  CAS  Google Scholar 

  53. Zhu L, Lin Y, Liu K, et al. Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products. Chin J Catal, 2021, 42: 1500–1508

    Article  CAS  Google Scholar 

  54. Hostetler MJ, Wingate JE, Zhong CJ, et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size. Langmuir, 1998, 14: 17–30

    Article  CAS  Google Scholar 

  55. Marbella LE, Andolina CM, Smith AM, et al. Gold-cobalt nanoparticle alloys exhibiting tunable compositions, near-infrared emission, and high T2 relaxivity. Adv Funct Mater, 2014, 24: 6532–6539

    Article  CAS  Google Scholar 

  56. Marbella LE, Millstone JE. NMR techniques for noble metal nanoparticles. Chem Mater, 2015, 27: 2721–2739

    Article  CAS  Google Scholar 

  57. Terrill RH, Postlethwaite TA, Chen C, et al. Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J Am Chem Soc, 1995, 117: 12537–12548

    Article  CAS  Google Scholar 

  58. Nørskov JK, Abild-Pedersen F, Studt F, et al. Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci USA, 2011, 108: 937–943

    Article  Google Scholar 

  59. Nørskov JK, Bligaard T, Rossmeisl J, et al. Towards the computational design of solid catalysts. Nat Chem, 2009, 1: 37–46

    Article  Google Scholar 

  60. Kalhara Gunasooriya GTK, Saeys M. CO adsorption site preference on platinum: Charge is the essence. ACS Catal, 2018, 8: 3770–3774

    Article  CAS  Google Scholar 

  61. Xu W, Zhang M, Ma C, et al. Amorphous NiSb2O6−x nanofiber: A d-/p-block Janus electrocatalyst toward efficient NH3 synthesis through boosted N2 adsorption and activation. Appl Catal B-Environ, 2022, 308: 121225

    Article  CAS  Google Scholar 

  62. Lin G, Ju Q, Guo X, et al. Intrinsic electron localization of metastable MoS2 boosts electrocatalytic nitrogen reduction to ammonia. Adv Mater, 2021, 33: 2007509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22071191), the Key Research and Development Projects of Shaanxi Province (2021GXLH-Z-022), the Fundamental Research Funds for the Central Universities, and the Key Scientific and Technological Innovation Team of Shaanxi Province (2020TD-001). Liu K acknowledges China Postdoctoral Science Foundation (2019TQ0249) and the Natural Science Basic Research Plan in Shaanxi Province (2022JQ-100). The authors thank the Instrument Analysis Center of Xi’an Jiaotong University for the assistance with HRTEM and XPS measurements.

Author information

Authors and Affiliations

Authors

Contributions

Gao C conceived the idea and supervised the project. Wen Z conducted the synthesis, characterization, and catalysis. Zhang S, Liu Z, Zhang Z, Qiao Z, and Liu K assisted in materials characterizations. Wen Z and Gao C wrote the manuscript. All authors discussed the results and revised the manuscript.

Corresponding author

Correspondence to Chuanbo Gao  (高传博).

Additional information

Zhibin Wen received his BS degree from the Northwest A&F University in 2016 and then obtained his MS degree from the Southwest University in 2019. He is currently a PhD candidate at the Frontier Institute of Science and Technology, Xi’an Jiaotong University. His research interest is the synthesis of noble metal nanoclusters for catalysis.

Chuanbo Gao received his PhD degree in applied chemistry in 2009 from Shanghai Jiao Tong University and carried out his postdoctoral research at the University of California, Riverside. Since 2012 he has been a professor at the Frontier Institute of Science and Technology, Xi’an Jiaotong University. His research interest is the precision synthesis of noble metal-based nanomaterials for catalysis and energy conversion.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Zhang, S., Liu, Z. et al. Size-engineered noble metal nanoclusters synthesized by impregnation for size-dependent catalysis. Sci. China Mater. 66, 1417–1426 (2023). https://doi.org/10.1007/s40843-022-2247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2247-0

Keywords

Navigation