Skip to main content
Log in

Transparent, stretchable and anti-freezing hybrid double-network organohydrogels

透明、 可拉伸和抗冻的杂化双网络有机水凝胶

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Stretchable ionic conductors with high transparency and excellent resilience are highly desired for flexible electronics, but traditional ionic conductive hydrogels are easy to dry and freeze. Herein, a newly hybrid crosslinking strategy is presented for preparing a stretchable and transparent hydrogel by using sodium alginate (SA) and acrylamide based on the unique physically and covalently hybrid crosslinking mechanism, which is transformed into organohydrogel by simple solvent replacement. Due to the combination of hybrid crosslinking double network and hydrogen bond interactions introduced by the glycerin-water binary solvent, the SA-poly (acrylamide)-organohydrogel (SPOH) demonstrates excellent anti-freezing (−20°C) property, stability (>2 days), transparency, stretchability (∼1600%) and high ionic conductivity (17.1 mS cm−1). Thus, a triboelectric nanogenerator made from SPOH (O-TENG) shows an instantaneous peak power density of 262 mW m−2 at a load resistance of 10 M∛ and efficiently harvests biomechanical energy to drive an electronic watch and light-emitting diode. Moreover, The O-TENG exhibits favorable long-term stability (2 weeks) and temperature tolerance (-20°C). In addition, the raw materials can be prepared into SPOH fibers by a simple tubular mold method, exhibiting high transparency, which can be used for laser transmission. The various abilities of the SPOH promise the application of energy harvesting and laser transmission for wearable electronics and biomedical field.

摘要

柔性电子产品非常需要具有高透明度和出色回弹性的可拉伸离子导体, 但传统的离子导电水凝胶易于干燥和冻结. 在此, 基于独特的物理和共价杂化交联机制, 我们提出了一种新的杂化交联策略, 用海藻酸钠(SA)和丙烯酰胺(AM)制备可拉伸和透明的水凝胶(SPH), 并通过简单的溶剂置换方法将其转化为有机水凝胶. 所得SA-PAM-有机水凝胶(SPOH)表现出出色的综合性能, 如优异的抗冻性能(−20°C)、 高稳定性(>2天)、 高透明度、 优异的可拉伸性(∼1600%)和高离子电导率(17.1 mS cm−1). 因此, 由SPOH构筑的摩擦纳米发电机(O-TENG)在10 M∛的负载下显示出262 mW m−2的瞬时峰值功率密度, 并且能有效地收集人体运动产生的机械能来驱动电子手表和发光二极管. 此外, O-TENG表现出良好的长期稳定性(2周)和温度耐受性(−20°C). 另外, 该原料可以通过简单的管状模具法制备成柔性有机水凝胶纤维, 该纤维具有高透明度, 可用于传输激光. 该多功能有机水凝胶具有能量收集和激光传输的应用前景, 有望用于可穿戴电子和生物医学领域.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keplinger C, Sun JY, Foo CC, et al. Stretchable, transparent, ionic conductors. Science, 2013, 341: 984–987

    Article  CAS  Google Scholar 

  2. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607

    Article  CAS  Google Scholar 

  3. Yao S, Zhu Y. Nanomaterial-enabled stretchable conductors: Strategies, materials and devices. Adv Mater, 2015, 27: 1480–1511

    Article  CAS  Google Scholar 

  4. Chen D, Liang J, Pei Q. Flexible and stretchable electrodes for next generation polymer electronics: A review. Sci China Chem, 2016, 59: 659–671

    Article  CAS  Google Scholar 

  5. Zhou J, Yu H, Xu X, et al. Ultrasensitive, stretchable strain sensors based on fragmented carbon nanotube papers. ACS Appl Mater Interfaces, 2017, 9: 4835–4842

    Article  CAS  Google Scholar 

  6. Li Q, Ding C, Yuan W, et al. Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv Fiber Mater, 2021, 3: 302–311

    Article  CAS  Google Scholar 

  7. Watanabe M, Shirai H, Hirai T. Wrinkled polypyrrole electrode for electroactive polymer actuators. J Appl Phys, 2002, 92: 4631–4637

