Skip to main content
Log in

Bottom-up fabrication of three-dimensional nanoporous gold from Au nanoparticles using nanowelding

使用纳米焊接从金纳米粒子自下而上制备三维纳米 多孔金

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) nanoporous gold (NPG) shows promising applications in various fields. However, its most common fabrication strategy (i.e., dealloying) faces the problems of high energy consumption, resource waste, the use of corrosive solvent, and residue of the sacrificial component. Here, we report a general bottom-up nanowelding strategy to fabricate high-purity NPG from Au nanoparticles (NPs), accomplished via interfacial self-assembly of the Au NPs into monolayer Au NP film, its subsequent layer-by-layer transfer onto a solid substrate, and direct current (DC) nanowelding. We show that the DC nanowelding process can gradually evolve the layered Au NP film into NPG at low temperatures within 10 s, while not damaging their spherical structure. This is because during the nanowelding, electrons are preferred to be localized at the high-resistance NP/NP junctions, whose electrostatic repulsion in turn strengthens their surface atom diffusion to initiate a mild solid-state diffusion nanowelding. Furthermore, when using differently sized Au NPs as the starting building blocks, this strategy allows readily tuning the thickness, ligament size, and pore size, thereby offering great flexibility to create functional porous nanomaterials, e.g., electrocatalyst for methanol electrooxidation. Surely, low-temperature nanowelding can play a role for the production of diverse nanoporous materials from other NPs beyond Au NPs.

摘要

三维纳米多孔金具有高的比表面积、高的导电性和等离激元特 性等众多优异的物理化学性质, 可以应用于多个领域. 然而, 其最常见 的制备方法, 即脱合金, 面临着高能耗、资源浪费、需使用腐蚀性液体 和牺牲组分的残留等问题. 本文中, 我们报道了一种较普适性的自下而 上的纳米焊接方法, 用于从金纳米粒子制造高纯度三维纳米多孔金. 该 方法先将化学合成的金纳米粒子在液-液界面自组装成致密的单层金 纳米粒子薄膜, 随后将其逐层转移到固体基底上形成多层的金纳米粒 子膜, 最后对该多层金纳米粒子膜在空气中通直流电进行纳米焊接. 研 究结果表明, 直流电纳米焊接工艺可在10 s内在低温下将层状金纳米颗 粒薄膜逐渐转变为纳米多孔金, 同时不会破坏母体金纳米粒子的球形 结构. 这是因为在纳米焊接过程中, 电子更倾向于聚集在高电阻的粒 子/粒子结点处, 造成该处的表面原子受到较强的静电排斥作用, 从而 强化了该处的表面原子扩散并引发温和的固态扩散纳米焊接. 此外, 当 使用不同尺寸的金纳米粒子作为起始构筑单元时, 该方法可有效调整 纳米多孔金的厚度、韧带尺寸和孔径, 从而为构筑功能性多孔纳米材 料(如用于甲醇电氧化的电催化剂)提供极大的灵活性. 可以预料, 该低 温纳米焊接方法也可用于除金纳米粒子以外的其他纳米粒子为起始构 筑单元构筑其他类型的纳米多孔材料.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruffino F, Grimaldi MG. Nanoporous gold-based sensing. Coatings, 2020, 10: 899

    Article  CAS  Google Scholar 

  2. Seker E, Reed ML, Begley MR. Nanoporous gold: Fabrication, characterization, and applications. Materials, 2009, 2: 2188–2215

    Article  CAS  Google Scholar 

  3. Huang J, He Z, He X, et al. Island-like nanoporous gold: Smaller island generates stronger surface-enhanced Raman scattering. ACS Appl Mater Interfaces, 2017, 9: 28902–28910

    Article  CAS  Google Scholar 

  4. Wittstock A, Zielasek V, Biener J, et al. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science, 2010, 327: 319–322

    Article  CAS  Google Scholar 

  5. Liu Z, Ma H, Sun H, et al. Nanoporous gold-based microbial biosensor for direct determination of sulfide. Biosens Bioelectron, 2017, 98: 29–35

    Article  CAS  Google Scholar 

  6. Lang X, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotech, 2011, 6: 232–236

    Article  CAS  Google Scholar 

  7. Deng Y, Huang W, Chen X, et al. Facile fabrication of nanoporous gold film electrodes. Electrochem Commun, 2008, 10: 810–813

