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Fluorination-enabled interface of PtNi electrocatalysts for high-
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ABSTRACT High-temperature proton exchange membrane
fuel cells (HT-PEMFCs) bring new opportunities for portable
power generation due to their outstanding advantages such as
high tolerance to fuel/air impurities and simplified heat/water
management. However, carbon-supported nanostructured Pt-
based catalysts running at temperatures over 150°C are chal-
lenged by the severe aggregation and carbon corrosion, thus
leading to poor durability. Herein, we demonstrate that den-
dritic Pt-Ni nanoparticles supported on fluorinated carbon
black (white carbon black) could significantly enhance the
performance and durability of HT-PEMFCs as the cathode
catalysts running at 160°C due to the strong interaction of the
F and Ni atoms to form a NixFy interface on Pt-Ni nano-
particles. With the formation of a stable NixFy interface, this
integrated HT-PEMFC reached peak power densities of
906 mW cm−2 and demonstrated excellent durability at 160°C
under anhydrous H2/O2 conditions. This mitigation strategy
was applied to Pt-alloy/C electrocatalysts and resulted in the
elimination of Pt dissolution in practical fuel cells.

Keywords: fuel cells, fluorinated carbon, interaction, activity,
stability

INTRODUCTION
High-temperature (~120–250°C) proton exchange membrane
fuel cells (HT-PEMFCs), which are increasingly used in pro-
mising energy devices, have attracted widespread attention
because of their advantages of fast reaction kinetics, high tol-
erance to fuel/air impurities, and simplified heat and water
management [1–3]. The performance of HT-PEMFCs mainly
depend on electrocatalysts (the most used one is carbon-sup-
ported Pt nanoparticles), but the catalyst degradation is accel-
erated owing to the enhanced tendency of Pt oxidation,
dissolution, Ostwald ripening, and carbon corrosion at high
temperatures [4–6]. The main challenges to improve the HT-
PEMFC performance and durability are the development of
highly durable electrocatalysts and supports that are suitable to
run at elevated temperatures with long durability. Carbon sup-

ports undergo corrosion leading to delamination of catalyst
particles and collapse of the catalyst-layer, further speeding up
the dissolution and Ostwald ripening of Pt-based nanoparticles,
and resulting in performance degradation or failure of fuel cells
[7–11].

In the course of searching electrocatalysts for high-perfor-
mance electrodes that are suitable for HT-PEMFCs, efforts
should be devoted not only to improving both the intrinsic
activity and durability of Pt-based nanoparticles, but also to
improving the durability of carbon supports. The issues asso-
ciated with Pt-based catalysts could be resolved to some extent
by alloying Pt metals with other metals and by suitable changes
in the carbon support [12–17]. Alloying the Pt metal with other
metals represents a promising approach to enhance the elec-
trocatalytic performance of Pt-based electrocatalysts, in which
the exposure of highly active sites with optimum performance
can be maximized [18–26]. Nevertheless, the dealloying of less-
noble elements from Pt alloys remains an issue for catalyst
stability, particularly in HT-PEMFC operating environments
[24,27]. To overcome these problems, various strategies to sta-
bilize alloy components and structures have been developed,
including surface engineering and architectural design [28,29].
Fluorine, with the largest electronegativity, shows doughty bond
energy with transition metals [30–32]. Additionally, fluorinated
carbon materials show outstanding thermodynamic stability
because of the high covalent bond energy of C–F (ca.
480 kJ mol−1) [33–35]. Thus, using fluorinated carbon as a
support and constructing F-containing transition-metal com-
pounds are beneficial to stabilizing the Pt alloy structure and
achieving enhanced catalytic performance and durability in an
HT-PEMFC operating environment.

Herein, we report dendritic Pt-Ni nanoparticles supported on
white carbon black (fluorinated XC-72R, the color of the sample
changed from black to white, labeled as WCB), which exhibits
high oxygen reduction reaction (ORR) activity and increased
durability in HT- PEMFCs (Fig. 1a). In the cathode catalyst layer
(CCL), a NixFy interface on the dendritic Pt-Ni nanoparticles is
formed via the interaction between F and Ni atoms. The NixFy
interface inhibits the dealloying process of dendritic Pt-Ni
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nanoparticles, and results in the confinement effect of dendritic
Pt-Ni nanoparticles which is beneficial for restraining the oxi-
dation, dissolution, Ostwald ripening, and agglomeration of Pt.
Simultaneously, WCB has better thermal stability, acid resis-
tance, oxidation resistance and corrosion resistance than carbon
black (XC-72R), which is also one of the key factors for the
stable operation of HT-PEMFCs. Moreover, WCB provides an
efficient transport channel for oxygen because of its hydro-
phobicity. Benefitting from the rational design, the PtNi/WCB
catalyst exhibits excellent catalytic activity with durable perfor-
mance in the rotating disk electrode (RDE) and HT-PEMFC
measurements.

