Skip to main content
Log in

Flexible plasmonic cellulose papers for broadband absorption and efficient solar steam generation

柔性等离激元纤维素纸用于宽谱光吸收和高效太阳能蒸汽转化

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Plasmonic solar absorber holds great potential in solar-powered steam generation due to its resonant absorption, rapid photo-to-heat conversion, and localized heating impact. However, expanding the absorption bandwidth of plasmonic nanoparticles is challenging. Here, we produce flexible plasmonic cellulose papers (PCPs) with broadband absorption by filling the nanogaps (between nanofibrils) of commercially available cellulose papers (CPs) with plasmonic nanoparticles. A nanoconfinement strategy is employed for the fast and easy-to-scale-up synthesis of Ag- and Cu-based PCPs. In particular, Ag-CP exhibits a broadband solar absorption efficiency of up to 93.7% at a spectrum range of 250–2500 nm and a solar-to-thermal efficiency of 85.2% under 1 kW m−2 irradiation (1 sun). The nanoconfinement effect serves as a simple and flexible platform to regulate the particle size and interspace and reduce the aggregation. By combining the analysis of structure-regulated absorption behaviors with theoretical simulations, we conclude that the unique microstructure tailors the interparticle coupling effect, the predominant cause of the strong broadband plasmonic absorption. Our work presents a nanoconfinement strategy to tune solar absorption and demonstrates an appealing plasmonic solar absorber.

摘要

要等离激元吸光材料因具有强共振吸收、 快速光热转换和局部加热效应, 在太阳能水蒸发领域具有巨大的应用潜力. 但拓宽等离激元纳米颗粒的吸收带宽目前仍面临不小的挑战. 本文中, 我们通过将等离激元金属纳米颗粒限域合成到市面上常见的纤维素纸(CP)的纳米间隙中, 制备出了具有宽谱光吸收的柔性等离激元纤维素纸(PCP). 利用源于自然的纳米限域效应, 可快速且大规模地合成银(Ag)和铜(Cu)基PCP. 其中, Ag-CP 在250–2500 nm光谱范围内表现出93.7%的宽带光吸收效率, 在1 kW m−2 (1 sun)辐照下进行太阳能水蒸发测试, 太阳能光热转化效率为85.2%. 基于自然构型的纳米限域合成可以作为一个简单便利的方法调节金属纳米颗粒的大小和相互之间的间隙并防止其团聚. 通过将吸光材料结构调控与理论模拟结合分析, 我们证明了纤维素中天然的独特微观结构对金属纳米颗粒间耦合效应的调控, 是PCPs表现出强宽带等离激元光吸收的主要原因. 本文提出了一种利用自然构型的纳米限域效应调节光吸收效率的策略, 并开发了一种具有实际应用前景的等离激元光吸收材料.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou L, Li X, Ni GW, et al. The revival of thermal utilization from the sun: Interfacial solar vapor generation. Natl Sci Rev, 2019, 6: 562–578

    Article  CAS  Google Scholar 

  2. Tao P, Ni G, Song C, et al. Solar-driven interfacial evaporation. Nat Energy, 2018, 3: 1031–1041

    Article  Google Scholar 

  3. Zhao F, Guo Y, Zhou X, et al. Materials for solar-powered water evaporation. Nat Rev Mater, 2020, 5: 388–401

    Article  Google Scholar 

  4. Sun P, Zhang W, Zada I, et al. 3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation. ACS Appl Mater Interfaces, 2020, 12: 2171–2179

    Article  CAS  Google Scholar 

  5. Wang Y, Wu X, Wu P, et al. Enhancing solar steam generation using a highly thermally conductive evaporator support. Sci Bull, 2021, 66: 2479–2488

    Article  CAS  Google Scholar 

  6. Li X, Ni G, Cooper T, et al. Measuring conversion efficiency of solar vapor generation. Joule, 2019, 3: 1798–1803

    Article  Google Scholar 

  7. Zhou X, Zhao F, Guo Y, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci Adv, 2019, 5: eaaw5484

    Article  CAS  Google Scholar 

  8. Zhao F, Zhou X, Shi Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat Nanotech, 2018, 13: 489–495

    Article  CAS  Google Scholar 

  9. Guo Y, Zhou X, Zhao F, et al. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination. ACS Nano, 2019, 13: 7913–7919

    Article  CAS  Google Scholar 

  10. Zhou X, Guo Y, Zhao F, et al. Hydrogels as an emerging material platform for solar water purification. Acc Chem Res, 2019, 52: 3244–3253

