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Achieving superior high-temperature sodium storage performance in a
layered potassium vanadate
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ABSTRACT The high-temperature sodium-ion batteries
(SIBs) used for large-scale energy storage have attracted ex-
tensive attention in recent years. However, the development of
SIBs is still hampered mainly by their poor charge/discharge
efficiency and stability, necessitating the search for appro-
priate electrodes. A simple potassium ion intercalation pro-
cess is used herein to obtain the potassium vanadate (KV3O8)
nanobelts. When serving as the anode for SIBs at a high
temperature (60°C), the KV3O8 nanobelts display superior
sodium storage performance with a high capacity of 414 mA
h g−1 at 0.1 A g−1, remarkable rate capability (220 mA h g−1 at
20 A g−1), and super-long cycle life (almost no capacity fading
at 10 A g−1 over 1000 cycles). Moreover, the ex-situ X-ray
powder diffraction reveals no structural changes throughout
the whole charge/discharge process, which further confirms
their outstanding stability, indicating KV3O8 nanobelts are a
promising candidate for high-temperature SIBs.

Keywords: sodium-ion battery, high-temperature performance,
layered potassium vanadate

INTRODUCTION
In recent years, lithium-ion batteries (LIBs) have demonstrated
their importance in powering devices [1–10]. The wide appli-
cation of LIBs has been severely limited due to the scarcity and
uneven geographical distribution of lithium resources [11–20].
Because of the abundant sodium element reserves, low price,
and similar physicochemical properties to LIBs, sodium-ion
batteries (SIBs) have recently been considered as an important
potential energy storage device [21–28]. Unfortunately, the
relatively high atomic weight (23 gmol−1, heavier than
6.9 gmol−1 of lithium) and large radius of Na+ (1.02Å, larger
than 0.76Å of lithium) lead to poor rate performance and severe
volume expansion during the electrochemical sodiation/deso-
diation processes [29–36]. Therefore, searching for excellent
electrode materials for developing superior SIBs becomes
urgent.
To develop appropriate electrode materials for SIBs, several

compounds (including hard carbon [37–39], metals and alloys
[40–42], metal oxides [43,44], and metal chalcogenides [45–48])

have been widely studied. Among the reported electrode mate-
rials for SIBs, the common MV3O8 (M = metal) layered oxides
possessing high capacity because of the large interlayer spacing
and the redox of V3+/V5+ couple, have attracted enormous
attention. Among the MV3O8 layered oxides, the layer spacing of
KV3O8, 7.48Å, is much wider than that of LiV3O8 (6.32Å) and
NaV3O8 (6.85Å), which is beneficial to the diffusion of sodium
ions [49]. For example, Kim et al. [50] fabricated KV3O8 rec-
tangular plates via a hydrothermal route, which delivered a
discharge capacity of 182mAh g−1 at 1.75A g−1, with excellent
stability after 500 cycles as the cathode in rechargeable zinc-ion
batteries. Tang et al. [49] reported KV3O8 nanowires, which
showed a reversible capacity of 38mAh g−1 (a current density of
100mAg−1) as a magnesium ion battery cathode. Despite these
attractive features, there are few studies about KV3O8 as the
anode for high-temperature sodium batteries.
In this work, a cost-effective potassium intercalation process is

developed to prepare KV3O8 nanobelts. The KV3O8, which
serves as the high-temperature (60°C) SIB anode, features a high
capacity of 414mAh g−1 at a current density of 0.1 A g−1,
superior rate performance, and excellent stability. The high ion
diffusivity (6.2 × 10−7–1.9 × 10−9 cm2 s−1) and reversible (de)
intercalation reaction of KV3O8 during the charging/discharging
process may explain the excellent high-temperature sodium
storage performance, making it a promising anode material for
high-temperature SIBs.

EXPERIMENTAL SECTION

Materials preparation
Fabrication of KV3O8 nanobelts anode: 0.1mol of KCl was
dissolved in 200mL of deionized water using a sonicator for
30min, and then 1 g of commercial V2O5 powder was added.
The above solution was then kept at room temperature for seven
days with vigorous stirring. The precipitates were then washed
with deionized water and ethanol for several times before being
centrifuged. Finally, the KV3O8 nanobelts were isolated by dry-
ing the precipitates for 12 h at 80°C.

Characterizations
Powder X-ray diffraction (XRD, Bruker D8) was used to study
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the crystal structure. The morphology was investigated by
transmission electron microscopy (TEM, JEM-2100F, 200 kV)
and scanning electron microscopy (SEM, JSM-7500F, 5 kV). The
surface chemical state was analyzed by X-ray photoelectron
spectroscopy (XPS, ESCALAB, 250Xi). Thermogravimetric
analysis (TGA) was operated on the STA 449C within the range
of 30–500°C in an argon atmosphere. Brunauer-Emmett-Teller
(BET) test was carried out on an ASAP 2020 Automatic
Micropore Physisorption Analyzer.