EXPERIMENTAL SECTION

Materials
Chloroplatinic acid hexahydrate (H2PtCl6·6H2O, >99.99%),
nickel acetate tetrahydrate (Ni(OCOCH3)2·4H2O, 99.99%),
cetyltrimethylammonium bromide (CTAB, 99%), and oleyl
amine (OAm, 90%) were all obtained from Sigma-Aldrich (St.

Louis, MO). Carbon black (XC-72R) was obtained from Cabot
Corporation. Isopropanol, ethanol, cyclohexane, and N,N-
dimethyl acetamide were purchased commercially (Aladdin,
China) and used without further purification. Deionized (DI)
water (18.2 MΩ cm−1) obtained by purification through a Milli-
Q system (Millipore, USA) was used throughout the experi-
ments.

Synthesis of dendritic Pt-Ni nanoparticles
Typically, H2PtCl6·6H2O, Ni(OCOCH3)2·4H2O, CTAB and OAm
were added into a vial and ultrasonicated for 1 h to obtain a
homogeneous solution. Subsequently, the mixture was trans-
ferred into a Teflon lined autoclave and heated to 180°C and
maintained for 8 h. The resultant product was then collected by
centrifugation and washed five times with an ethanol/cyclo-
hexane mixture (volume ratio of 2/1).

Synthesis of WCB
The CB powder was placed in reactor and the fluorination was
performed using 10% F2/N2 gas at temperatures of 300 °C for at

Figure 1 (a) Illustration for the PtNi/WCB fabrication process. (b, c) TEM images of dendritic Pt-Ni nanoparticles. (d) HR-TEM images of dendritic Pt-Ni
nanoparticles. (e) XRD patterns of dendritic Pt-Ni nanoparticles. (f) Thermogravimetric analysis (TGA) spectra of CB and WCB.
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least 12 h to ensure complete reaction. The white fluorinated
products were labeled as WCB.

Synthesis of dendritic Pt-Ni nanoparticles/WCB
The catalysts were prepared by loading the synthesized dendritic
Pt-Ni nanoparticles on the WCB, and the loading amount was
controlled at 40 wt%. In brief, 40 mg of the obtained products
and 60 mg of WCB were mixed in isopropanol under stirring for
12 h, and then the mixture was dried in an oven at 50°C over-
night. The obtained catalyst was denoted as PtNi/WCB. For
comparison, commercial Pt/C (JM 40 wt%) was used as the
baseline.

RESULTS AND DISCUSSION
The PtNi/WCB catalyst was synthesized through a two-step
method, and Fig. 1a displays the scheme for synthesizing the
PtNi/WCB catalyst. First, dendritic Pt-Ni nanoparticles were
synthesized in 98% yield from chloroplatinic acid hexahydrate,
nickel acetate tetrahydrate, CTAB, and OAm mixtures. They
were ultrasonicated and then heated at 180°C in a Teflon lined
autoclave for 8 h (Fig. 1a). As shown in the transmission elec-
tron microscopy (TEM) images (Fig. 1b, c), disorderly dendritic
Pt-Ni nanocrystals were formed due to the fast reduction and
aggregation of small Pt and Ni nuclei at high temperature and
confined space [36,37]. The high-resolution TEM (HR-TEM)
images (Fig. 1d) reveal lattice fringes of 0.216 and 0.197 nm
corresponding to the (111) and (200) planes of Pt, respectively.
Lattice fringes of 0.227 nm correspond to the (111) Pt-Ni alloy
[18]. The X-ray diffraction (XRD) patterns of dendritic Pt-Ni
nanoparticles (Fig. 1e) indicate that the dendritic structure
consists of Pt and PtNi alloy crystal phases, which may be
attributed to phase separation caused by different reduction
rates between Pt and Ni [38]. The inductively coupled plasma
mass spectrometry (ICP-MS) result informs 51/49 as the atomic
ratio of Pt/Ni of dendritic Pt-Ni nanoparticles. The X-ray pho-
toelectron spectroscopy (XPS) survey spectra (Fig. S1) also verify
the coexistence of Pt and Ni in the as-prepared dendritic Pt-Ni
nanoparticles, from which the surface atomic ratio of Pt/Ni is
determined to be 53/47. According to the XPS spectra, the Pt in
Pt/C, Pt/WCB, PtNi/CB, PtNi/WCB is mainly in the form of
metallic Pt and Pt2+. In many similar literature, platinum exists
in both oxidation state and metal state [39,40]. The existence of
Pt2+ is due to the existence of Pt–O bond and Pt–Ni–O bond
[41].