    Article  CAS  Google Scholar 

  11. Lu Y, Fan D, Shen Z, et al. Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy, 2022, 95: 107016

    Article  CAS  Google Scholar 

  12. Wu X, Wu Z, Wang Y, et al. All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv Sci, 2021, 8: 2002501

    Article  CAS  Google Scholar 

  13. Ghasemi H, Ni G, Marconnet AM, et al. Solar steam generation by heat localization. Nat Commun, 2014, 5: 4449

    Article  CAS  Google Scholar 

  14. Zhou X, Zhao F, Zhang P, et al. Solar water evaporation toward water purification and beyond. ACS Mater Lett, 2021, 3: 1112–1129

    Article  CAS  Google Scholar 

  15. Zhang Q, Xu W, Wang X. Carbon nanocomposites with high photothermal conversion efficiency. Sci China Mater, 2018, 61: 905–914

    Article  CAS  Google Scholar 

  16. Schuller JA, Barnard ES, Cai W, et al. Plasmonics for extreme light concentration and manipulation. Nat Mater, 2010, 9: 193–204

    Article  CAS  Google Scholar 

  17. Ndukaife JC, Shalaev VM, Boltasseva A. Plasmonics—Turning loss into gain. Science, 2016, 351: 334–335

    Article  CAS  Google Scholar 

  18. Mulvaney P. Not all that’s gold does glitter. MRS Bull, 2001, 26: 1009–1014

    Article  CAS  Google Scholar 

  19. Aydin K, Ferry VE, Briggs RM, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun, 2011, 2: 1–7

    Article  Google Scholar 

  20. Zhou J, Jiang Y, Hou S, et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared II window. ACS Nano, 2018, 12: 2643–2651

    Article  CAS  Google Scholar 

  21. Bae K, Kang G, Cho SK, et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat Commun, 2015, 6: 10103

    Article  CAS  Google Scholar 

  22. Wang Y, Zhang J, Liang W, et al. Rational design of plasmonic metal nanostructures for solar energy conversion. CCS Chem, 2022, 4: 1153–1168

    Article  CAS  Google Scholar 

  23. Lin L, Xue J, Xu H, et al. Integrating lattice and gap plasmonic modes to construct dual-mode metasurfaces for enhancing light-matter interaction. Sci China Mater, 2021, 64: 3007–3016

    Article  CAS  Google Scholar 

  24. Liu D, Zhou F, Li C, et al. Black gold: Plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system. Angew Chem Int Ed, 2015, 54: 9596–9600

    Article  CAS  Google Scholar 

  25. Chen J, Feng J, Li Z, et al. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Lett, 2019, 19: 400–407

    Article  CAS  Google Scholar 

  26. Zhou L, Tan Y, Ji D, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv, 2016, 2: e1501227

    Article  Google Scholar 

  27. Zhou L, Tan Y, Wang J, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photon, 2016, 10: 393–398

    Article  CAS  Google Scholar 

  28. Zhou L, Zhuang S, He C, et al. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy, 2017, 32: 195–200

    Article  Google Scholar 

  29. Chen C, Zhou L, Yu J, et al. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy, 2018, 51: 451–456

    Article  CAS  Google Scholar 

  30. Gong H, Liu X, Liu G, et al. Non-noble metal based broadband photothermal absorbers for cost effective interfacial solar thermal conversion. Nanophotonics, 2020, 9: 1539–1546

    Article  CAS  Google Scholar 

  31. Zhang Y, Wang Y, Yu B, et al. Hierarchically structured black gold film with ultrahigh porosity for solar steam generation. Adv Mater, 2022, 34: 2200108

    Article  CAS  Google Scholar 

  32. Zhu T, He Z, Ren Y, et al. Synergistic interaction of ternary Ni-Co-Cu chalcogenides confined in nanosheets array to advance supercapacitors and solar steam generation. Sol RRL, 2021, 5: 2100021

    Article  CAS  Google Scholar 

  33. Liu Y, Yu S, Feng R, et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv Mater, 2015, 27: 2768–2774

    Article  CAS  Google Scholar 

  34. Zhu HW, Ge J, Zhao HY, et al. Sponge-templating synthesis of sandwich-like reduced graphene oxide nanoplates with confined gold nanoparticles and their enhanced stability for solar evaporation. Sci China Mater, 2020, 63: 1957–1965

