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ABSTRACT Non-equiatomic high-entropy alloys (HEAs),
the second-generation multi-phase HEAs, have been recently
reported with outstanding properties that surpass the typical
limits of conventional alloys and/or the first-generation
equiatomic single-phase HEAs. For magnetocaloric HEAs,
non-equiatomic (Gd36Tb20Co20Al24)100−xFex microwires, with
Curie temperatures up to 108 K, overcome the typical low
temperature limit of rare-earth-containing HEAs (which ty-
pically concentrate lower than around 60 K). For alloys with x
= 2 and 3, they possess some nanocrystals, though very minor,
which offers a widening in the Curie temperature distribution.
In this work, we further optimize the magnetocaloric re-
sponses of x = 3 microwires by microstructural control using
the current annealing technique. With this processing meth-
od, the precipitation of nanocrystals within the amorphous
matrix leads to a phase compositional difference in the mi-
crowires. The multi-phase character leads to challenges in
rescaling the magnetocaloric curves, which is overcome by
using two reference temperatures during the scaling proce-
dure. The phase composition difference increases with in-
creasing current density, whereby within a certain range, the
working temperature span broadens and simultaneously of-
fers relative cooling power values that are at least 2-fold larger
than many reported conventional magnetocaloric alloys, both
single amorphous phase or multi-phase character (amorphous
and nanocrystalline). Among the amorphous rare-earth-con-
taining HEAs, our work increases the working temperature
beyond the typical <60 K limit while maintaining a compar-
able magnetocaloric effect. This demonstrates that micro-
structural control is a feasible way, in addition to appropriate
compositional design selection, to optimize the magnetoca-
loric effect of HEAs.

Keywords: high-entropy metallic-glass, magnetocaloric effect,
universal curve, current annealing, dual-phase

INTRODUCTION
Solid-state magnetic cooling based on the magnetocaloric effect
(MCE) has been considered as the next-generation refrigeration
technology, and thus attracted intense research interest [1]. This

technique offers higher efficiency, environmental amity, com-
pactness, noiselessness, and extended service life as compared
with the conventional gas compression-expansion refrigeration
technology [2–6]. In the point of view on the energy transfer
between the MCE materials and their external environment
under varying magnetic fields (H), there is a practical need for
the solid refrigerant materials to exhibit high heat-exchange
efficiency. This can be well satisfied by processing the MCE
materials into microwire form, which has high surface-to-
volume ratio [7–9].

Since the first reports in 2004 [10,11], high-entropy alloys
(HEAs) are still considered as a new type of materials due to
their multi-principal elements design concept (traditional alloys
are typically based on one or two principal elements) [12]. The
HEAs have evolved into two generations: the first-generation
single-phase with quinary equiatomic compositions and the
second-generation with non-equiatomic compositions, and/or
multiple phases [13–15]. The latter comprising of more than
four elements has been reported with excellent properties, such
as mechanical [16] and magnetic [17–19] properties. In parti-
cular, for MCE research field, evolving to non-equiatomic
compositions enables rare-earth (RE)-containing HEAs to sur-
pass their low temperature limit [20,21], and to exhibit large
MCE enhancement in transition-metal HEAs due to the first-
order magnetostructural phase transitions [22,23]. Above all,
RE-containing HEAs, especially Gd-containing high-entropy
metallic glasses (HE-MGs), have received the most attention due
to their excellent MCE properties [24–29]. However, their Curie
temperatures (TC) are typically below 60 K, which further
indicates that their working temperature is limited to that range
as their MCE peaks around TC. In previous work [20], we have
found that minor Fe doping to (Gd36Tb20Co20Al24)100−xFex (x =
0–3 at%) HE-MGs could tune the TC from 80 to 108 K, which
equates to more than 60% increase than the typical limit. Fur-
thermore, the appearance of some nanocrystals leads to minor
compositional difference between the amorphous matrix and
nanocrystalline phase, leading to the widening of the TC dis-
tribution and improving the relative cooling power (RCP) by
7%. MCE enhancement is found for conventional alloys exhi-
biting amorphous/nanocrystalline dual-phase structures [6,30–
35], whereby those Gd-based compositions show an improve-
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ment of up to ~84% and ~21% in the values of maximum
magnetic entropy change ( S M