Fluorinated carbon black, which was labeled as WCB, was
synthesized by direct fluorination using dilute F2 gas (20 vol%)
in N2 gas at 300°C to form CFx compounds. After fluorination
treatment, the color of the samples changed from black to white.
WCB had better thermal stability than CB because of the
stronger C–F bond (Fig. 1f). The XRD (Fig. S2) broadened
diffraction peaks of CB at 24.4° disappeared, corresponding to
the interlayer spacing of the carbon sheets. These results indi-
cated that the graphene hexagonal system was completely
fluorinated and maintained the dominant features of amorphous
carbon [42–44]. The disordered structures of WCB were con-
firmed in TEM images (Fig. S3). The XPS spectra of WCB
(Fig. S4) suggest the effective fluorination of carbon black. The
fluorine and carbon atomic concentrations in the prepared WCB
are 52.85% and 47.15%, respectively, corresponding to a molar
ratio of fluorine to carbon (F/C) of 1.12.

The prepared WCB was mixed with dendritic Pt-Ni nano-

particles to prepare a PtNi/WCB catalyst. Considering both the
interfacial mass transfer and electron delivery behavior, CB was
added to the PtNi/WCB catalyst to improve the electro-
conductibility. Thus, the prepared PtNi/WCB mixed with CB
(the mass ratio of WCB/CB is 1:1) shows better performance
(Fig. S5). For comparison, Pt/WCB, Pt/CB, and PtNi/CB were
prepared. The NixFy signal was observed in high-resolution XPS
Ni 2p spectra of PtNi/WCB (Fig. S6a) indicating the formation
of a NixFy interface during the synthesis of PtNi/WCB. More
importantly, the binding energy of Pt in PtNi/WCB slightly
decreases by 0.16 eV compared with bare dendritic Pt-Ni
nanoparticles (Fig. S6b), indicating a strong interaction between
the atomic Pt and the NixFy interface [3].

The ORR performances of PtNi/WCB, PtNi/CB, Pt/WCB, Pt/
CB, and commercial Pt/C were investigated by cyclic voltam-
mograms (CVs) and linear sweep voltammetry (LSV). The CV
of the catalysts was performed in a N2-saturated HClO4 solution
(0.1 mol L−1) at a sweep rate of 50 mV s−1 at room temperature
(Fig. 2a). The electrochemically active surface area (ECSA) was
measured by the hydrogen underpotential deposition (HUPD),
which was determined by measuring the charge collected in the
hydrogen desorption region and assuming a value of
210 μC cm−2 for a monolayer hydrogen adsorption. The ECSA
of PtNi/WCB was 71.4 m2 g−1

