
mater.scichina.com link.springer.com Published online 11 February 2022 | https://doi.org/10.1007/s40843-021-1945-1
Sci China Mater 2022, 65(5): 1143–1155

Remarkable electron and phonon transports in low-cost SnS: A new
promising thermoelectric material

Wenke He1,2, Ran Ang1 and Li-Dong Zhao2*

ABSTRACT As a deceptively simple material, SnS has re-
ceived extensive attention in the thermoelectric community
recently due to its fascinating electron and phonon transport
features, making it a very promising thermoelectric candidate.
In this review, we first discuss the fundamental characteristics
of SnS, including crystal structures, electronic and phononic
band structures, and physical or chemical properties. Mean-
while, the approaches of improving thermoelectric perfor-
mance are summarized, including simultaneous carrier
concentration tuning and carrier mobility improvement,
multiple valence bands transport and their synergetic opti-
mization, and anharmonicity and phonon “softening” beha-
vior. We also compare the difference in electrical and thermal
transport properties between crystals and polycrystalline SnS.
Then, theoretical calculations to predict the maximum ZT in
SnS system are also established for potential performance
enhancement. Finally, some future possible strategies are
proposed to aim at further promoting the figure of merit of
SnS. The exploration and research on this new emerged ma-
terial can contribute the thermoelectrics toward practical ap-
plications to meet market demands of low-cost, high-
effectiveness, and environmental compatibility.

Keywords: SnS, thermoelectrics, electron and phonon, low-cost,
ZT

INTRODUCTION
Since exploring new energy sources or improving energy utili-
zation patterns has become a long-term effective means to cope
with the ever-increasing demands for energy, we have witnessed
the prosperity of energy technology in many areas over the last
few decades. Thermoelectric technology, particularly, as a
renewable energy utilization technology has sprung up in recent
years, which allows the direct conversion to electricity from
harvesting wasted heat [1,2]. For a given material, its thermo-
electric conversion efficiency depends on a dimensionless figure
of merit ZT. It is defined as ZT = S2σT/(κlat + κele), where S, σ, T,
κlat and κele are the Seebeck coefficient, electrical conductivity,
absolute temperature in Kelvin, and thermal conductivity in
lattice and electron, respectively [3,4]. Obviously, prominent
thermoelectric materials should be qualified with large Seebeck
coefficient, high electrical and low thermal conductivity simul-
taneously [5–8]. The difficulty in optimizing ZT, however, is the

complex coupling relationship between these parameters, and
thus making a balance between them to achieve an overall ZT
enhancement can yet be regarded as an effective way [9–11].
Under the tremendous efforts, increasing ideals for improving

ZT have emerged and considerable progress has been made,
including the discovery of new material systems [12–15],
establishment of innovative transport theories [16–21] and
development of advanced fabrication processes as well as
rational material design strategies [1,4,22–25]. On the other
hand, the progress on thermoelectric devices is slow, and still
dominated by conventional systems, such as Bi2Te3 [26–28] and
PbTe [29–33]. However, in addition to containing rare heavy
elements, these traditional materials have disadvantages of
toxicity and high cost. As a result, these factors make it difficult
to achieve high yield and economic benefits, which limits their
application. Certainly, low thermoelectric conversion efficiency
remains a major barrier to the device application. Therefore,
developing low-cost, high-performance, environmentally-
friendly and lightweight thermoelectrics is of great significance
to promote the practical application. Recently, in a series of
studies, it is found that tin sulfide (SnS) is a rising star in
thermoelectric community as it possesses all the above virtues
[34–37].
In the past, SnS was ignored in the thermoelectric field owing

to its poor electrical transport caused by the large bandgap
(~1.2 eV) [36–40]. Nevertheless, it is encouraging that this
material was found to possess intrinsically low thermal con-
ductivity and came into the sight of researchers. In recent years,
continuous progress has been made in SnS and the ZT values are
also being broken through [34–37,39,41–51], as shown in
Fig. 1a. Along with the thorough studies, the thermoelectric
features of this material have also been exploited. Unlike con-
ventional thermoelectric systems, SnS is a layered compound
with lower symmetry in structure [38,52]. This asymmetric
structure is the basis of excellent electronic and phononic band
structures found in this material. For instance, Seebeck coeffi-
cient can be enhanced from the complex electronic band
structure [34–36,53–55], electrical conductivity can be com-
pensated by utilizing the high in-plane carrier mobility of the
layered structure in its crystal form [34–36,50,56], and the
ultralow thermal conductivity originates from the strong lattice
anharmonicity thus suppressing phonon transport [34,39].
Besides, SnS consists of low-cost and non-toxic elements, with
both environmental compatibility and abundant reserves (e.g.,
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Te ~0.001 ppm, Se ~2.2 ppm, S ~480 ppm), making it superior
to other IV–VI group semiconductors strikingly (Fig. 1b)
[57,58]. Therefore, SnS-based materials become one of the
thermoelectric hotspots, and growing research achievements
have been reported. It is essential to review and make a summary
for the latest progress made in this newcome material.
From this view, we summarize the electron and phonon

transport behaviors in SnS and strategies for boosting its ther-
moelectric performance, including carrier concentration (Fermi
level) tuning, carrier mobility improvement, and synergetic
optimization between carrier effective mass and mobility
through manipulating electronic band structure, etc. Firstly, the
crystal structure is introduced, and the produced differences in
electrical and thermal transports caused by the anisotropic
structure are discussed. Then we highlight the electrical trans-
port features for both p- and n-type SnS, including the huge
distinctions in electrical conductivity arising from the different
crystal forms of the material, multiple valence band structure for
Seebeck coefficient enhancement, and temperature-dependent
synergetic transport characteristics of three separate electronic
valence bands for high power factor (PF). In addition, we also
discuss the charge transports from the aspects of formation
energy and atomic orbital contribution in n-type SnS. On the
other hand, we put emphasis on the anharmonicity and phonon
“softening” to the thermal conductivity. Finally, the relationship
between maximum ZT and quality factor B is established and the
potential performance optimization is predicted in both p- and
n-type SnS-based materials.

