Skip to main content
Log in

Tailoring Sr2Fe1.5Mo0.5O6−δ with Sc as a new single-phase cathode for proton-conducting solid oxide fuel cells

Sc掺杂的Sr2Fe1.5Mo0.5O6δ作为质子导体固体氧化物燃料电池的新型单相阴极

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Sc-doped Sr2Fe1.5Mo0.5O6−δ (SFMSc) was successfully synthesized by partially substituting Mo in Sr2Fe1.5Mo0.5O6−δ* (SFM) with Sc, resulting in a higher proton diffusion rate in the resultant SFMSc sample. Theoretical calculations showed that doping Sc into SFM lowered the oxygen vacancy formation energy, reduced the energy barrier for proton migration in the oxide, and increased the catalytic activity for oxygen reduction reaction. Next, a proton-conducting solid oxide fuel cell (H-SOFC) with a single-phase SFMSc cathode demonstrated significantly higher cell performance than that of cell based on an Sc-free SFM cathode, achieving 1258 mW cm−2 at 700°C. The performance also outperformed that of many other H-SOFCs based on single-phase cobalt-free cathodes. Furthermore, no trade-off between fuel cell performance and material stability was observed. The SFMSc material demonstrated good stability in both the CO2-containing atmosphere and the fuel cell application. The combination of high performance and outstanding stability suggests that SFMSc is an excellent cathode material for H-SOFCs.

摘要

本文利用Sc元素部分取代Sr2Fe1.5Mo0.5O6−δ (SFM) 中的Mo, 成功制备了具有高质子扩散速率的新型Sc掺杂SFM (SFMSc)材料. 理论计算表明, 将Sc掺杂到SFM中可以降低材料的氧空位形成能, 降低氧化物中质子迁移的能垒, 并提高材料氧还原反应的催化活性. 使用单相SFMSc阴极的质子导体固体氧化物燃料电池(H-SOFC)比使用不含Sc的SFM单相阴极电池具有更高的电池性能, 其在700°C时的性能达到1258 mW cm−2. 该性能也超过了许多其他使用单相无钴阴极的H-SOFC. 此外, 材料良好的电化学性能并没有以牺牲其稳定性为代价. SFMSc材料在含CO2 的气氛中以及在燃料电池工作条件下都表现出良好的稳定性. 高输出性能和良好的稳定性, 使SFMSc成为一种有潜力的高效的H-SOFC阴极材料.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y, Chen B, Guan D, et al. Thermal-expansion offset for high-performance fuel cell cathodes. Nature, 2021, 591: 246–251

    Article  CAS  Google Scholar 

  2. Wachsman E, Ishihara T, Kilner J. Low-temperature solid-oxide fuel cells. MRS Bull, 2014, 39: 773–779

    Article  CAS  Google Scholar 

  3. Chen K, Jiang SP. Surface segregation in solid oxide cell oxygen electrodes: Phenomena, mitigation strategies and electrochemical properties. Electrochem Energ Rev, 2020, 3: 730–765

    Article  CAS  Google Scholar 

  4. Kilner JA, Burriel M. Materials for intermediate-temperature solid-oxide fuel cells. Annu Rev Mater Res, 2014, 44: 365–393

    Article  CAS  Google Scholar 

  5. Li P, Yang W, Tian C, et al. Electrochemical performance of La2NiO4+δCe0.55La0.45O2−δ as a promising bifunctional oxygen electrode for reversible solid oxide cells. J Adv Ceram, 2021, 10: 328–337

    Article  CAS  Google Scholar 

  6. Wang W, Tian Y, Liu Y, et al. Tailored Sr-Co-free perovskite oxide as an air electrode for high-performance reversible solid oxide cells. Sci China Mater, 2021, 64: 1621–1631

    Article  CAS  Google Scholar 

  7. Li Y, Singh M, Zhuang Z, et al. Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode. Sci China Mater, 2021, 64: 1114–1126