max) and refrigeration capacity
(RC) (for 5 T), respectively. In particular, a very recent report by
Feng et al. [6] highlighted their MCE enhancement obtained by
optimizing the Gd content and fabrication method of Gd-based
amorphous/nanocrystalline fibers. It should be noted that the
small RCP increase for (Gd36Tb20Co20Al24)100−xFex (x = 0–3 at%)
HE-MGs is due to the limited fraction of the nanocrystalline
phase, so only the broadening of the global MCE response is
observed. In order to further explore the specific influence of the
nanocrystalline phase on the MCE properties and critical
behavior of HE-MGs, it is essential to increase the content of the
nanocrystals. This can be effectively achieved in amorphous
alloys through heat-treatment [36] in a protective atmosphere
[34,35], magnetic field [37], stress condition [38], and by using
current annealing [33,39]. Among these techniques, direct
current (DC) Joule current annealing is more suitable for
annealing metallic-glass microwires [33], as its characteristics,
such as precisely tunable and controllable processing para-
meters, could prevent the microwires from becoming brittle.

Therefore, with the aim to investigate the role of nanocrys-
talline phase in the MCE optimization and the critical behavior
of the Gd-containing HE-MG composite microwires, we select
(Gd36Tb20Co20Al24)97Fe3 with the highest nanocrystalline phase
fraction in the as-cast state from Ref. [20] to subject to various
current density values (50 × 106, 75 × 106 and 100 × 106 A m−2)
to further enhance the precipitation of nanocrystals in the
microwires. The fraction of nanocrystals increases with the
increase of current density magnitude, leading to a composi-
tional difference between the amorphous matrix and the nano-
crystalline phase. This difference, within a certain range, leads to
a large expansion in the working temperature span of the
annealed HE-MG microwires. As a result, they yield magneto-
caloric responses that are at least 2-fold larger than those of
conventional second-order magnetic transition (SOMT) amor-
phous magnetocaloric alloys and cooling efficiency which is
comparable to that of the notable GdDyErHoTb HEA [40]. We
further show, using the scaling laws [41], a good collapse of the
rescaled magnetocaloric curves onto a universal curve by using
two reference temperatures in the construction procedure to
avoid the influence of multiphase character of the samples.

METHODS
The (Gd36Tb20Co20Al24)97Fe3 ingot was prepared by arc melting a
mixture of pure metals with purities higher than 99.9 wt% in a
Ti-gettered high-purity Ar atmosphere. The ingot was re-melted
five times and then suction-casted to form a cylindrical rod of
10 mm in diameter and 50 mm in length. The alloy microwires
were prepared by a precision home-made melt-extraction
equipment with a high-speed spinning molybdenum wheel. The
wheel is 320 mm in diameter and 60° in knife-edge. Using
30 m s−1 wheel-rim-line-speed and 30 μm s−1 melt-feeding-rate,
the microwires were formed through rapid solidification when
the liquid pool adhered to the wheel rim. Further details of the
melt-extracted microwire preparation process can be found in
Ref. [42].

For DC current annealing, the microwires were annealed at
three current density values, i.e., 50 × 106, 75 × 106 and
100 × 106 A m−2, for 480 s in air. The maximum temperature
reached by the microwires depends on the current density as

well as on the microwire diameter, length, resistivity, duration of
the treatment, and sample environment. We kept constant all
those magnitudes except for the current density. Therefore, there
is a direct correlation between temperature and current. How-
ever, due to the very small diameter of the microwires, the actual
temperature cannot be measured but only estimated. The reader
is referred to Ref. [33] for further details. Although both con-
ventional annealing and Joule heating produce crystallization
due to the temperature rise, current annealing is more versatile
for keeping the emerging crystals within the nanometer range
[43].