CRYSTAL STRUCTURE
SnS is crystallized in orthorhombic structure and belongs to the
space group Pnma (#62) at room temperature. This kind of
layered compound shows obvious anisotropy in the spatial
structure, with a = 11.19 Å, b = 3.98 Å and c = 4.33 Å [34]. The
atomic arrangements in SnS crystal structure along the three
crystallographic directions are shown in Fig. 2a. Like the struc-
ture in SnSe [59–62], one Sn atom in SnS can be bonded with
seven surrounding S atoms to form a highly distorted SnS7
coordination polyhedral, where five bonds (bonding length d <
3.2 Å) are formed within the two-atom-thick layer and two
longer bonds (d > 3.5 Å) formed outside the layer. Because of the
longer Sn–S bonds, the interatomic bonding is weak and easy to
cleave along the interlayer direction (a-axis), as shown in Fig. 2b.
Therefore, from the perspective of a-axis (b-c plane, in Fig. 2a)
or the cleavage plane of crystal (in Fig. 2b), the layered structure

is in favor of carrier migration, and thus higher carrier mobility
in SnS along the in-plane direction. It can be seen that the two-
atom-thick layers are made up of Sn and S atoms that are
staggered up and down along the a-axis direction. Besides, along
the b or c-axis, atoms are arranged to form periodic spring-like
structures or zigzag Sn-S type chains. It is worth noting that the
weaker bonding along the c-axis will lead to lower thermal
conductivity than that along the b-axis. Certainly, the thermal
conductivity along the a-axis will be much lower due to the
longer and weaker bonding between the layers, thus impeding
thermal transport greatly.
From the above discussion, the anisotropic structure in SnS

will cause huge deviations in electrical or thermal transport
along the three axial directions. Therefore, it is crucial to con-
ducting electrical and thermal transport properties measure-
ments along each direction separately. For SnS crystals, the
samples can be cut along the three crystallographic axes, as
shown in Fig. 2b. The a-axis is easy to be distinguished, while the
b- or c-axis can be identified by a conventional Laue X-ray
diffraction (XRD) method [6,34]. On the other hand, although
polycrystalline SnS samples are composed of numerous crystal
grains, the grains will be arranged in a preferred orientation
during the sintering or hot-pressing process due to the layered
structure, thus resulting in a strong anisotropy [37,46,50].
Hence, it is also necessary to perform the thermoelectric mea-
surements along both the two directions of sintering pressure
(//P and ⊥P) separately, as shown in Fig. 2c.

CARRIER CONCENTRATION OPTIMIZATION AND
MOBILITY IMPROVEMENT
Owing to the existence of intrinsic Sn vacancy, SnS samples
synthesized under strict stoichiometric ratio still exhibit p-type
conduction behavior [38,63]. However, the carrier concentration
is very low due to its large band gap. As a result, the final ZT
values are below ~0.4 with the carrier concentrations lower than
~5 × 1017 cm−3 in undoped SnS samples (Fig. 3a) [37,42,45–48].
Carrier concentration tuning is one regular but the most effec-
tive optimization strategy to improve ZT. Generally, hetero-
valent cation doping in Sn sites can elevate the carrier
concentration, such as alkali-metal cations (Li+ and Na+) [34,48]
or other monovalent cations (Ag+ and Tl+) [37,43]. In addition,
extra Sn vacancy can also achieve carrier concentration
improvement. After effective doping, the optimal hole carrier
concentrations range from ~1 × 1018 to ~3 × 1019 cm−3, as well as
the ZT values are promoted strikingly [34–37,39,44,45,47–49].

Figure 1 (a) ZT values of SnS-based thermoelectrics. (b) Earth abundance of IV–VI group elements.
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Noticeably, the ZT values exceed ~1.0 in Na-doped SnS crystals
and even reach ~1.6 after further Se alloying [34–36]. Therefore,
it is shown that the thermoelectric performance in SnS crystals is
superior to the polycrystalline samples.
According to the Drude-Sommerfeld free electron model σ =

neμ (where σ is the electrical conductivity, n is the carrier con-
centration, e is the electronic charge and μ is the carrier mobi-
lity), electrical conductivity enhancement is related not only to
the carrier concentration, but also to the carrier mobility. For the
polycrystalline SnS samples, the electrical conductivity is as low
as ~10−3 S cm−1 and can only reach ~10 S cm−1 after carrier
concentration tuning at room temperature (Fig. 3b) [39,44,45].
Nonetheless, when SnS is prepared to crystals, the electrical
conductivity can be further boosted from the improved carrier
mobility due to the elimination of grain boundary. Therefore,
the electrical conductivity in Na-doped SnS crystals can reach
above ~500 S cm−1 at room temperature, which is increased by
one or two orders of magnitude [34,35]. It is interesting to probe
the discrepancy of carrier mobility between different crystal
forms in SnS. Within the whole temperature range, the carrier
mobility in SnS crystals approximatively follows a relationship of
~T−3/2, indicating that the carriers are mainly scattered by
acoustic phonon [64]. Being different from the change pattern of
crystals, the carrier mobility decreases with temperature as
~T−3/2 after ~450 K, while the deviation occurs near room
temperature in polycrystalline samples. The subdued carrier
mobility at low temperatures is ascribed to the strong grain
boundary potential barrier in polycrystalline SnS [65]. The grain
boundary scattering has also been observed in other poly-
crystalline thermoelectric systems, such as SnSe [66–68], GeSe