    Article  CAS  Google Scholar 

  8. Hong S, Lee H, Lee J, et al. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater, 2015, 27: 4744–4751

    Article  CAS  Google Scholar 

  9. Won P, Park JJ, Lee T, et al. Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett, 2019, 19: 6087–6096

    Article  CAS  Google Scholar 

  10. Lee H, Hong S, Lee J, et al. Highly stretchable and transparent supercapacitor by Ag-Au core-shell nanowire network with high electrochemical stability. ACS Appl Mater Interfaces, 2016, 8: 15449–15458

    Article  CAS  Google Scholar 

  11. Moon H, Lee H, Kwon J, et al. Ag/Au/polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices. Sci Rep, 2017, 7: 41981

    Article  CAS  Google Scholar 

  12. Jung J, Lee H, Ha I, et al. Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl Mater Interfaces, 2017, 9: 44609–44616

    Article  CAS  Google Scholar 

  13. Wang J, Yan C, Kang W, et al. High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale, 2014, 6: 10734–10739

    Article  CAS  Google Scholar 

  14. Park S, Parida K, Lee PS. Deformable and transparent ionic and electronic conductors for soft energy devices. Adv Energy Mater, 2017, 7: 1701369

    Article  CAS  Google Scholar 

  15. Yang CH, Chen B, Zhou J, et al. Electroluminescence of giant stretchability. Adv Mater, 2016, 28: 4480–4484

    Article  CAS  Google Scholar 

  16. Zhang P, Guo W, Guo ZH, et al. Dynamically crosslinked dry ion-conducting elastomers for soft iontronics. Adv Mater, 2021, 33: 2101396

    Article  CAS  Google Scholar 

  17. Zhang X, Sheng N, Wang L, et al. Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater Horiz, 2019, 6: 326–333

    Article  CAS  Google Scholar 

  18. Li T, Wang Y, Li S, et al. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv Mater, 2020, 32: 2002706

    Article  Google Scholar 

  19. Guo T, Zhou D, Liu W, et al. Recent advances in all-in-one flexible supercapacitors. Sci China Mater, 2021, 64: 27–45

    Article  CAS  Google Scholar 

  20. Zhang Y, Li Y, Liu W. Dipole-dipole and H-bonding interactions significantly enhance the multifaceted mechanical properties of thermo-responsive shape memory hydrogels. Adv Funct Mater, 2015, 25: 471–480

    Article  CAS  Google Scholar 

  21. Yang B, Yuan W. Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal-mechanical dual sensors and electroluminescent devices. ACS Appl Mater Interfaces, 2019, 11: 16765–16775

    Article  CAS  Google Scholar 

  22. Gao Y, Shi L, Lu S, et al. Highly stretchable organogel ionic conductors with extreme-temperature tolerance. Chem Mater, 2019, 31: 3257–3264

    Article  CAS  Google Scholar 

  23. Zhang XF, Ma X, Hou T, et al. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew Chem Int Ed, 2019, 58: 7366–7370

    Article  CAS  Google Scholar 

  24. Ying B, Chen RZ, Zuo R, et al. An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv Funct Mater, 2021, 31: 2104665

    Article  CAS  Google Scholar 

  25. Bai J, Wang R, Ju M, et al. Facile preparation and high performance of wearable strain sensors based on ionically cross-linked composite hydrogels. Sci China Mater, 2021, 64: 942–952

    Article  CAS  Google Scholar 

  26. Morelle XP, Illeperuma WR, Tian K, et al. Highly stretchable and tough hydrogels below water freezing temperature. Adv Mater, 2018, 30: 1801541

    Article  CAS  Google Scholar 

  27. Sun L, Chen S, Guo Y, et al. Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy, 2019, 63: 103847

    Article  CAS  Google Scholar 

  28. Han L, Liu K, Wang M, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Funct Mater, 2018, 28: 1704195

    Article  CAS  Google Scholar 

  29. Chen F, Zhou D, Wang J, et al. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew Chem Int Ed, 2018, 57: 6568–6571