The surface morphology of the annealed microwires were
determined by a scanning electron microscope (SEM, FEI
Quanta 200FEG), as shown in Fig. S1 (Supplementary infor-
mation). The SEM images show that the annealed microwires
possess smooth surfaces. Thermal analysis was conducted at a
heating rate of 10 K min−1 by a differential scanning calorimeter
(DSC, Netzsch STA449F3 Jupiter), which was calibrated with
pure In, Sn, Zn, Al, and Au before the experiments.

The microstructures of the as-cast and annealed microwires
were characterized by transmission electron microscope (TEM,
FEI Talos F200X) equipped with energy-dispersive X-ray spec-
troscopy (EDS). Isothermal magnetization (M) of the microwires
was tested using a physical property measurement system
(PPMS, Quantum Design Dynacool-14T). For the MCE deter-
mination, isothermal magnetization curves as a function of field
following a discontinuous protocol have been measured [44].

The magnetic entropy change (ΔSM) was calculated using the
integral method based on Maxwell relation [1]:
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where SM represents the magnetic entropy, μ0Hmax represents the
maximum external magnetic field, and Mi,j, Mi+1,j, Mi,j+1 and
Mi+1,j+1 are magnetization under the fields of Hj and Hj+1, and at
temperatures of Ti and Ti+1, respectively.

The universal scaling analysis has been reported to study the
nature of the phase transitions of the materials [23,45] and also
confirm the presence of the additional phase [41,46–48]. The
procedure included normalizing the ΔSM by their maxima and
temperatures to a dimensionless axis (θ) using either one or two
reference temperatures (Tr) [41]:
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where Tr, Tr1, and Tr2 were selected corresponding to
( )S T S= 0.7r M

max. Both Tr and Tr1 were chosen below the peak
temperature (Tmax) corresponding to ΔSM(T) curve while Tr2 was
chosen above Tmax.

Besides S M
max, cooling efficiencies, i.e., RCP and RC, are also

used as the figures of merit for magnetocaloric materials. RCP
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and RC can be calculated by using the following formulas with
full-width at half maximum (FWHM, i.e., working temperature
span) of the ΔSM(T) curve [49]:
RCP S S T T= × FWHM = ( ), (4)M
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max
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where T1 and T2 represent the start and end temperatures of
FWHM.

The magnetic field dependences of S M
max, RCP and RC have

been reported to follow a power law expression according to
[50]:

y ax= , (6)b

where y S= M
max, RCP or RC and they exhibit their respective

power law exponents, a and b are constants.
For the magnetic field dependence of ΔSM, which also follows

a power law expression as S H n
M [41], its exponent n has

been recently reported to (i) quantitatively evaluate the order of
the phase transition [51]; (ii) quantitatively evaluate the critical
point when the first order crossovers to second order phase
transition [52]; (iii) analyze the critical behavior (close to TC, n is
correlated to the critical exponents) [45,53]; (iv) reveal addi-
tional magnetic phases in magnetocaloric alloys due to its sen-
sitivity for the second phase [47,54]; and (v) thus deconvolute
overlapping phase transitions [47,48]. Exponent n, dependent on
both temperature and magnetic field, can be locally determined
as

n
S

µ H=
dln

dln . (7)M

0

RESULTS AND DISCUSSION

Structural characterization
Fig. 1a shows the DSC results of the as-cast and annealed
microwires. The results show the obvious exothermic peaks, i.e.,
crystallization peaks, indicating the presence of amorphous
phase in all studied samples. The arrows in the figure indicate
the onset temperatures (Tx) for the first exothermic peaks. No
significant changes of Tx can be found for the microwires
annealed at different current density values. The enthalpy of the
first crystallization peak (ΔHx1) of the studied microwires was
calculated by integrating the area of the first crystallization peaks
after Tx, for deducing volume fraction evolution of the amor-
phous phase [55–57]. The current density dependence of ΔHx1
is plotted in Fig. 1b. The image illustrates that with the increase
of current density, the ΔHx1 consistently decreases from
2.94 kJ mol−1 for the as-cast microwires to 1.68 kJ mol−1 for
100 × 106 A m−2 annealed microwires. This indicates that the
increase of current density decreases the fraction of amorphous
phase, implying the increased fraction of additional phase.