[69], Mg3(Sb,Bi)2 [70]. Besides, compared with the crystals, the
overall carrier mobility is still lower in polycrystalline SnS (apart
from the suppressed mobility below ~450 K) in the entire
working temperature range, indicating a constant difference in
carrier mobility caused by grain boundary. On the other hand,
this demonstrates that grain size can regulate the carrier mobi-
lity, namely, the larger grain size, the higher carrier mobility.
Thereby, increasing the grain size by means of heat treatment
process could be a simple and effective approach to enhance the
carrier mobility in polycrystalline SnS. This method has been
applied in polycrystalline Mg3Sb1.5Bi0.5 samples by annealing,
which results in a decline in grain boundary scattering as the
grain size increases [70]. Similarly, the deleterious effect of
carrier mobility caused by grain boundary can be eliminated
completely in SnS crystals with single large grain size. For
undoped SnS crystals, the carrier concentration is ~1017 cm−3

level at room temperature and remains unchanged before
~600 K, which mainly comes from the ionization of impurities
induced by the intrinsic defects (Sn vacancy). After that, the
carrier concentration has an exponential increment triggered by
the thermal activation with rising temperature, resulting in
improved electrical conductivity (inset of Fig. 3d). It should be
noted that the carrier concentration achieves an increase of two
orders of magnitude after Na doping (~1019 cm−3), and is almost
constant as temperature rises, thus showing a continuous decline
in electrical conductivity but still higher than the undoped one
(inset of Fig. 3d). In summary, hole-doped SnS crystals
demonstrate excellent electrical conductivity, which benefits
from the enhancement of both carrier concentration and carrier
mobility.

Figure 2 Crystal structures, typical crystalline and polycrystalline samples of SnS. (a) Crystal structures along the a, b and c axes, respectively. (b) A typical
crystal cleaved along cleavage plane (100) and the corresponding diagram of cutting samples along the three crystallographic directions. Reproduced with
permission from Ref. [36]. Copyright 2019, The American Association for the Advancement of Science. (c) Polycrystalline SnS sample and the corresponding
diagram of cutting samples along //P and ⊥P, respectively.
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Multiple valence band structure
Since the expression of ZT is proportional to the square of
Seebeck coefficient (S2), the enhancement in S seems more
effective than that in electrical conductivity for improving ZTs.
For a degenerated semiconductor with parabolic band disper-
sion, the Seebeck coefficient is approximately expressed by
Equation (1) [71]:

( )S k
eh m T n= 8

3 3 . (1)
2

B
2

2 d
*

2/3

where kB and h are the Boltzmann constant and Plank constant,
respectively. Obviously, to obtain a large Seebeck coefficient at a
given carrier concentration, a high density of states (DOS)
effective mass (md

*) is required. In addition, according to the
formula of md

* = Nv
2/3mb

*, a large md
* can be realized by

increasing either the band degeneracy number (Nv) [18,72–74]
or the single-band effective mass (mb

*) [75,76]. There are two
situations in increasing Nv: one is achieving high valley degen-
eracy via changing the symmetry of crystals (valley degeneracy)
[77], and the other is enabling the band extrema of bands as
many as possible within the same or similar Fermi energy level
(orbital degeneracy) [60,78].
As mentioned above, SnS is crystallized in a layered structure

with strong anisotropy, and this asymmetric structure generally
splits the electronic band due to the lower symmetry [79]. Thus,
the electronic transport can directly enhance the Seebeck coef-
ficient if many split bands have comparable energy and converge
together to result in an increased valley degeneracy (orbital

degeneracy). As shown in Fig. 4a, the density functional theory
(DFT) calculation reveals a multiple electronic valence band
structure in SnS. The first valence band maximum (VBM1) lies
in Γ-Z direction while the second valence band maximum
(VBM2) locates on U point, and the energy difference between
the first two valence bands (ΔE12) is ~0.056 eV. The third VBM
lies below the VBM1 in the same direction with the energy
difference ΔE13 = 0.065 eV, whereas the fourth VBM lies in the
Γ-Y direction with ΔE14 = 0.118 eV [34]. It is worth nothing that,
the energy gap between the first and forth bands (ΔE14) is even
smaller than that of the ΔE13 = 0.13 eV in SnSe [72]. The DFT
calculations demonstrate a very small energy difference between
these bands, and thus the increment in Nv can be realized once
the Fermi level was pushed down into deeper level with
increasing carrier concentration. Therefore, within the small
energy region, the increased number of valleys results in an
enhancement in effective mass.
Experimentally, the angle-resolved photoemission spectro-

scopy (ARPES) measurements confirmed the multiple valence
bands and corresponding locations in SnS [34]. The b-c plane
corresponds to the Y-Γ-Z plane in the Brillouin zone, where
three valence bands are located at binding energies below
~0.4 eV along different k-space directions, as shown in Fig. 4b.
Concretely, one VBM (marked as VBM2) locates along the Γ-Y
direction and two VBMs (marked as VBM1 and 1’) situate along
the Γ-Z direction, corresponding to the DFT calculation results
(Fig. 4c). From Fig. 4b, it is hard to distinguish the VBMs1 and
1’ in the k-E map, indicating a small energy offset and close