Pt, larger than those of PtNi/CB
(50.5 m2 g−1

Pt), Pt/WCB (60.1 m2 g−1
Pt), and Pt/CB

(53.2 m2 g−1
Pt) (Table S1). The enhanced ECSA of PtNi/WCB

can be attributed to the formation of a NixFy interface which
results in the enhanced dispersion of the PtNi nanostructure and
improves the exposure of a Pt-rich structure. The positive-going
ORR LSV curves of the catalysts are further recorded in Fig. 2b.
The half-wave potential of PtNi/WCB was 0.934 VRHE (RHE:
reversible hydrogen electrode), which are 25, 16, 53 and 45 mV
higher than those of PtNi/CB, Pt/WCB, Pt/CB and commercial
Pt/C, respectively. Except for the commonly accepted enhanced
ORR performance through Pt-Ni alloying, the better ORR
activity of PtNi/WCB and Pt/WCB than PtNi/CB and Pt/CB was
attributed to the hydrophobicity and aerophilicity of WCB,
which means much better gas affinity in the HClO4 solution
[45–47]. The hydrophobicity of the liquid/gas/solid triphasic
interface accelerates the trapping of sufficient oxygen because it
affects both the interfacial mass transfer and electron delivery
behavior [45,48,49]. Furthermore, the ORR performance of
PtNi/WCB was enhanced with Ni leaching, which exposed more
active sites after the formation of the NixFy interface [18]. The
XPS Pt 4f spectrum of PtNi/WCB showed a lower binding
energy than other catalysts (Fig. S7), indicating that the forma-
tion of the NixFy interface would downshift the Pt d-band centre,
lowering the binding affinity between Pt and oxygen inter-
mediates and thus enhancing the ORR activity [41,50].

The durability of the catalysts was evaluated through an
accelerated durability test (ADT) between 0.6 and 1.05 VRHE in
0.1 mol L−1 HClO4 at a scan rate of 100 mV s−1. The CV and
positive LSV curves of the catalysts before and after ADTs are
shown in Figs S8–S12. To better understand the durability, the
kinetic currents of the catalysts were estimated based on the
Koutecky-Levich equation and then normalized against the
ECSA and Pt mass to obtain the specific activity (SA) and mass
activity (MA) (Fig. 2c, d and Table S1), respectively. The half-
wave potential for commercial Pt/C has been negatively shifted
by 30 mV after 10,000 cycles, and the ORR performances based
on SA and MA at 0.9 V declined by 38.3% and 38.5%, respec-
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tively, which is consistent with the reported references [14]. In
contrast, the PtNi/WCB material shows significantly higher
durability. The half-wave potential only negatively shifted by
5 mV after the ADT, and the SA and MA only slightly dropped
by 0.85% and 1.59%, respectively. Moreover, PtNi/WCB
demonstrated higher durability than Pt/CB and commercial Pt/
C, which can be attributed to the strong interaction of PtNi with
WCB from a NixFy interface to stabilize the PtNi nanostructure.
Furthermore, the stable WCB support also contributed to the
higher stability. As shown in the Ni 2p XPS spectra (Fig. S13),

the peaks of NixFy were retained. Furthermore, the F distribution
intersected the entire area of the Ni and Pt distribution in the
TEM-energy dispersive X-ray spectroscopy (EDS) mapping of
the PtNi/WCB catalyst after ADTs of 10,000 cycles (Fig. S14),
further indicating that NixFy was still distributed on the interface
of dendritic Pt-Ni nanoparticles. These results show that the
structure of NixFy remains stable after ADTs, resulting in the
high durability of the PtNi/WCB catalyst. HT-PEMFCs run at
high temperatures above 120°C and depend on H3PO4 as a
dopant to assist the proton conduction in both the proton

Figure 2 Electrocatalytic ORR performances of commercial Pt/C, PtNi/WCB, PtNi/CB, Pt/WCB, and Pt/CB. (a) CV curves recorded in N2-saturated HClO4

solutions (0.1 mol L−1) at room temperature with a sweep rate of 50 mV s−1. (b) LSV curves recorded in O2-saturated HClO4 solutions (0.1 mol L−1) with a
sweep rate of 10 mV s−1 and a rotation rate of 1600 r min−1. (c) SAs at 0.9 VRHE. (d) MAs at 0.9 VRHE. (e) LSV curves in O2-saturated HClO4 (0.1 mol L−1) with
and without the addition of 0.2 mol L−1 H3PO4. (f) Summary of half-wave potential with and without H3PO4.
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exchange membrane and the catalyst layer [2]. Thus, it is
important to investigate the influence of phosphate anions on
the ORR performance of Pt-based catalysts. The anti-poisoning
properties of the catalysts for H3PO4 were demonstrated in O2-
saturated HClO4 (0.1 mol L−1) with and without the addition of
H3PO4 (Fig. 2e). As shown in Fig. 2e, PtNi/WCB exhibited
higher resistance to H3PO4 than Pt/WCB and commercial Pt/C.
The half-wave potential of PtNi/WCB only negatively shifted by
12 mV after the addition of H3PO4, which is significantly lower
than that of 24, 68, 131, and 97 mV for PtNi/CB, Pt/WCB, Pt/CB
and Pt/C, respectively (Fig. 2f). PtNi/WCB and PtNi/CB
exhibited better resistance to H3PO4 than Pt/WCB and Pt/CB.
The results reflected that the anti-poisoning property of H3PO4
was mainly attributed to the alloy effect of PtNi and partially due
to the hydrophobic property of WCB, which relieves the
adsorption of phosphate anions.