Fig. 2 shows the bright-field TEM results for the as-cast and
annealed microwires. The nanocrystals observed within the
amorphous matrix grow in amounts (see Fig. 2a–d) as the
current density used for annealing increases. The measured
compositions (tabulated in Table S1) taken from various regions
as numbered in Fig. 2 show that the composition of the amor-
phous phase is similar for the as-cast microwires and 50 × 106

and 75 × 106 A m−2 annealed microwires. This indicates that up
to 75 × 106 A m−2 of current annealing, it has little effect on the
amorphous phase composition. On the other hand, further
annealing to 100 × 106 A m−2, the amorphous matrix shows a
larger deviation in composition as compared with those of as-
cast and 50 × 106 and 75 × 106 A m−2 annealed microwires. EDS

Figure 1 (a) DSC results for the as-cast, 50 × 106, 75 × 106 and 100 × 106 A m−2 annealed microwires. (b) The corresponding enthalpies of the first peaks
after Tx as a function of current density.

Figure 2 Bright-field TEM images for (a) the as-cast, (b) 50 × 106, (c) 75 × 106, and (d) 100 × 106 A m−2 annealed microwires, respectively. The symbols and
numbers in the images are the regions corresponding to the EDS analysis.
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mapping results presented in Figs S2 and S3 show some com-
positional differences between the amorphous matrix and the
nanocrystalline phase as observed from some of the bright
regions for Co precipitates.

Face-centered cubic (FCC) structure is observed from the
selected area electron diffraction (SAED) patterns of the single
nanocrystal of 50 × 106 A m−2 annealed microwires, as shown in
Fig. 3a. For 75 × 106 A m−2 annealed microwires, their high-
resolution TEM (HRTEM) images are shown in top panel of
Fig. 3b while the fast Fourier transform (FFT) results corre-
sponding to the red dashed squares in the HRTEM images are
displayed at the bottom of Fig. 3b. These results in combination
with the diffraction rings in the SAED pattern (right side of
Fig. 3b) confirm the FCC structure of the nanocrystalline phase
of 75 × 106 A m−2 annealed microwires. The FCC structure of
nanocrystalline phase of 100 × 106 A m−2 annealed microwire is
confirmed by their FFT results (where the red dashed squares in
the HRTEM images at the top of Fig. 3c correspond to the FFT
images in the bottom panel of Fig. 3c) and the observed dif-
fraction rings in the SAED pattern (on the right side of Fig. 3c).
In addition, the influence of the current density magnitude on
the nanocrystalline phase fraction is further studied as plotted in
Fig. 4. It shows that the nanocrystal content monotonously
increases with the increase of current density, agreeing well with
the DSC analysis in Fig. 1b.

Magnetocaloric properties
Fig. 5a–c show the temperature dependence of ΔSM for the as-
cast and annealed microwires at magnetic field changes (μ0ΔH)
of 0.5, 2, and 5 T, respectively. At low μ0ΔH (Fig. 5a, b), the
ΔSM(T) curves of the annealed microwires show shoulders at 15–
55 K in addition to the main ΔSM peaks at T > 90 K (not
observed for the as-cast state). This indicates the presence of
additional phase upon annealing. This observation is not found
for 5 T. Furthermore, it is observed that the ΔSM peaks of the
microwires are maintained when annealed to 75 × 106 A m−2 but
for 100 × 106 A m−2 of annealing, it shows a 22% reduction,
compared with that of the as-cast state. This can be ascribed to
the decreased magnetic moment of amorphous phase, arising
from the reduction of Co content [35,53], which is observed
from the EDS results (Table S2 and Fig. S3). A further analysis
on the temperatures corresponding to the ΔSM peaks shows that
they are relatively magnetic-field-independent and only decrease

from 102.3 to 97.4 K for 100 × 106 A m−2 annealed microwires.
This can be attributed to the largest compositional deviation
observed in the amorphous matrix for 100 × 106 A m−2 annealed
microwires as compared with the other studied samples in this
work.