Figure 3 ZT values and electrical transport properties as a function of temperature for both SnS crystals and polycrystalline samples. (a) ZT values under
different carrier concentrations for p-type SnS. (b) Electrical conductivity. (c) Carrier mobility. (d) Carrier concentration.
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position. However, their accurate k locations and binding
energies can be derived through the detailed peak fitting of the
ARPES energy distribution curves (EDCs), as shown in the left
bottom of Fig. 4c. Therefore, the coordinates of three VBMs in
the Y-Γ-Z plane are (0, 0.64, −0.148) in VBM1, (0, 0.725,
−0.164) in VBM1’ (Z point) and (0.48, 0, −0.341) in VBM2,
respectively, where (ky, kz, E) are in units of Å−1, Å−1 and eV. The
energy difference within the three VBMs is ~0.193 eV, com-
parable to the DFT calculations. The well supported ARPES
results and DFT calculations demonstrate that SnS possess a
multiple valence band structure.
The Pisarenko function can estimate the effective mass based

on the relationship between Seebeck coefficient and carrier
concentration [1,22]. According to the DFT calculation, the first
valence band effective mass in SnS is 0.64 me, and the plotted
Pisarenko line is shown in Fig. 4d. Herein, some reported data of
SnS samples are provided within a carrier concentration range
(~1.5 × 1018 to ~3.5 × 1019 cm−3) [34,35,46–48]. It is obvious that
the Seebeck coefficients of all samples are above the single-band
Pisarenko curve, implying an increased effective mass. If these
data are fitted by a Pisarenko plot, a simulated effective mass
(md

*) ~1.2 me can be yield, which indicates that multiple valence
bands are involved and contribute to md

* enhancement. How-
ever, with increasing carrier concentration (nH >
~2 × 1019 cm−3), the deviation appears, manifesting the addi-
tional valence bands can be further activated. It is interesting to
compare the large Seebeck coefficient in SnS with those of other
IV–VI group materials with high symmetric rock-salt structures.
As shown in Fig. 4e, under the carrier concentration of
~2 × 1019 cm−3 at 300 K, the Seebeck coefficient in SnS is
~200 μV K−1, higher than that in PbTe (~90 μV K−1) [80], PbSe

(~80 μV K−1) [81], PbS (~100 μV K−1) [82] and SnTe
(~30 μV K−1) [83]. This indicates that the low symmetric
structure in SnS is conducive to the complex multiple electronic
band structure. Moreover, the multiple bands maintain the high
Seebeck coefficient and ensure the electrical conductivity
improvement as the carrier concentration is increased, getting
rid of the strong inverse relationship between Seebeck coefficient
and carrier concentration in a single band. That is to say, the net
effect of increasing band degeneracy Nv via improving n will
bring about an increase in electrical transport property. As a
result, a high PF of ~30 μW cm−1 K−2 at 300 K and an overall
electrical performance improvement in SnS can be achieved
once the carrier concentration is increased (Fig. 4f).

Synergetic optimization between multiple bands
The complex band structure in SnS facilitates the simultaneous
improvement in both Seebeck coefficient and electrical con-
ductivity after carrier optimization. Apart from this case, the
electronic band structure tailoring is another powerful strategy
for boosting electrical transport properties. For a single parabolic
band (SPB) structure, the carrier effective mass is inversely
proportional to the carrier mobility as follows: μ = eτ/m*.
Generally, a high carrier mobility serves to promote the electrical
conductivity (σ = neμ) but unfortunately results in a very low m*,
thus producing a small Seebeck coefficient [84]. However, for a
multiple band structure like SnS, the large DOS effective mass
mainly comes from the increased Nv rather than the single band
mb

*. Therefore, making a compromise between μ and mb
* is the

key for further improvement in SnS. Alloying with a specific
element is an effective way to not only shape the band structure
but adjust the difference between multiple bands [36]. After Se

Figure 4 Electronic band structures, Seebeck coefficient and PF for SnS. (a) Electronic valence band structure (the red box includes four valence band
maximum points). (b) ARPES band dispersion along the Y-Γ-Z direction. (c) Second derivative of (b), and 1, 1’ and 2 points to the VBMs. Inset: energy
distribution curves (EDCs) near VBMs 1 and 1’ (red box in (b)). Reproduced with permission from Ref. [34]. Copyright 2018, the Royal Society of Chemistry.
(d) Pisarenko line of Seebeck coefficient as a function of carrier concentration at room temperature. (e) Seebeck coefficients for group IV–VI thermoelectrics
at a carrier concentration of ~2 × 1019 cm−3. (f) PFs for undoped and Na-doped SnS crystals.
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alloying, the valence bands in SnS will be sharping and the
energy offset between these bands can be adjusted, as shown in
Fig. 5a. Consequently, a high carrier mobility is achieved, thus
promoting the electrical conductivity. Besides, the high Seebeck
coefficient can be maintained due to the multiple bands and
properly adjusted energy difference between them. Hence, Se
alloying brings about a synergetic optimization between μ and
m*, the PF enhances from ~30 to ~50 μW cm−1 K−2 at room
temperature, even higher than that of the state-of-art SnSe [72].
When compared with those of other thermoelectric materials in
the group IV–VI compounds, it exhibits superiority in the low-
temperature region, as shown in Fig. 5b [31,85–87].
Certainly, the temperature dependence of lattice change