    Article  CAS  Google Scholar 

  30. Sun H, Zhao Y, Jiao S, et al. Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv Funct Mater, 2021, 31: 2101696

    Article  CAS  Google Scholar 

  31. Shi S, Peng X, Liu T, et al. Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. Polymer, 2017, 111: 168–176

    Article  CAS  Google Scholar 

  32. Sun JY, Zhao X, Illeperuma WRK, et al. Highly stretchable and tough hydrogels. Nature, 2012, 489: 133–136

    Article  CAS  Google Scholar 

  33. Yang Y, Wang X, Yang F, et al. Highly elastic and ultratough hybrid ionic-covalent hydrogels with tunable structures and mechanics. Adv Mater, 2018, 30: 1707071

    Article  CAS  Google Scholar 

  34. Zeng L, He J, Cao Y, et al. Tissue-adhesive and highly mechanical double-network hydrogel for cryopreservation and sustained release of anti-cancer drugs. Smart Mater Med, 2021, 2: 229–236

    Article  Google Scholar 

  35. Mo F, Wang Z, Jiang R, et al. Energy-dissipative dual-crosslinked hydrogels for dynamically super-tough sensors. Sci China Mater, 2021, 64: 2764–2776

    Article  CAS  Google Scholar 

  36. Zhao Y, Nakajima T, Yang JJ, et al. Proteoglycans and glycosaminoglycans improve toughness of biocompatible double network hydrogels. Adv Mater, 2014, 26: 436–442

    Article  CAS  Google Scholar 

  37. Li J, Illeperuma WRK, Suo Z, et al. Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett, 2014, 3: 520–523

    Article  CAS  Google Scholar 

  38. Song J, Chen S, Sun L, et al. Mechanically and electronically robust transparent organohydrogel fibers. Adv Mater, 2020, 32: 1906994

    Article  CAS  Google Scholar 

  39. Mo F, Liang G, Wang D, et al. Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices. EcoMat, 2019, 1: e12008

    Article  CAS  Google Scholar 

  40. Wu J, Wu Z, Wei Y, et al. Ultrasensitive and stretchable temperature sensors based on thermally stable and self-healing organohydrogels. ACS Appl Mater Interfaces, 2020, 12: 19069–19079

    Article  CAS  Google Scholar 

  41. Huang H, Han L, Li J, et al. Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. J Mater Chem A, 2020, 8: 10291–10300

    Article  CAS  Google Scholar 

  42. Keller A, Pham J, Warren H, et al. Conducting hydrogels for edible electrodes. J Mater Chem B, 2017, 5: 5318–5328

    Article  CAS  Google Scholar 

  43. Liu C, Xu W, Mei C, et al. A chemically self-charging flexible solid-state zinc-ion battery based on VO2 cathode and polyacrylamide-chitin nanofiber hydrogel electrolyte. Adv Energy Mater, 2021, 11: 2003902

    Article  CAS  Google Scholar 

  44. Guo WY, Yuan Q, Huang LZ, et al. Multifunctional bacterial cellulose-based organohydrogels with long-term environmental stability. J Colloid Interface Sci, 2022, 608: 820–829

    Article  CAS  Google Scholar 

  45. Liu X, Qin J, Wang J, et al. Robust conductive organohydrogel strain sensors with wide range linear sensing, UV filtering, anti-freezing and water-retention properties. Colloids Surfs A-Physicochem Eng Aspects, 2022, 632: 127823

    Article  CAS  Google Scholar 

  46. Xie Z, Li H, Mi HY, et al. Freezing-tolerant, widely detectable and ultrasensitive composite organohydrogel for multiple sensing applications. J Mater Chem C, 2021, 9: 10127–10137