Analysis on the presence of additional phase and the order of
magnetic phase transition
The temperature dependence of exponent n has been used in
many reports to reveal the presence of multi-phases of magne-
tocaloric materials [47,54]. For our studied microwires, their
n(T) plots are displayed in Fig. 6. At low temperatures, the
exponent n values are around 1 (ferromagnetic state), and then
decrease to minimum (nmin) at temperatures near Tmax before
increasing towards 2 (n at the paramagnetic state is 2). The
fingerprint for first-order magnetic phase transitions, i.e. over-
shoot of n above 2 near transition temperatures [51], is not
observed in Fig. 6, which indicates that the studied microwires
undergo SOMT. The observed shallow nmin for all studied
microwires can be attributed to the presence of additional
phases, in agreement with the shoulders noticed in Fig. 5a
(below 60 K). As shown in Figs 2, 3, and Figs S2, S3, the
annealed microwires exhibit the amorphous/nanocrystalline

Figure 3 (a) The SAED patterns of single nanocrystal of 50 × 106 A m−2 annealed microwire. (b) The HRTEM images (top) and FFT results (bottom)
corresponding to the red dashed squares in the HRTEM images along two different zone axes and SAED pattern (right) of 75 × 106 A m−2 annealed microwire.
(c) The HRTEM images (top) and FFT results (bottom) corresponding to the red dashed squares in the HRTEM images along two different zone axes and
SAED pattern (right) of 100 × 106 A m−2 annealed microwire.

Figure 4 The calculated nanocrystalline fraction from bright-field TEM
images as a function of current density.
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dual-phase structure with composition difference between the
phases. This could lead to the difference between TC of the
amorphous and nanocrystalline phases [20], giving rise to the
appearance of a shoulder besides the main ΔSM peak. It should
be noticed that as the current density increases to
100 × 106 A m−2, the value of nmin increases, as magnified in the
inset of Fig. 6.

The collapse of rescaled ΔSM(T) curves onto a single universal
curve is widely reported for magnetocaloric materials that
undergo SOMT. For our studied as-cast and annealed micro-
wires, their rescaled curves constructed using two Tr show that
they collapse onto a single universal curve for different magnetic
fields (Fig. 7a). This indicates that the samples undergo SOMT,
which agrees with the observations from Fig. 6 and the Bane-
rjee’s criterion whereby SOMT shows positive slopes in Arrott
plots (as observed in Fig. S4). Furthermore, the rescaling of
ΔSM(T) curves can be used to reveal the presence of multiphase
character in SOMT materials by using one reference tempera-
ture [41,46–48] even if the transition temperature of the addi-
tional phase is out of the experimental range [41]. Thus, in our
case, a poor collapse of the rescaled curves is observed when
rescaling the ΔSM(T) curves of our studied microwires using one
Tr (Fig. 7b) due to the overlap of multiple SOMT phases present
in this study. In addition, at S S/M M

max = 0.7, the deviations
(δθ) between the rescaled curves become evidently distant for
100 × 106 A m−2 annealed microwires (markedbythe black
arrows in Fig. 7b). Hence, the use of two Tr for rescaling ΔSM(T)
curves helps to remove the influence of the overlapped phases on
the universal curve analysis of the multiple SOMT phases for
each sample. In addition, the rescaled curves of the as-cast and
annealed microwires collapse onto a universal curve using two
Tr as seen in Fig. 7c for μ0ΔH = 5 T, indicating that they exhibit
similar critical exponents. Fig. 7d shows the current density
dependence of δθ, nmin, and FWHM (related to RCP in Equation
(4)). With increasing current density, an increasing trend
(within the error margin) is observed for δθ, nmin and FWHM.
This can be attributed to the increasing nanocrystalline phase
fraction in the microwires with increasing current density. For
materials following the mean-field approach, their nmin = 2/3.
However, many amorphous MCE materials undergoing SOMT
are typically reported with nmin = 0.75 [45]. For this study, the
nmin values are close to 0.75 for the as-cast, 50 × 106 and
75 × 106 A m−2 annealed microwires. For 100 × 106 A m−2