    Article  CAS  Google Scholar 

  8. Chen M, Chen D, Wang K, et al. Densification and electrical conducting behavior of BaZr0.9Y0.1O3−δ proton conducting ceramics with NiO additive. J Alloys Compd, 2019, 781: 857–865

    Article  CAS  Google Scholar 

  9. Medvedev D, Murashkina A, Pikalova E, et al. BaCeO3: Materials development, properties and application Prog Mater Sci, 2014, 60: 72–129

    Article  CAS  Google Scholar 

  10. Li J, Wang C, Wang X, et al. Sintering aids for proton-conducting oxides—A double-edged sword? A mini review. Electrochem Commun, 2020, 112: 106672

    Article  CAS  Google Scholar 

  11. Dai H, Kou H, Wang H, et al. Electrochemical performance of protonic ceramic fuel cells with stable bazro3-based electrolyte: A mini-review. Electrochem Commun, 2018, 96: 11–15

    Article  CAS  Google Scholar 

  12. Tarutin AP, Lyagaeva JG, Medvedev DA, et al. Recent advances in layered Ln2NiO4+δ nickelates: fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells. J Mater Chem A, 2021, 9: 154–195

    Article  CAS  Google Scholar 

  13. Chen M, Xie X, Guo J, et al. Space charge layer effect at the platinum anode/BaZr0.9Y0.1O3−δ electrolyte interface in proton ceramic fuel cells. J Mater Chem A, 2020, 8: 12566–12575

    Article  CAS  Google Scholar 

  14. Bi L, Boulfrad S, Traversa E Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem Soc Rev, 2014, 43: 8255–8270

    Article  CAS  Google Scholar 

  15. Fabbri E, Bi L, Pergolesi D, et al. Towards the next generation of solid oxide fuel cells operating below 600°C with chemically stable proton-conducting electrolytes. Adv Mater, 2012, 24: 195–208

    Article  CAS  Google Scholar 

  16. Peng R, Wu T, Liu W, et al. Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes. J Mater Chem, 2010, 20: 6218–6225

    Article  CAS  Google Scholar 

  17. Lin Y, Ran R, Zhang C, et al. Performance of PrBaCo2O5+δ as a proton-conducting solid-oxide fuel cell cathode. J Phys Chem A, 2010, 114: 3764–3772

    Article  CAS  Google Scholar 

  18. Guo Y, Lin Y, Ran R, et al. Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−y Y0.2O3−δ (0.0≤y≤0.8) for fuel cell applications. J Power Sources, 2009, 193: 400–407

    Article  CAS  Google Scholar 

  19. Kim J, Sengodan S, Kwon G, et al. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells. ChemSusChem, 2014, 7: 2811–2815

    Article  CAS  Google Scholar 

  20. Choi S, Kucharczyk CJ, Liang Y, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat Energy, 2018, 3: 202–210

    Article  CAS  Google Scholar 

  21. Xu X, Xu Y, Ma J, et al. Tailoring electronic structure of perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J Power Sources, 2021, 489: 229486

    Article  CAS  Google Scholar 

  22. Wang N, Hinokuma S, Ina T, et al. Mixed proton-electron-oxide ion triple conducting manganite as an efficient cobalt-free cathode for protonic ceramic fuel cells. J Mater Chem A, 2020, 8: 11043–11055

    Article  CAS  Google Scholar 

  23. Zhou C, Sunarso J, Song Y, et al. New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode. J Mater Chem A, 2019, 7: 13265–13274

    Article  CAS  Google Scholar 

  24. Xu X, Wang H, Fronzi M, et al. Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J Mater Chem A, 2019, 7: 20624–20632

    Article  CAS  Google Scholar 

  25. Fabbri E, Pergolesi D, Traversa E. Materials challenges toward proton-conducting oxide fuel cells: A critical review. Chem Soc Rev, 2010, 39: 4355–4369

    Article  CAS  Google Scholar 

  26. Bi L, Shafi SP, Da’as EH, et al. Tailoring the cathode-electrolyte interface with nanoparticles for boosting the solid oxide fuel cell performance of chemically stable proton-conducting electrolytes. Small, 2018, 14: 1801231