(thermal expansion) can affect the electronic band structure
[88,89]. Therefore, the temperature-dependent lattice para-
meters and atomic positions in SnS can be obtained from the
high-temperature synchrotron radiation XRD (SR-XRD) mea-
surements, then using DFT calculations to obtain the electronic
band structures for better understanding the dynamic synergy
between μ and m*. The DFT calculation results show the three
separate electronic valence band evolution behaviors with rising
temperature, including two-band divergence, convergence, and
crossing, as shown in Fig. 5c. Specifically, the energy offset
between VBM1 and VBM2 is ~0.07 eV while that between
VBM1 and VBM3 is ~0.12 eV at 323 K. With increasing tem-
perature, VBM1 and VBM3 move up and end up with con-
vergence while VBM2 moves away from VBM1 (divergence);
meanwhile VBM2 and VBM3 experience band crossing (con-
vergence and divergence) at ~650 K. After Se alloying, all the

three bands become sharping and the temperature-dependent
triple-band evolution behavior can be promoted [34]. The
electronic band structure evolution is associated with the elec-
trical transport properties, involving the dynamic variation
between μ and m*. Herein, the weighted mobility (μW) is
introduced, which is a good descriptor of the μ and m*, and can
be used to estimate the degree of synergetic optimization
between these two parameters [90–92]. Moreover, the μW can be
directly extracted from the measured Seebeck coefficient and
electrical conductivity, offering a convenient way to evaluate the
temperature-dependent carrier transport behaviors. Briefly, the
weighted mobility μw can be expressed as μw ≈ μH(md

*/me)3/2,
and hence the md

* can be estimated approximatively through the
weighted mobility μw divided by Hall mobility μH (Fig. 5c).
Obviously, the decline in md

* confirms the band sharping after
Se alloying as mentioned above. In addition, the value variation
in md

*/me experiences three stages with rising temperature.
Namely, the value is slightly changed before ~600 K, then begins
to increase and reaches the peak at ~750 K, and subsequently
decreases back to the initial state. This process corresponds to
the band evolution behavior in SnS. The increase in md

*/me after
~600 K is the evidence of band convergence between VBM2 and
VBM3, and subsequent decline after ~750 K explains the band
divergency with VBM3 (lighter band) rising and VBM2 (heavier
band) descending. Besides, the relevant temperature points
about band convergence and divergence have been promoted
after Se alloying. And the improved weighted mobility with Se
alloying proves it, indicating the synergetic optimization
between μ and m* (Fig. 5d). On the other hand, if there is no

Figure 5 Electrical transport properties as a function of temperature for SnS crystals with Se alloying. (a) Schematic diagram of electronic band structures for
SnS with Se alloying. (b) PF comparisons of group IV–VI compounds. Reproduced with permission from Ref. [36]. Copyright 2019, The American
Association for the Advancement of Science. (c) Schematic of dynamic evolution of three separate valence bands with increasing temperature for SnS (top)
and md

*/me. (d) Weighted mobility.
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fluctuation of three valence bands, namely, the md
* remains

constant with increasing temperature, the simulated weighted
mobility (fix md

* at room temperature) shows a distinct devia-
tion above ~600 K when compared with the experimental μw,
that is, the simulated one is inferior to the latter. This indicates
that the band evolution contributes to the improvement of
electrical transport, especially in the high-temperature region as
it can optimize the μ and m*. To sum up, the excellent electrical
transport properties in SnS originated from the interplay of three
separate electronic valence bands, and the evolution behavior
can be well evaluated through the weighted mobility μW. Fur-
thermore, the optimization becomes more prominent after Se
alloying.

Explorations of n-type SnS
As described above, serval strategies for improving the electrical
transport performance have been achieved in p-type SnS.
However, the progress on the n-type is slow. The main reason is
that SnS is an intrinsic p-type semiconductor, and realizing the
n-type conversion is difficult owing to the low formation energy
of Sn vacancy [93,94]. The calculated defect formation enthal-
pies (∆H) of intrinsic defects under the S-poor and S-rich
conditions are shown in Fig. 6a, including the vacancies (VSn and
VS), antisites (SnS and SSn) and interstitials (Sni and Si). Under
the S-rich condition, VSn has the lowest ∆H and acts as a shallow
acceptor in SnS, which is mainly responsible for p-type con-
duction. In the S-poor limits, the VS has a lower ∆H than VSn,
but it cannot effectively compensate the holes produced by VSn