    Article  CAS  Google Scholar 

  8. Nishio K, Masuda H. Anodization of gold in oxalate solution to form a nanoporous black film. Angew Chem Int Ed, 2011, 50: 1603–1607

    Article  CAS  Google Scholar 

  9. Meldrum FC, Seshadri R. Porous gold structures through templating by echinoid skeletal plates. Chem Commun, 2000, 1: 29–30

    Article  Google Scholar 

  10. Huang J, He Z, Liu Y, et al. Large surface-enhanced Raman scattering from nanoporous gold film over nanosphere. Appl Surf Sci, 2019, 478: 793–801

    Article  CAS  Google Scholar 

  11. Gao W, Xia XH, Xu JJ, et al. Three-dimensionally ordered macroporous gold structure as an efficient matrix for solid-state electrochemiluminescence of Ru(bpy)32+/TPA system with high sensitivity. J Phys Chem C, 2007, 111: 12213–12219

    Article  CAS  Google Scholar 

  12. Hernández-Saravia LP, Sukeri A, Bertotti M. Fabrication of nanoporous gold-islands via hydrogen bubble template: An efficient electrocatalyst for oxygen reduction and hydrogen evolution reactions. Int J Hydrogen Energy, 2019, 44: 15001–15008

    Article  Google Scholar 

  13. Kim SH. Nanoporous gold: Preparation and applications to catalysis and sensors. Curr Appl Phys, 2018, 18: 810–818

    Article  Google Scholar 

  14. Lu Z, Li C, Han J, et al. Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying. Nat Commun, 2018, 9: 276

    Article  Google Scholar 

  15. Wada T, Yubuta K, Inoue A, et al. Dealloying by metallic melt. Mater Lett, 2011, 65: 1076–1078

    Article  CAS  Google Scholar 

  16. Guo S, Wang E. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today, 2011, 6: 240–264

    Article  CAS  Google Scholar 

  17. Chen A, Holt-Hindle P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem Rev, 2010, 110: 3767–3804

    Article  CAS  Google Scholar 

  18. Qin GW, Liu J, Balaji T, et al. A facile and template-free method to prepare mesoporous gold sponge and its pore size control. J Phys Chem C, 2008, 112:10352–10358

    Article  CAS  Google Scholar 

  19. Zhang Z, Li H, Zhang F, et al. Investigation of halide-induced aggregation of Au nanoparticles into spongelike gold. Langmuir, 2014, 30: 2648–2659

    Article  CAS  Google Scholar 

  20. Christiansen MUB, Seselj N, Engelbrekt C, et al. Chemically controlled interfacial nanoparticle assembly into nanoporous gold films for electrochemical applications. J Mater Chem A, 2018, 6: 556–564

    Article  CAS  Google Scholar 

  21. Kim M, Jeong GH, Lee KY, et al. Fabrication of nanoporous superstructures through hierarchical self-assembly of nanoparticles. J Mater Chem, 2008, 18: 2208–2212

    Article  CAS  Google Scholar 

  22. Lee MJ, Lim SH, Ha JM, et al. Green synthesis of high-purity mesoporous gold sponges using self-assembly of gold nanoparticles induced by thiolated poly(ethylene glycol). Langmuir, 2016, 32: 5937–5945

    Article  CAS  Google Scholar 

  23. Zhang YX, Zeng HC. Gold sponges prepared via hydrothermally activated self-assembly of Au nanoparticles. J Phys Chem C, 2007, 111: 6970–6975

    Article  CAS  Google Scholar 

  24. Chen F, Yang S, Wu Z, et al. Light welding nanoparticles: From metal colloids to free-standing conductive metallic nanoparticle film. Sci China Mater, 2017, 60: 39–48

    Article  CAS  Google Scholar 

  25. Han M, Chen F, Li M, et al. Light welding Au nanoparticles assembled at water-air interface for monolayered nanoporous gold films with tunable electrocatalytic activity. Electrochim Acta, 2020, 334: 135626

    Article  CAS  Google Scholar 

  26. Zhang M, Li M, Han M, et al. Synthesis of gold nanoparticles, their interfacial self-assembly, and plasma welding: A solution-processable strategy to interdigital electrodes. Chem Phys Lett, 2020, 754: 137603

    Article  CAS  Google Scholar 

  27. Liu J, Ge Y, Zhang D, et al. Plasma cleaning and self-limited welding of silver nanowire films for flexible transparent conductors. ACS Appl Nano Mater, 2021, 4: 1664–1671