The performance of HT-PEMFCs using the catalysts as the
cathode catalyst was evaluated at 160°C under anhydrous H2/O2
at atmospheric pressure using commercial Pt/C as the anode.
The design of HT-PEMFC fixture is shown in Fig. 3a. A H3PO4-
doped poly(ethersulfone)-poly(vinyl pyrrolidone) (PES-PVP)
membrane was used as the electrolyte [51,52]. In our previous
study, the synthesis method and specific parameters of the
membrane have been reported [53]. The sandwich-like structure
of PtNi/WCB MEA (MEA: membrane electrode assembly)
prepared by catalyst-coated substrates (CCS) is shown in Fig. 3b
[54,55]. Fig. 3c, d compare the HT-PEMFC performance of the
MEAs. The PtNi/WCB MEA exhibited a superior performance

compared with that of other MEAs (including PtNi/CB, Pt/
WCB, Pt/CB, and commercial Pt/C MEAs), consistent with
previous ORR performance. The peak power density of the PtNi/
WCB MEA is 906 mW cm−2, which is approximately 1.26 and
1.36 times that of the PtNi/CB MEA and Pt/C MEA with 718
and 666 mW cm−2, respectively.

The durability test of the MEAs was performed under a
constant cell current density of 0.2 A cm−2 at 160°C (Fig. S15).
The PtNi/WCB shows a voltage of 0.763 V to achieve a current
density 0.2 A cm−2 after 25 h, which is higher than that of 0.717,
0.731, 0.707, and 0.654 V for PtNi/CB, Pt/WCB, commercial Pt/
C and Pt/CB MEAs, respectively, which is consistent with the
LSV results in Fig. 2b. It is worth noting that the PtNi/WCB
MEA exhibited stable performance under different current
densities from 0.2 to 2.0 A cm−2 (Fig. S16). These results clearly
demonstrate the superior durability of the fuel cell using PtNi/
WCB as the cathode catalyst.

To better understand the durability mechanism of PtNi/WCB,
a long-term durability test of PtNi/WCB MEA under 0.2 A cm−2

was evaluated at 160°C for 200 h (Fig. 4a). The cell voltage to
achieve a current density of 0.2 A cm−2 remains at ~0.75 V after
200 h of testing, indicating the high durability of the PtNi/WCB
MEA. After the long-term durability test, the peak power density
of the PtNi/WCB MEA only slightly decreased by 3.2%
(29 mW cm−2) (Fig. S17). In addition, the charge transport
resistance of the PtNi/WCB MEA was quantified by electro-
chemical impedance spectroscopy (EIS) (Fig. S18). As shown in
Fig. S18, the charge transport resistance (Rct) of PtNi/WCB is

Figure 3 H2/O2 HT-PEMFC performances of commercial Pt/C, PtNi/WCB, PtNi/CB, Pt/WCB, and Pt/CB as cathode catalysts. (a) Schematic diagram of
HT-PEMFCs fixture. GDL stands for gas diffusion layer. (b) The structure of membrane electrode assembly. (c) Polarization curves. (d) Specific power density
curves. Testing conditions: 1.0 mg cm−2 commercial Pt/C in the anode, >1.0 mg cm−2 catalysts in the cathode; all the fuel cell performance was measured at
H2/O2 (200/200 mL min−1) under 101.3 kPa without humidification at 160°C.
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fitted as 89.6 mΩ cm2 and manifests only a slight increase of
0.5 mΩ cm2 after durability test for 200 h.

The TEM micrographs of the PtNi/WCB catalyst after the
long-term durability test indicated no sign of change in the
structural morphology of the dendritic architecture (Fig. 4b),
further supporting the stable structure of the PtNi/WCB catalyst
layer. In addition, an obvious coating at the interface of the
dendritic Pt-Ni nanoparticles can be observed, which is assigned
to the NixFy interface (Fig. 4c). As shown in TEM-EDS mapping
of the PtNi/WCB cathode catalyst after a durability test of 200 h.
(Fig. S19), the distribution of F intersects the entire region of Ni
and Pt, while the C signal is inconspicuous in the intersecting
region, indicating that F atoms are adsorbed on dendritic Pt-Ni
nanoparticles. To better understand the origin of the high dur-
ability of the PtNi/WCB, the structures of the PtNi/WCB MEA
before and after the long-term durability test were investigated.