due to that the VS and Sni transition levels are closer to the VBM
rather than the conduction band minimum (CBM) [93].
Therefore, under the S-poor condition, improving the chemical
environment of defects in SnS, such as generating new donor
defects or further reducing the ∆H of n-type defects, may be
achievable to the n-type conduction. On the other hand, the
electrical transport is related to the electronic band structure in
semiconductors, which is made of atomic orbitals [73]. Hence, it
is helpful to understand the electrical transport nature, and
analyzing the contribution of each atom can provide a con-
structive guideline for performance optimization in SnS [56].
The projected DOS (PDOS) near the band edges is conducted
through DFT calculations, which can reflect the charge density
contribution, as shown in Fig. 6b. It can be seen the total DOS in
VBM (p-type) in SnS is composed of both Sn-s and S-p orbitals
while the Sn-p predominately contributes to the DOS in the
CBM (n-type). Specifically, the Sn-s and S-pz orbitals contribute
to the DOS equally to the VBM, indicating a tendentious charge
density contribution within the plane in p-type SnS. This can
explain why the superior electrical transport properties are
obtained along the in-plane direction in p-type SnS from the
view of atomic orbitals theory. On the other hand, Sn-py mainly
contributes to the total DOS in the CBM and then Sn-px takes
the place with increasing energy, which implies that the charge
density largely contributes to the in-plane direction at low
concentrations and then inclines to the out-of-plane direction
with rising carrier concentration in n-type SnS. Therefore, the
DFT results manifest that the electrical transport properties

Figure 6 Calculated formation enthalpy and PDOS, and electrical transport properties as a function of temperature for n-type SnS. (a) Calculated formation
enthalpies ∆H of intrinsic point defects. Reproduced with permission from Ref. [93]. Copyright 2015, AIP Publishing. (b) PDOS near the CBM and VBM. The
inset shows the total DOS and the contribution of each atom. (c) Seebeck coefficient. Inset shows the carrier concentration and Hall mobility of SnS crystals.
(d) PF. Reproduced with permission from Ref. [56]. Copyright 2021, Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature.
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along the in-plane direction outperform the out-of-plane
direction at low carrier concentrations. However, the superior
out-of-plane electrical transport properties are expected once the
carrier concentration is optimized in n-type SnS.
Experimentally, two strategies are adopted to realize the n-

type conduction in SnS, including cation (Pb2+, Sb3+, Bi3+) [95–
97] substitution in Sn sites and halogen anion (Cl−, Br−)
[50,98,99] doping at S sites. The carrier concentration, however,
is too low to achieve a good electrical conductivity. It is
encouraging that the carrier mobility can be improved through
crystal growth compared with the polycrystalline form, thus
compensating the lack contribution of carrier concentration to
electrical conductivity to some extent [50,56,100]. As shown in
Fig. 6c, benefiting from the low carrier concentration
(~4.5 × 1017 cm−3), a large Seebeck coefficient can be obtained in
n-type SnS crystals. Moreover, owing to the high in-plane carrier
mobility of crystals, a moderate electrical conductivity can be
realized, thus giving rise to a high PF of ~28 μW cm−1 K−1 at
room temperature (Fig. 6d). It should be noted that the electrical
transport properties along the in-plane direction crystals are
higher than that along the out-of-plane direction in n-type SnS,
which is consistent with the DFT calculation results mentioned
in Fig. 6b.

ANHARMONICITY AND LOW THERMAL
CONDUCTIVITY
For bulk materials, it is inevitable that introducing structural
defects with multiple scales to reduce the thermal conductivity
will paradoxically affect the carrier transport. Therefore, under
the condition of ensuring high electrical transports, the extra

scattering centers of phonons should be avoided as many as
possible. In contrast, if a material with intrinsically low thermal
conductivity is sought, the thermoelectric performance optimi-
zation can be simplified, making it an independently well-opti-
mized parameter. The intrinsically low thermal conductivity in
materials is related to the bonding of atoms, the vibration mode,
and the environment around the atoms. It originates from many
aspects, such as strong anharmonicity [59,101–103], anisotropic
bonding [27,104], lone-pair electrons [17,105,106], and complex
crystal structure [107–109].
Above the Debye temperature, assuming the phonon transport

is dominated by an Umklapp scattering process, the lattice
thermal conductivity κlat can be expressed as [110]

A
M V
N T= , (2)lat

D
3

2 2/3

where A is a physical constant, M is the average atomic mass, θD
is the Debye temperature, V is the volume of each atom, N is the
number of atoms in a unit cell, and γ is the Grüneisen para-
meter. Generally, the strength of anharmonicity in a material can
be expressed by γ, the stronger interaction between phonons, the
larger γ, thus the lower κlat. Owing to the layered structure with
low symmetry and anisotropic bonding, SnS exhibits strong
anharmonicity. As shown in Fig. 7a, the calculated Grüneisen
parameters in SnS are 4.03, 1.92 and 2.96 along a, b and c axis,
respectively, showing a strong anisotropic feature along three
crystallographic directions. In addition, the calculated theore-
tical minimum lattice thermal conductivities are κmin