    Article  CAS  Google Scholar 

  27. Song Y, Chen Y, Wang W, et al. Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule, 2019, 3: 2842–2853

    Article  CAS  Google Scholar 

  28. Tong X, Xu Y, Tripkovic D, et al. Promotion of oxygen reduction and evolution by applying a nanoengineered hybrid catalyst on cobalt free electrodes for solid oxide cells. J Mater Chem A, 2020, 8: 9039–9048

    Article  CAS  Google Scholar 

  29. Yuan R, He W, Zhang C, et al. Cobalt free SrFe0.95Nb0.05O3−δ cathode material for proton-conducting solid oxide fuel cells with BaZr0.1Ce0.7-Y0.2O3−δ electrolyte. Mater Lett, 2017, 200: 75–78

    Article  CAS  Google Scholar 

  30. Muñoz-García AB, Pavone M, Ritzmann AM, et al. Oxide ion transport in Sr2Fe1.5Mo0.5O6−δ, a mixed ion-electron conductor: new insights from first principles modeling. Phys Chem Chem Phys, 2013, 15: 6250–6259

    Article  CAS  Google Scholar 

  31. Liu Q, Bugaris DE, Xiao G, et al. Sr2Fe1.5Mo0.5O6−δ as a regenerative anode for solid oxide fuel cells J Power Sources, 2011, 196: 9148–9153

    Article  CAS  Google Scholar 

  32. Meng X, Wang Y, Zhao Y, et al. In-situ exsolution of nanoparticles from Ni substituted Sr2Fe1.5Mo0.5O6 perovskite oxides with different Ni doping contents Electrochim Acta, 2020, 348: 136351

    Article  CAS  Google Scholar 

  33. Yang Y, Wang Y, Yang Z, et al. Co-substituted Sr2Fe1.5Mo0.5O6−δ as anode materials for solid oxide fuel cells: Achieving high performance via nanoparticle exsolution J Power Sources, 2019, 438: 226989

    Article  CAS  Google Scholar 

  34. Xu C, Zhen S, Ren R, et al. Cu-doped Sr2Fe1.5Mo0.5O6−δ as a highly active cathode for solid oxide electrolytic cells Chem Commun, 2019, 55: 8009–8012

    Article  CAS  Google Scholar 

  35. Qiu P, Lin J, Lei L, et al. Evaluation of Cr-tolerance of the Sr2Fe1.5Mo0.5O6−δ cathode for solid oxide fuel cells. ACS Appl Energy Mater, 2019, 2: 7619–7627

    Article  CAS  Google Scholar 

  36. Ren R, Wang Z, Meng X, et al. Tailoring the oxygen vacancy to achieve fast intrinsic proton transport in a perovskite cathode for protonic ceramic fuel cells ACS Appl Energy Mater, 2020, 3: 4914–4922

    Article  CAS  Google Scholar 

  37. Da’as EH, Bi L, Boulfrad S, et al. Nanostructuring the electronic conducting La0.8Sr0.2MnO3−δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C. Sci China Mater, 2018, 61: 57–64

    Article  CAS  Google Scholar 

  38. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  39. Muñoz-García AB, Tuccillo M, Pavone M Computational design of cobalt-free mixed proton-electron conductors for solid oxide electrochemical cells J Mater Chem A, 2017, 5: 11825–11833

    Article  Google Scholar 

  40. Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys, 2000, 113: 9901–9904

    Article  CAS  Google Scholar 

  41. Liu W, Kou H, Wang X, et al. Improving the performance of the Ba0.5Sr0.5Co0.8Fe0.2O3 cathode for proton-conducting SOFCs by microwave sintering. Ceramics Int, 2019, 45: 20994–20998

    Article  CAS  Google Scholar 

  42. Lu X, Yang X, Jia L, et al. First principles study on the oxygen reduction reaction of the La1−xSrxMnO3 coated Ba1−xSrxCo1−yFeyO3 cathode for solid oxide fuel cells Int J Hydrogen Energy, 2019, 44: 16359–16367