annealed microwires, the corresponding nmin is larger than 0.75.
For FWHM, it expands with higher current density due to the
increase in the fraction of the nanocrystalline phase with low TC
as there is a TC difference between the amorphous matrix and

nanocrystalline phase. Therefore, the RCP values of 686, 703, 681
and 573 J kg−1 (5 T) are obtained for the as-cast and 50 × 106, 75
× 106 and 100 × 106 A m−2 annealed microwires. The initial
annealing (50 × 106 and 75 × 106 A m−2) enables the retainment
of comparably high RCP with respect to that of the as-cast
microwires and reported HE-MGs. Conversely for further
annealing to 100 × 106 A m−2, though a large FWHM is attained,
RCP decreases due to the reduction in S .M

max

Furthermore, we studied the μ0ΔH dependences of S M
max,

RCP and RC of the studied microwires, as presented in Fig. 8. It
can be observed that they follow a power law dependence (see
the fittings presented as dashed lines) as Equation (6), similar to
the SOMT reports in the literatures [41,58]. The fitting results
further listed in Table 1 show a good fit for all curves.

It should be noted that the exponent b differs the most for the
100 × 106 A m−2 annealed microwires in this work, which is
influenced by the critical behavior of amorphous matrix. When
annealed with low current density values (50 × 106 and
75 × 106 A m−2), the concomitant fraction of nanocrystalline
phase has little influence on the composition of the amorphous
phase. Thus, the critical exponents of the amorphous phase can
be close to those of the as-cast microwires, indicating that the
critical behaviors of the main phases of the as-cast, 50 × 106 and
75 × 106 A m−2 annealed microwires are similar. When
increasing the current density to 100 × 106 A m−2, the increased
amount of nanocrystalline phase leads to a larger compositional
difference between the amorphous and nanocrystalline phases.
Such difference, at this moment, is significant enough to result

Figure 5 Temperature dependence of −ΔSM of the as-cast and annealed microwires at μ0ΔH of (a) 0.5, (b) 2, and (c) 5 T. It should be noted that the
magnetocaloric curves of the as-cast, 50 × 106 and 75 × 106 A m−2 overlap at (b, c) due to their similar ΔSM values.

Figure 6 The temperature dependence of exponent n for μ0ΔH = 5 T with
the inset showing the enlarged curves at temperatures around Tmax.
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in a change in the critical exponents of the amorphous phase. It
should be noted that the presence of the nanocrystals, with a
transition temperature in the range of <55 K, as indicated by the
hump in ΔSM shown in Fig. 5, does not affect the critical
behavior of the amorphous phase detected by the magnetoca-
loric response [32]. Therefore, the modification of the critical
exponents of the amorphous phase is solely ascribed to its

compositional change. Nevertheless, the modification of the
critical exponents is not large enough to significantly alter the
collapse of the rescaled ΔSM curves presented in Fig. 7c.

Literature comparison
With the aid of power law fitting analysis, the magnetocaloric
response of studied microwires can be easily extrapolated to

Figure 7 The rescaled ΔSM curves (0.45 ≤ μ0ΔH ≤ 5 T) calculated for the as-cast and annealed microwires using (a) two Tr and (b) one Tr. The black arrows
indicate the width (δθ) between two rescaled curves at S S/M M

max= 0.7. (c) The single universal curve of the studied microwires achieved by using two Tr at
μ0ΔH = 5 T. (d) The current density dependence of various parameters associated to the magnetocaloric behaviors.

Figure 8 μ0ΔH dependences of (a) SM
max, (b) RCP, and (c) RC, and their corresponding fitting results.