a =
0.35 W m−1 K−1, κmin

b = 0.45 W m−1 K−1, κmin
c = 0.52 W m−1 K−1,

respectively [34]. The corresponding κlat in SnS crystals along the

Figure 7 Phonon dispersions and thermal conductivity for SnS. (a) Grüneisen parameters. Reproduced with permission from Ref. [34]. Copyright 2018, the
Royal Society of Chemistry. (b) Comparisons in lattice thermal conductivity between SnS crystals and polycrystalline samples. (c) Lattice thermal con-
ductivities at 323 K and high temperature limit for SnS-based samples. (d) Phonon band structures of SnS with Se alloying. Reproduced with permission from
Ref. [36]. Copyright 2019, The American Association for the Advancement of Science. (e) Lattice thermal conductivity after Se alloying. Inset shows the lattice
thermal conductivities fitted with the Callaway model at room temperature. (f) Atomically resolved STEM-high angle annular dark field (HAADF) image
confirms the Se substitution to S sites. Reproduced with permission from Ref. [36]. Copyright 2019, The American Association for the Advancement of
Science.
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three axes directions are depicted in the inset of Fig. 7b. The γ
along the a-axis is larger than those along both b and c direc-
tions, which gives rise to a distinctly low κlat along the a-axis
(Fig. 7c). For polycrystalline samples, however, the lattice ther-
mal conductivities are even lower than that along a-axis in SnS
crystals, due to the extra grain boundary scattering and
increased scattering centers caused by defects in polycrystals.
The κlat in the crystals range from ~1.5 to 3.0 W m−1 K−1 at
323 K and decrease to the minimum of ~0.5 W m−1 K−1 at high
temperatures along the in-plane directions (b or c-axis), while
the values in polycrystalline samples or the a-axis are below
~1.5 W m−1 K−1 at 323 K and decline to ~0.4 W m−1 K−1 at high
temperatures. Hence, the lower κlat is usually obtained in the
polycrystals, and closer to the theoretical limit. Recently, Zhou et
al. [67] have reported an ultralow lattice thermal conductivity in
polycrystalline SnSe by purifying the reagents and removing the
tin oxides covered on the surface of powders. This indicates that
the tin oxides could also exist in the polycrystalline SnS during
the synthesis and sintering process, and the net lattice thermal
conductivity would be much lower than the results reported in
the literatures presently.
In general, the lattice thermal conductivity is predominated by

the acoustic phonon contribution due to the higher frequency in
optical phonon [55]. However, if the frequency of optical branch
is low and comparable to the acoustic branch in a material, it
could contribute equally to the lattice thermal conductivity and
even lead to a lower κlat. As shown in Fig. 7d, after Se alloying,
the optical branches reveal a softening trend in the whole Bril-
louin zoon compared with the calculated phonon dispersions in
SnS. Further, the softened optical branches are coupled with
acoustic branches, and this interaction between optical and
acoustic modes gives rise to a lower κlat after Se alloying [36].
With increasing Se content, the κlat decreases from ~3.0 to
~1.7 W m−1 K−1 at room temperature, which agrees with the
Callaway model prediction (Fig. 7e). Besides, the Se substitution
in SnS can be observed by aberration corrected scanning
transmission electron microscopy (STEM). According to the Z-
contrast image (ZSe = 34, ZS = 16), the abnormally brighter
contrast on S sites proves the substitution of Se (Fig. 7f).

ANALYSIS OF QUALITY FACTOR AND ZT VALUE
The research on the thermoelectric materials is aimed at
screening out good thermoelectrics and achieving the possible
maximum ZT through further performance optimization.
However, ZT measurements for the samples do not directly offer
any message of the potential property improvement in materials,
namely, the initially measured ZT cannot predict the finally
optimal ZT after carrier concentration tuning. Therefore, it is
essential to predict the optimum doping level for a given
material to realize its maximum ZT.
The quality factor analysis is based on an effective mass model

that considers ZT as a function of two independent variables: the
reduced Fermi level η and quality factor B [111]. The η is a
function of doping and temperature, namely, η = EF/kBT, which
can be derived from Seebeck coefficient. The B factor is an
inherent feature of material, and independent of doping level,
which can be express as [111]

( )B k
e T= , (3)B

2
E

lat

where σE is a transport coefficient that can describe the con-

ductive “quality” in the material at a given η, which is also a
function of weighted mobility μw mentioned in the above section
[91]:
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In addition, σE can be estimated from both Seebeck coefficient
S and electrical conductivity σ. Thus, σE can also be evaluated by

( )S
k e= × exp | |

/ 2 . (5)E
B

On the other hand, the σ as a function of σE can be written as
( )e= × ln 1 + . (6)E

Here, the σ also depends on the η, which describes the var-
iation in the carrier concentration (doping level) of a material
and reflects the change in the Fermi level. From Equations (5)
and (6), the Seebeck coefficient |S| can be considered as a
function of only η, and |S(η)| is an indicator of Fermi level.
Therefore, to obtain the optimum ZT in a material, the corre-
sponding |S| should be adjusted to an optimal value through
tuning the carrier concentration. Moreover, the Lorenz number
L also depends on the η, which can be approximately expressed
using the |S|:

( )L S10  W  K 1.5 + exp | |
116 (µV K ) . (7)8 2
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Therefore, the ZT can be separated to B and the η-dependent
terms, written as
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where B is the defined dimensionless quality factor in Equation
(3), which contains all η-independent parameters of materials.
The ZT curves depending on these two parameters are plotted,
as shown in Fig. 8a.
At a given quality factor B, the maximum ZT (ZTmax) can be