    Article  CAS  Google Scholar 

  43. Zhang X, Pei C, Chang X, et al. FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting. J Am Chem Soc, 2020, 142: 11540–11549

    Article  CAS  Google Scholar 

  44. Xu Y, Xu X, Cao N, et al. Perovskite ceramic oxide as an efficient electrocatalyst for nitrogen fixation Int J Hydrogen Energy, 2021, 46: 10293–10302

    Article  CAS  Google Scholar 

  45. Xu Y, Liu X, Cao N, et al. Defect engineering for electrocatalytic nitrogen reduction reaction at ambient conditions Sustain Mater Technologies, 2021, 27: e00229

    Article  CAS  Google Scholar 

  46. Ji Q, Xu X, Liu X, et al. Improvement of the catalytic properties of porous lanthanum manganite for the oxygen reduction reaction by partial substitution of strontium for lanthanum Electrochem Commun, 2021, 124: 106964

    Article  CAS  Google Scholar 

  47. Wu S, Xu X, Li X, et al. High-performance proton-conducting solid oxide fuel cells using the first-generation Sr-doped LaMnO3 cathode tailored with Zn ions Sci China Mater, 2022, 65: 675–682

    Article  CAS  Google Scholar 

  48. Han D, Uemura S, Hiraiwa C, et al. Detrimental effect of sintering additives on conducting ceramics: yttrium-doped barium zirconate. ChemSusChem, 2018, 11: 4102–4113

    Article  CAS  Google Scholar 

  49. Tao Z, Xu X, Bi L. Density functional theory calculations for cathode materials of proton-conducting solid oxide fuel cells: A mini-review. Electrochem Commun, 2021, 129: 107072

    Article  CAS  Google Scholar 

  50. Kreuer KD. Proton-conducting oxides. Annu Rev Mater Res, 2003, 33: 333–359

    Article  CAS  Google Scholar 

  51. Ji Q, Bi L, Zhang J, et al. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ Sci, 2020, 13: 1408–1428

    Article  CAS  Google Scholar 

  52. Tao Z, Bi L, Yan L, et al. A novel single phase cathode material for a proton-conducting SOFC. Electrochem Commun, 2009, 11: 688–690

    Article  CAS  Google Scholar 

  53. Tao Z, Bi L, Zhu Z, et al. Novel cobalt-free cathode materials BaCexFe1−xO3−δ for proton-conducting solid oxide fuel cells. J Power Sources, 2009, 194: 801–804

    Article  CAS  Google Scholar 

  54. Rao Y, Zhong S, He F, et al. Cobalt-doped BaZrO3: A single phase air electrode material for reversible solid oxide cells. Int J Hydrogen Energy, 2012, 37: 12522–12527

    Article  CAS  Google Scholar 

  55. Zhang Y, Zhu A, Guo Y, et al. Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3−δ oxide as a promising electrode for proton-conducting solid oxide fuel cells. Appl Energy, 2019, 238: 344–350

    Article  CAS  Google Scholar 

  56. Zhang Z, Wang J, Chen Y, et al. In situ formation ofa 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs J Power Sources, 2018, 385: 76–83

    Article  CAS  Google Scholar 

  57. Shao L, Si F, Fu XZ, et al. Stable SrCo0.7Fe0.2Zr0.1O3−δ cathode material for proton conducting solid oxide fuel cell reactors Int J Hydrogen Energy, 2018, 43: 7511–7514

    Article  CAS  Google Scholar 

  58. Ma J, Tao Z, Kou H, et al. Evaluating the effect of Pr-doping on the performance of strontium-doped lanthanum ferrite cathodes for protonic SOFCs Ceramics Int, 2020, 46: 4000–4005

    Article  CAS  Google Scholar 

  59. He B, Zhang L, Zhang Y, et al. New insight into highly active cathode of proton conducting solid oxide fuel cells by oxygen ionic conductor modification J Power Sources, 2015, 287: 170–176