    Article  Google Scholar 

  35. Zhang H, Feng L, Liang Y, et al. An ultra-flexible plasmonic metamaterial film for efficient omnidirectional and broadband optical absorption. Nanoscale, 2019, 11: 437–443

    Article  CAS  Google Scholar 

  36. Gu J, Zhang W, Su H, et al. Morphology genetic materials templated from natural species. Adv Mater, 2015, 27: 464–478

    Article  CAS  Google Scholar 

  37. Tan Y, Gu J, Zang X, et al. Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures. Angew Chem Int Ed, 2011, 50: 8307–8311

    Article  CAS  Google Scholar 

  38. Fang J, Liu Q, Zhang W, et al. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. J Mater Chem A, 2017, 5: 17817–17821

    Article  CAS  Google Scholar 

  39. Zhang D, Zhang M, Chen S, et al. Scalable, self-cleaning and self-floating bi-layered bacterial cellulose biofoam for efficient solar evaporator with photocatalytic purification. Desalination, 2021, 500: 114899

    Article  CAS  Google Scholar 

  40. Yao W, Zhu X, Xu Z, et al. Loofah sponge-derived hygroscopic photothermal absorber for all-weather atmospheric water harvesting. ACS Appl Mater Interfaces, 2022, 14: 4680–4689

    Article  CAS  Google Scholar 

  41. Tian L, Luan J, Liu KK, et al. Plasmonic biofoam: A versatile optically active material. Nano Lett, 2016, 16: 609–616

    Article  CAS  Google Scholar 

  42. Jiang F, Li T, Li Y, et al. Wood-based nanotechnologies toward sustainability. Adv Mater, 2018, 30: 1703453

    Article  Google Scholar 

  43. Song G, Yuan Y, Liu J, et al. Biomimetic superstructures assembled from Au nanostars and nanospheres for efficient solar evaporation. Adv Sustain Syst, 2019, 3: 1900003

    Article  Google Scholar 

  44. Sun P, Wang W, Zhang W, et al. 3D interconnected gyroid Au-CuS materials for efficient solar steam generation. ACS Appl Mater Interfaces, 2020, 12: 34837–34847

    Article  CAS  Google Scholar 

  45. Song G, Li J, Yuan Y, et al. Large-area 3D hierarchical superstructures assembled from colloidal nanoparticles. Small, 2019, 15: 1805308

    Article  Google Scholar 

  46. Yuan Y, Dong C, Gu J, et al. A scalable nickel-cellulose hybrid metamaterial with broadband light absorption for efficient solar distillation. Adv Mater, 2020, 32: 1907975

    Article  CAS  Google Scholar 

  47. Ge S, Zhang L, Zhang Y, et al. Nanomaterials-modified cellulose paper as a platform for biosensing applications. Nanoscale, 2017, 9: 4366–4382

    Article  CAS  Google Scholar 

  48. Ling S, Kaplan DL, Buehler MJ. Nanofibrils in nature and materials engineering. Nat Rev Mater, 2018, 3: 1–5

    Article  Google Scholar 

  49. Zhu H, Luo W, Ciesielski PN, et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev, 2016, 116: 9305–9374

    Article  CAS  Google Scholar 

  50. Yousefi H, Nishino T, Faezipour M, et al. Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Biomacromolecules, 2011, 12: 4080–4085

    Article  CAS  Google Scholar 

  51. Chundawat SPS, Donohoe BS, da Costa Sousa L, et al. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci, 2011, 4: 973–984

    Article  CAS  Google Scholar 

  52. Wang H, Cui J, Arshad A, et al. A visual photothermal paper sensor for H2S recognition through rational modulation LSPR wavelength of plasmonics. Sci China Chem, 2018, 61: 368–374

    Article  CAS  Google Scholar 

  53. Wang H, Zhang R, Yuan D, et al. Gas foaming guided fabrication of 3D porous plasmonic nanoplatform with broadband absorption, tunable shape, excellent stability, and high photothermal efficiency for solar water purification. Adv Funct Mater, 2020, 30: 2003995

    Article  CAS  Google Scholar 

  54. Zhou X, Zhao F, Guo Y, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ Sci, 2018, 11: 1985–1992

    Article  CAS  Google Scholar 

  55. Zhang S, Yuan Y, Zhang W, et al. A bioinspired solar evaporator for continuous and efficient desalination by salt dilution and secretion. J Mater Chem A, 2021, 9: 17985–17993