As shown in cross-sectional SEM images of PtNi/WCB CCL
(Fig. S20), the distribution and morphology of Pt-Ni nano-
particles were not changed after the long-term durability test.
The Ni 2p and Pt 4f XPS spectra of the PtNi/WCB CCL before
and after the long-term durability test were compared (Fig. 4d
and Fig. S21). As shown in the Ni 2p XPS spectrum (Fig. 4d), the
deconvolution of the Ni peak shows that the intensity for NixFy
rises after the long-term durability test due to the in-situ growth
of NixFy under electrochemical conditions. Simultaneously, the
Pt 4f peaks of the PtNi/WCB (Fig. S21b) shift to higher binding
energies because of the further formation of NixFy interface,
resulting in more exposure to platinum atoms. To further con-
firm the superiority of NixFy, we compared the physical phases of
the PtNi/WCB and PtNi/CB catalysts by XRD (Fig. 4e, f). The
PtNi alloy crystal phase was still observed in the XRD pattern of
PtNi/WCB after the durability test, whereas the alloy signal

Figure 4 Durability and structural fluctuation of PtNi/WCB MEA. (a) Durability test under 0.2 A cm−2; (b) TEM and (c) HR-TEM images of the PtNi/WCB
cathode catalyst after long-term durability test of 200 h. (d) Ni 2p XPS spectra of PtNi/WCB before and after long-term durability test of 200 h. (e, f) XRD
patterns of PtNi/WCB and PtNi/CB after durability test.
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disappeared in PtNi/CB, indicating severe dealloying without the
NixFy interface. The XPS spectra of PtNi/CB further indicated
the dealloying of Ni atoms (Fig. S22). After the durability test for
200 h, the surface atomic ratio of Ni was decreased to 0.17 at%
compared with 2.07 at% before the durability test (Table S2).
However, the surface atomic ratio of Pt/Ni of PtNi/WCB only
exhibited slight volatility after durability test for 200 h. In con-
trast, the commercial Pt/C in the cathode catalyst demonstrated
poor stability and the size of Pt nanoparticles exhibited a sig-
nificant increase after the durability test (Fig. S23).

CONCLUSIONS
In summary, high-performance PtNi/WCB catalysts were con-
structed with high performance and better durability in HT-
PEMFCs by loading dendritic Pt-Ni nanoparticles onto fluori-
nated carbon black. The PtNi/WCB MEA in the HT-PEMFCs
reached a peak power density of 906 mW cm−2 at 160°C under
H2/O2 conditions and only slightly decreased by 29 mW cm−2

after the 200h long-term durability tests, substantially out-
performing commercial Pt/C MEA. A nanoscale NixFy interface
were observed and demonstrated, which results in the high
durability due to strong catalyst-support interactions and sup-
pressed dealloying under electrochemical conditions. This study
offers a robust and potential methodology for improving the
activity and durability of HT-PEMFCs.
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氟化物界面抑制PtNi电催化剂去合金化及其高温质
子交换膜燃料电池性能研究
龙鹏1†, 杜石谦1†, 刘切1†, 陶李1*, 彭聪2, 王特华1, 顾开智1, 谢超1,
张怡琼3, 陈如1, 卢善富4*, 程义1*, 封伟2*, 王双印1*

摘要 高温质子交换膜燃料电池(HT-PEMFCs)以其杂质耐受性高、系
统简化等突出优势为燃料电池的发展带来了新机遇. 目前广泛使用的
铂碳催化剂存在严重的颗粒团聚、载体腐蚀等耐久性较差问题. 本文
采用氟化碳黑(白碳黑)负载的枝状Pt-Ni纳米颗粒作为HT-PEMFCs阴
极催化剂, 由于Ni、F强相互作用并在Pt-Ni合金表面形成了NixFy界面,
可显著提升器件性能和耐受性, 在160°C、干燥H2/O2条件下峰功率密
度可达906 mW cm−2. 本文成功利用NixFy界面提升合金催化剂的活性
和稳定性, 对于HT-PEMFCs催化剂的设计具有指导意义.
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