    Article  CAS  Google Scholar 

  60. Bae K, Jang DY, Choi HJ, et al. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells Nat Commun, 2017, 8: 14553

    Article  CAS  Google Scholar 

  61. Duan C, Tong J, Shang M, et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures Science, 2015, 349: 1321–1326

    Article  CAS  Google Scholar 

  62. Wang Z, Yang W, Shafi SP, et al. A high performance cathode for proton conducting solid oxide fuel cells J Mater Chem A, 2015, 3: 8405–8412

    Article  CAS  Google Scholar 

  63. Yang S, Wen Y, Zhang J, et al. Electrochemical performance and stability of cobalt-free Ln1.2Sr0.8NiO4 (Ln=La and Pr) air electrodes for proton-conducting reversible solid oxide cells Electrochim Acta, 2018, 267: 269–277

    Article  CAS  Google Scholar 

  64. Tang H, Jin Z, Wu Y, et al. Cobalt-free nanofiber cathodes for proton conducting solid oxide fuel cells. Electrochem Commun, 2019, 100: 108–112

    Article  CAS  Google Scholar 

  65. Xia Y, Jin Z, Wang H, et al. A novel cobalt-free cathode with triple-conduction for proton-conducting solid oxide fuel cells with unprecedented performance. J Mater Chem A, 2019, 7: 16136–16148

    Article  CAS  Google Scholar 

  66. Miao L, Hou J, Gong Z, et al. A high-performance cobalt-free Ruddlesden-Popper phase cathode La1.2Sr0.8Ni0.6Fe0.4O4+δ for low temperature proton-conducting solid oxide fuel cells. Int J Hydrogen Energy, 2019, 44: 7531–7537

    Article  CAS  Google Scholar 

  67. Wang Q, Hou J, Fan Y, et al. Pr2BaNiMnO7δ double-layered Ruddlesden-Popper perovskite oxides as efficient cathode electrocatalysts for low temperature proton conducting solid oxide fuel cells J Mater Chem A, 2020, 8: 7704–7712

    Article  CAS  Google Scholar 

  68. Matsumoto H, Sakai T, Okuyama Y. Proton-conducting oxide and applications to hydrogen energy devices. Pure Appl Chem, 2013, 85: 427–435

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51972183) and the Startup Funding for Talents at the University of South China.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhang L, Yin Y, and Bi L designed the study and analyzed the data. Zhang L, Yin Y, Xu Y, and Yu S performed the experiments. Bi L wrote the manuscript with other co-authors, and all authors discussed the results and provided their approval to the final version.

Corresponding author

Correspondence to Lei Bi  (毕磊).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Liling Zhang is a postgraduate student in Prof. Lei Bi’s group at the University of South China. Her research interests focus mostly on the development of new cathode materials for H-SOFCs and the exploration of the influence of microwave sintering on the characteristics of materials and the performance of H-SOFCs.

Yanru Yin was a research assistant in Prof. Lei Bi’s group at the University of South China after she received her master’s degree from Qingdao University. Her research interest is in tailoring the structure and properties of proton-conducting oxides, with the goal of understanding the charge carrier transport mechanism in proton-conducting oxides and then improving the performance of H-SOFCs.

Lei Bi is a full professor at the University of South China and leads a research group that studies H-SOFCs utilizing both first-principles calculations and experimental methodologies. His research interests include the development and optimization of essential materials for H-SOFCs, as well as innovative fuel cell fabrication technologies. Another area of study that he is interested in is the development of new sintering processes for H-SOFC fabrication.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yin, Y., Xu, Y. et al. Tailoring Sr2Fe1.5Mo0.5O6−δ with Sc as a new single-phase cathode for proton-conducting solid oxide fuel cells. Sci. China Mater. 65, 1485–1494 (2022). https://doi.org/10.1007/s40843-021-1935-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1935-5

Keywords

Navigation