    Article  CAS  Google Scholar 

  56. Gao T, Wu X, Wang Y, et al. A hollow and compressible 3D photothermal evaporator for highly efficient solar steam generation without energy loss. Sol RRL, 2021, 5: 2100053

    Article  CAS  Google Scholar 

  57. Guo Y, Lu H, Zhao F, et al. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv Mater, 2020, 32: 1907061

    Article  CAS  Google Scholar 

  58. Zhao X, He Z, Ou W, et al. Narrow-bandgap light-absorbing conjugated polybenzobisthiazole: Massive interfacial synthesis, robust solar-thermal evaporation and thermoelectric power generation. Sci China Mater, 2022, 65: 2491–2501

    Article  CAS  Google Scholar 

  59. Deng Z, Zhou J, Miao L, et al. The emergence of solar thermal utilization: Solar-driven steam generation. J Mater Chem A, 2017, 5: 7691–7709

    Article  CAS  Google Scholar 

  60. Ren L, Yi X, Yang Z, et al. Designing carbonized loofah sponge architectures with plasmonic Cu nanoparticles encapsulated in graphitic layers for highly efficient solar vapor generation. Nano Lett, 2021, 21: 1709–1715

    Article  CAS  Google Scholar 

  61. Tian C, Li C, Chen D, et al. Sandwich hydrogel with confined plasmonic Cu/carbon cells for efficient solar water purification. J Mater Chem A, 2021, 9: 15462–15471

    Article  CAS  Google Scholar 

  62. Wang Y, Wu X, Gao T, et al. Same materials, bigger output: A reversibly transformable 2D-3D photothermal evaporator for highly efficient solar steam generation. Nano Energy, 2021, 79: 105477

    Article  CAS  Google Scholar 

  63. Hao E, Schatz GC. Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys, 2004, 120: 357–366

    Article  CAS  Google Scholar 

  64. Halas NJ, Lal S, Chang WS, et al. Plasmons in strongly coupled metallic nanostructures. Chem Rev, 2011, 111: 3913–3961

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51971133, 51902200, 52071213, 32000981 and 52072241), Shanghai Science and Technology Committee (18JC1410500, 19ZR1425300 and 19ZR1425100), the National High-Level Talent Program for Young Scholars, Shenzhen Science and Technology Research Funding (JCYJ20190806170011328), China National Postdoctoral Program for Innovative Talents (BX20190352), and Guangdong Province Fundamental Research Funds (2019A1515111209). Dong C thanks Prof. Ruibin Wang (IAC of SJTU) for helpful characterizations and discussions. The authors also acknowledge the Instrumental Analysis Center of SJTU.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Dong C, Yuan Y, Gu J, Song F, and Zhang D conceptualized the study and designed the experiments. Dong C and Yuan Y carried out most of the materials synthesis and characterization, and the evaluation of performance. Song G, Li J, Wang Q, Zhou C, Ahmad A, Guo C, Zhang W, and Liu Q carried out some characterizations and offered helpful discussion. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jiajun Gu  (顾佳俊) or Fang Song  (宋钫).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Changlin Dong is currently a PhD candidate and a member of Prof. Di Zhang and Prof. Fang Song’s group at the State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University (SJTU). He worked as a research assistant in Prof. Xinliang Feng’s group at TU Dresden in Germany from 2017 to 2018. His research focuses on solar-energy conversion materials and their applications.

Yang Yuan received his BE degree (2014) from Nanjing University and PhD degree (2020) in materials science & engineering from SJTU, China. His research interests include solar-energy steam generation and integrated device fabrication.

Jiajun Gu received his BE degree (1996) and PhD degree (2005) in materials science & engineering from SJTU, China. He is presently a professor of materials science at SJTU. His research interests mainly focus on bioinspired functional materials and solutions, either in the design of materials or in mechanism studies.

Fang Song obtained his BE degree (2006) and his PhD degree (2012) in materials science & engineering from SJTU. Shortly thereafter, he worked as a postdoctoral fellow in Prof. Xile Hu’s group at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland until 2018. He is currently an associate professor at SJTU. His research interests include electrocatalysts and morphogenetic materials and devices for energy conversion and storage.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Yuan, Y., Song, G. et al. Flexible plasmonic cellulose papers for broadband absorption and efficient solar steam generation. Sci. China Mater. 66, 1097–1105 (2023). https://doi.org/10.1007/s40843-022-2238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2238-6

Keywords

Navigation