Table 1 Exponent b obtained by fitting μ0ΔH dependences of SM
max, RCP and RC for the as-cast and annealed microwires, and the coefficient of

determination of the fitting, R2

SM
max R2 b from RCP R2 b from RC R2

As-cast 0.79 ± 0.01 0.99945 1.10 ± 0.01 0.99982 1.12 ± 0.01 0.99981
50 × 106 A m−2 0.81 ± 0.01 0.99945 1.14 ± 0.01 0.99978 1.13 ± 0.01 0.9998

75 × 106 A m−2 0.82 ± 0.01 0.99948 1.12 ± 0.01 0.99972 1.12 ± 0.01 0.99974
100 × 106 A m−2 0.86 ± 0.01 0.9996 1.15 ± 0.01 0.99995 1.14 ± 0.01 0.99994
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different magnetic fields for literature comparison. Compared
with SOMT conventional magnetocaloric amorphous alloys
based on a single principal element [59–64], at least 2-fold
improvement in S M

max and RCP is found for our work. More
than 10% larger S M

max(up to 8-fold) is observed when com-
paring our annealed HE-MG microwires to the conventional
alloys exhibiting coexistence of amorphous and nanocrystalline
phases [1,34,65–70]. Among the SOMT magnetocaloric HEA
reports, a recent review paper [24] highlights that RE-containing
HEAs concentrate at low temperatures while RE-free ones per-
form at higher temperatures, although with very compensated
magnetocaloric responses (Fig. 9). For our work, their magne-
tocaloric responses are maintained in the relatively large MCE
range (much larger than those of RE-free HEAs) in Fig. 9, and at
the same time, tuned to temperatures above the typical limit
(<60 K) of RE-containing HEAs.

CONCLUSIONS
In this work, we studied the tuning of magnetocaloric responses
of HE-MG microwires by controlling their microstructures
through annealing with the current annealing technique: (Gd36-
Tb20Co20Al24)97Fe3 microwires were annealed by current den-
sities of 50 × 106, 75 × 106 and 100 × 106 A m−2. TEM shows the
precipitation of nanocrystals within the amorphous matrix, in
which the crystallites are observed to increase in fraction with
the increase of current density magnitude. This leads to a
compositional difference between the amorphous matrix and the
nanocrystalline phase. With the use of two reference tempera-
tures during the scaling procedure, the rescaled magnetic
entropy curves collapse onto a single universal curve, avoiding
the effects of the presence of multiple phases in the microwires.
Overall, the increased current density, whereby within a certain
range, enhances the MCE properties of (Gd36Tb20Co20Al24)97Fe3
microwires, resulting in broadening working temperature span
and simultaneously offering RCP values that are at least 2-fold
larger than reported values of many conventional MCE amor-
phous or amorphous/nanocrystal composite alloys. Compared
with the amorphous RE-containing HEAs, our microwires show
comparable magnetocaloric properties at the temperature range
surpassing the typical <60 K limit. This demonstrates that

besides the appropriate compositional design selection, the
microstructural control is an effective way to optimize MCE of
HEAs.
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微观结构调控优化高熵非晶合金磁热性能
尹航博策1,2, Jia Yan Law2*, 黄永江1*, 沈红先1*, 姜思达3, 郭舒4,
Victorino Franco2, 孙剑飞1

摘要 第二代高熵合金(非等原子比)具备超越传统合金和第一代等原
子比单相高熵合金性能限制的优异性能. 对于磁热高熵合金, 非等原子
比(Gd36Tb20Co20Al24)100−xFex纤维的居里温度最高达108 K, 这克服了含
稀土高熵合金低温(即普遍工作温区在60 K以下)的限制. x = 2和3合金
含有微量纳米晶, 这使得合金具有宽化的居里温度分布. 本文使用电流
退火技术, 通过对微观结构调控进一步优化x = 3纤维的磁热性能. 电流
退火使纤维非晶基体沉淀析出纳米晶, 并造成两相间成分的差异. 缩放
过程中使用两个参考温度, 克服多相特征所造成的缩放磁热曲线的困
难. 两相成分差异随着电流密度的增加而增大, 在一定限度内, 成分差
异扩大纤维工作温区, 同时使相对制冷能力提升至许多传统磁热合金
(无论是单非晶相还是多相(非晶和纳米晶))的2倍以上. 相比于其他含
稀土高熵非晶合金, 本项工作显示出在温度限制(60 K)之上较好的磁热
性能. 这揭示了除适当的成分设计外, 微观结构调控是优化高熵合金磁
热性能的可行方法.
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