achieved through tuning the carrier concentration (η). Besides,
under different B factors, the curve of ZTmax vs. B factor can be
derived by extracting the ZTmax at optimal η. As shown in
Fig. 8b, the lager B, the higher optimum ZTmax. The corre-
sponding Seebeck coefficient at optimal η is also obtained under
different B factors. Therefore, to attain ZTmax at a given B, the
optimization on η can also be realized towards the Seebeck
coefficient. In p-type SnS-based samples, the B factor can be
enhanced through crystal growth (improving μ) and Se alloying
(synergetic optimization between μ and m*). At room tem-
perature, the B factor is ~0.06 in SnS crystals and increases to
~0.23 after Se alloying. This indicates that reasonable design and
utilization in the inherent features of a material is an effective
way to promote the B factor. It can also be seen that, the cal-
culated quality factor B from Equations (3) and (4) with corre-
sponding ZT values in SnS-based samples falls on the ZTmax vs. B
curve at room temperature, indicating that the carrier con-
centration and Seebeck coefficient are well optimized. However,
under the calculated B, the experimental ZT values are deviated
from the ZTmax curve at high temperatures, implying a further
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room for ZT optimization. For example, the quality factor B in
SnS crystals with 9% Se alloying is ~1.64 at 873 K; if the Seebeck
coefficient can be optimized to ~290 μV K−1 via tuning the
carrier concentration, the ZT can excess ~2.0. Apart from the p-
type, there is an expectation in improving ZT for n-type SnS-
based thermoelectrics through either enhancing B factor by
means of utilizing the material “nature” or further tuning carrier
concentration at optimum B factor.

SUMMARY AND OUTLOOK
In this work, we have reviewed and made a summary on the new
emerged SnS-based thermoelectric system, including the aniso-
tropic crystal structure, remarkable electronic band structure
and synergetic interaction between valence bands, anharmoni-
city and the phonon “softening” behavior, and establishment of
maximum ZT and quality factor B for performance prediction.
As a simple binary compound, SnS has been reported as very
promising thermoelectrics and received ever-increasing atten-
tion since 2014. The intrinsically low thermal conductivity
produced by strong anharmonicity in SnS simplifies the opti-
mization strategy to enhance ZT, so we only need to put focus
on improving the electrical transport properties. Nowadays,
many effective approaches have been implemented successfully
in this system. To increase the electrical conductivity, the carrier
concentration tuning and mobility promotion can be realized
simultaneously through effective doping and high in-plane
mobility utilization of its crystal form, respectively. Additionally,
carrier concentration increment can activate the multi-valence-
band transport to produce large Seebeck coefficient and high PF,
which arises from the complex electronic band structure induced
by the asymmetric crystal structure. Further, the synergetic
optimization between carrier concentration and mobility
through band manipulation promotes higher PFs. Consequently,
these features in SnS allow a wide temperature plateau for high
ZTs, which is crucial to an overall thermoelectric conversion
efficiency. Certainly, from the view of formation energy, p-type
SnS is easier to obtain and optimize than the n-type, but some
breakthroughs have also been made as to the latter. Moreover,
the maximum ZT values are predicted for both p- and n-type
SnS systems, implying an exception for further performance
enhancement.
Although numerous efforts on thermoelectric SnS have been

devoted in past few years, research on this promising material is

still at a relatively infant stage. Hence, some fundamental and
technical issues need to be investigated for further performance
improvement as predicted above. (1) Recent studies reveal that
the tin oxides are readily produced during the synthesis of
polycrystalline SnSe samples, which results in an overestimation
of thermal conductivity [67]. This phenomenon may also exist in
SnS. Therefore, removing the tin oxides with high thermal
conductivity and purifying the polycrystalline samples would
further reduce the thermal conductivity in SnS, and thus an
enhancement of final ZTs can be expected. (2) The thermal
conductivity in polycrystalline samples is lower than in the
crystals, but the electrical transport properties are obviously
inferior to the latter due to low carrier mobility caused by grain
boundary. Increasing the grain size of SnS properly, texturing or
modulation doping can improve the carrier mobility and thus
electrical conductivity, and possibly a high thermoelectric per-
formance can be achieved under the condition of ensuring low
thermal conductivity. (3) For SnS crystals, the PFs at high
temperatures can be further promoted as predicted through
introducing temperature-dependence dopant or phase transition
restructuring (coexistence of Pnma and Cmcm) to tune the
carrier concentration, and a high ZT of excessing ~2.0 is
anticipated. (4) Although increasing progress on p-type SnS has
been made and high ZT values over ~1.0 have been achieved, it
is urgent to obtain an n-type counterpart to match the p-type
performance. Hence, extensive investigations are warranted for
n-type SnS through changing the formation enthalpy of defects
(such as Sn vacancy) or improving the overall chemical envir-
onment of this compound via alloying with Pb on Sn sites.
Therefore, developing high-performance SnS-based thermo-
electrics for both p- and n-type is expectant for promoting the
practical applications of this low-cost thermoelectric device.
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低成本SnS中卓越的电子和声子传输: 一种具有前途
的新型热电材料
何文科1,2, 昂然1, 赵立东2*

摘要 SnS作为一种看似简单的化合物, 近年来却因其极具吸引力的电
子和声子传输特性而在热电领域得到广泛关注, 使其成为一种非常具
有应用前景的热电材料候选者. 本文首先讨论了SnS的基本特性, 包括
晶体结构、电子和声子能带结构以及物理和化学性质. 同时, 对提高该
材料热电性能的策略也进行了总结, 包括载流子浓度的优化和载流子
迁移率的提升, 多价带输运协同优化热电参数, 以及非简谐性和声子
“软化”行为. 对于晶体和多晶SnS在电和热传输性能上的差异, 我们也
进行了比较. 然后, 建立了预测SnS体系中最大ZT的理论模型计算, 以
进一步提高其热电性能. 最后, 我们提出了进一步提升SnS体系ZT值的
方法策略. 对这种新型材料的探索和研究将有助于热电材料的实际推
广和应用, 以满足市场对低成本、高效率和环境兼容性的需求.
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