    Article  CAS  Google Scholar 

  47. Chen J, Shi D, Yang Z, et al. Hand-extended noodle inspired physical conjoined-network organohydrogels with anti-freezing, high stiffness and toughness properties. J Mater Sci, 2021, 56: 8887–8899

    Article  CAS  Google Scholar 

  48. Zha XJ, Zhang ST, Pu JH, et al. Nanofibrillar poly(vinyl alcohol) ionic organohydrogels for smart contact lens and human-interactive sensing. ACS Appl Mater Interfaces, 2020, 12: 23514–23522

    Article  CAS  Google Scholar 

  49. Qin Z, Sun X, Zhang H, et al. A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature. J Mater Chem A, 2020, 8: 4447–4456

    Article  CAS  Google Scholar 

  50. Li Q, Chen J, Zhang Y, et al. Superelastic, antifreezing, antidrying, and conductive organohydrogels for wearable strain sensors. ACS Appl Mater Interfaces, 2021, 13: 51546–51555

    Article  CAS  Google Scholar 

  51. Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater, 2016, 15: 937–950

    Article  CAS  Google Scholar 

  52. Wang ZL. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 2013, 7: 9533–9557

    Article  CAS  Google Scholar 

  53. Liu T, Liu M, Dou S, et al. Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano, 2018, 12: 2818–2826

    Article  CAS  Google Scholar 

  54. Huang LB, Dai X, Sun Z, et al. Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy, 2021, 82: 105724

    Article  CAS  Google Scholar 

  55. Park S, Guo Y, Jia X, et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat Neurosci, 2017, 20: 612–619

    Article  CAS  Google Scholar 

  56. Yun SH, Kwok SJJ. Light in diagnosis, therapy and surgery. Nat Biomed Eng, 2017, 1: 0008

    Article  CAS  Google Scholar 

  57. Choi M, Humar M, Kim S, et al. Step-index optical fiber made of biocompatible hydrogels. Adv Mater, 2015, 27: 4081–4086

    Article  CAS  Google Scholar 

  58. Shan D, Zhang C, Kalaba S, et al. Flexible biodegradable citrate-based polymeric step-index optical fiber. Biomaterials, 2017, 143: 142–148

    Article  CAS  Google Scholar 

  59. Nazempour R, Zhang Q, Fu R, et al. Biocompatible and implantable optical fibers and waveguides for biomedicine. Materials, 2018, 11: 1283

    Article  CAS  Google Scholar 

  60. Choi M, Choi JW, Kim S, et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat Photon, 2013, 7: 987–994

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52002059 and 51872204), the Belt & Road Young Scientist Exchanges Project of Science and Technology Commission Foundation of Shanghai (20520741000), the Fundamental Research Funds for the Central Universities (20D110631), and the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (Donghua University, KF2019).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Sun W and Zhu L designed the experiments. Zhu L did the experiments and wrote the original draft. Sun W and You Z supervised the study and gave some advice.

Corresponding author

Correspondence to Wei Sun  (孙巍).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Wei Sun received his BSc and PhD degrees in physics from Tongji University in 2016 and 2019, respectively. In 2019, he joined the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University. His research is mainly focusing on the fabrication and properties of nanobirds, smart (self-healing and elastic) polymers and stretchable energy storage devices.

Zhengwei You is a professor at the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and the chair of Department of Composite Materials at Donghua University. He currently serves as the director of the Research Base of Textile Materials for Flexible Electronics and Biomedical Applications, China Textile Engineering Society. He received his BSc degree from Shanghai Jiao Tong University and PhD degree from Shanghai Institute of Organic Chemistry. He conducted his postdoctoral research at Georgia Institute of Technology and the University of Pittsburgh. His current research involves smart polymers, biomaterials, 3D printing, and stretchable electronics.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Xu, J., Song, J. et al. Transparent, stretchable and anti-freezing hybrid double-network organohydrogels. Sci. China Mater. 65, 2207–2216 (2022). https://doi.org/10.1007/s40843-021-1961-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1961-1

Keywords

Navigation