    Article  CAS  Google Scholar 

  28. Li M, Xie X, Xu Y, et al. External field-strengthened Ostwald nanowelding. Nano Res, 2021, doi: https://doi.org/10.1007/s12274-12021-14001-z

  29. Reincke F, Hickey SG, Kegel WK, et al. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew Chem Int Ed, 2004, 43: 458–462

    Article  CAS  Google Scholar 

  30. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci, 1973, 241: 20–22

    Article  CAS  Google Scholar 

  31. Zhang X, Chen H, Zhang H. Layer-by-layer assembly: From conventional to unconventional methods. Chem Commun, 2007,: 1395–1405

  32. Lagrange M, Langley DP, Giusti G, et al. Optimization of silver nanowire-based transparent electrodes: Effects of density, size and thermal annealing. Nanoscale, 2015, 7: 17410–17423

    Article  CAS  Google Scholar 

  33. Buffat P, Borel JP. Size effect on the melting temperature of gold particles. Phys Rev A, 1976, 13: 2287–2298

    Article  CAS  Google Scholar 

  34. Song TB, Chen Y, Chung CH, et al. Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano, 2014, 8: 2804–2811

    Article  CAS  Google Scholar 

  35. Borkowska Z, Tymosiak-Zielinska A, Shul G. Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim Acta, 2004, 49: 1209–1220

    Article  CAS  Google Scholar 

  36. Sukeri A, Saravia LPH, Bertotti M. A facile electrochemical approach to fabricate a nanoporous gold film electrode and its electrocatalytic activity towards dissolved oxygen reduction. Phys Chem Chem Phys, 2015, 17: 28510–28514

    Article  CAS  Google Scholar 

  37. Assiongbon KA, Roy D. Electro-oxidation of methanol on gold in alkaline media: Adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques. Surf Sci, 2005, 594: 99–119

    Article  CAS  Google Scholar 

  38. Xia H, Ran Y, Li H, et al. Freestanding monolayered nanoporous gold films with high electrocatalytic activity via interfacial self-assembly and overgrowth. J Mater Chem A, 2013, 1: 4678–4684

    Article  CAS  Google Scholar 

  39. Zhang J, Liu P, Ma H, et al. Nanostructured porous gold for methanol electro-oxidation. J Phys Chem C, 2007, 111: 10382–10388

    Article  CAS  Google Scholar 

  40. Abdel Hameed RM, Fetohi AE, Amin RS, et al. Promotion effect of manganese oxide on the electrocatalytic activity of Pt/C for methanol oxidation in acid medium. Appl Surf Sci, 2015, 359: 651–663

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21872047 and 21673070) and Hunan Key Laboratory of Two-Dimensional Materials (2018TP1010).

Author information

Authors and Affiliations

Authors

Contributions

Duan X and Hu J designed the study; Li M, Liu B, Xu Y, Liu J, Sun X, and Deng D performed the experiments; Li M analyzed the data and wrote the manuscript. All authors contributed to the discussion and interpretation of the work.

Corresponding authors

Correspondence to Xidong Duan  (段曦东) or Jiawen Hu  (胡家文).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Moxia Li is a doctoral candidate at the College of Chemistry and Chemical Engineering, Hunan University. She joined Professor Hu’s group in 2018 and her current research interests include the synthesis, characterization, self-assembly, nanowelding, and application of nanomaterials.

Jiawen Hu is a professor of chemistry at the College of Chemistry and Chemical Engineering, Hunan University. He received his PhD degree in physical chemistry from Jilin University in 2002, followed by a period of postdoctoral research at Xiamen University. His research interests include surface-enhanced Raman scattering, synthesis, characterization, self-assembly, nanowelding, and application of nanomaterials, and capacitive desalination.

Xidong Duan received his BSc degree in chemistry, MA degree in materials science, and PhD degree in chemistry from Hunan University in 1993, 1996, and 2016, respectively. Afterward, he joined the College of Chemistry and Chemical Engineering, Hunan University, as a professor. His current research interests include two-dimensional materials, heterostructures and their applications.

Supplementary information

Supporting data are available in the online version of the paper.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xu, Y., Liu, B. et al. Bottom-up fabrication of three-dimensional nanoporous gold from Au nanoparticles using nanowelding. Sci. China Mater. 65, 2755–2762 (2022). https://doi.org/10.1007/s40843-022-2020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2020-9

Keywords

Navigation