Electrochemical measurements
The working electrode was prepared by coating active material
slurry (containing 80wt% KV3O8, 10wt% carbon nanotubes, and
10wt% poly(vinylidenefluoride) (PVDF) in N-methylpyrroli-
done (NMP)) onto the copper foils and dried under 60°C for 8 h
in a vacuum oven. Na foils and 1mol L−1 NaPF6 in 1,2-dime-
thoxyethane (DME) were used as anodes and electrolytes,
respectively. The sodium storage performance was evaluated by
using a coin-type cell on a NEWARE multichannel battery test
system. The galvanostatic discharge/charge tests were carried out
at the voltages of 0.01–2.8V versus Na+/Na. Electrochemical
impedance spectra (EIS) and cyclic voltammetry (CV) were
performed on a Gamry electrochemical workstation.

RESULTS AND DISCUSSION

Materials manufacturing
Fig. 1 illustrates the preparation of KV3O8 nanobelts by a simple
and inexpensive potassium intercalation process. The dissolu-
tion and recrystallization of particles, which are an unusual anti-
Ostwald ripening behavior, are responsible for the formation of
nanobelts [51]. K+ ions are attached to the distorted VO6 octa-
hedron of KV3O8, as shown in Fig. S1. Two V atoms lay in the
VO5 groups of both cones, which are chained along the b axis by
relative base angles. These chains are linked laterally to the third
V atom along the c-axis to generate a sheet and also form the
part of the square pyramid coordination (Fig. S1). The interlayer
distance of KV3O8 increases to 7.48Å, which is significantly
larger than that of the original V2O5.
The XRD pattern of the ultrathin KV3O8 nanobelts is

demonstrated in Fig. 2a. The diffraction peaks are assigned to

the monoclinic KV3O8 (JCPDS card no. 22-1247), in which four
main diffraction peaks of 11.7°, 15.7°, 25.7° and 27.9° correspond
to (100), (110), (210), and (021) planes of KV3O8, respectively. In
addition, the peaks of commercial V2O5 can be allocated to the
orthorhombic V2O5 (JCPDS card no. 41-1426). No impurity
peaks are observed, indicating the pure phase of KV3O8 and
V2O5. The TGA analysis was performed to confirm whether
there is structural water in KV3O8. As illustrated in Fig. S2, the
TGA curve of KV3O8 reveals no decreasing process from 30 to
500°C, indicating no structural water. XPS was performed to
study surface chemical compositions and electronic properties of
KV3O8. For the V 2p XPS spectrum of KV3O8 in Fig. 2b, two
peaks appear at 517.3 and 524.9 eV, assigned to the 2p3/2 and
2p1/2 components of V5+, respectively, indicating that V5+ of
KV3O8 is not reduced to lower vanadium oxidation states during
the potassium intercalation process. The K 2p XPS spectrum of
KV3O8 in Fig. 2c shows two distinct characteristic peaks at 292.6
and 295.4 eV, which can be assigned to K 2p3/2 and K 2p1/2,
respectively, demonstrating the existence of potassium ions. The
O 1s of KV3O8 in Fig. 2d shows the V–O peak at around
530.2 eV [52,53].
Fig. 3a and Fig. S3 show low-magnification SEM images of the

KV3O8 nanobelts with the length of about 10–50 μm. A close-up
view in Fig. 3b displays a single nanobelt. From the TEM image
(Fig. 3c), it is clear that the width of the nanobelt is ~200 nm.
The spacing was calculated to be 0.24 nm, which corresponds to
the (310) plane of monoclinic KV3O8 (inset of Fig. 3c). Fur-
thermore, the uneven surface of the nanobelts can increase the
contact area with the electrolyte. As can be seen in Fig. S4, the
BET surface area of the KV3O8 nanobelts was determined to be
about 26.1m2 g−1. Fig. 3d further indicates the even distribution
of V, K, and O elements through the entire nanobelt. To
investigate the formation mechanism of KV3O8 nanobelts, SEM
images were recorded at different times, as shown in Fig. S5. At
first, the vanadium pentoxide powder was partially dissolved in
KCl solution, which yielded free vanadium-based species such as
[V10O28]6− and VO2

+ [51]. As the reaction progress, the vana-
dium-based species recrystallized to generate KV3O8 nuclei
when their concentration came up to sufficiently high. Then,
with the continuous deposition of vanadium-based species on
KV3O8 nuclei, the belt-like structure emerged (Fig. S5b–d).
Finally, as time went on, vanadium pentoxide particles dis-

Figure 1 Schematic illustration of the room-temperature synthesis of KV3O8 nanobelts.
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appeared and KV3O8 nanobelts appeared (Fig. S5e).

Electrochemical performance
The sodium storage properties of the KV3O8 anodes at high
temperatures were investigated by CV and galvanostatic charge/
discharge measurements. Fig. 4a illustrates the corresponding
CV curves for KV3O8 during the initial four cycles at 0.1mV s−1.
Peaks at 1.99, 1.67, 1.29, 0.85, and 0.27V can be attributed to the
sodiation into the KV3O8 nanobelts during the first cathodic
process, which also forms a solid electrolyte interface layer.

Three peaks in the anodic scan correspond to the desodiation
from KV3O8 nanobelts: 1.56, 1.82, and 2.10V. The CV curve
shows good repeatability after the second cycle, demonstrating
the outstanding electrochemical reversibility. When the KV3O8
nanobelts are galvanically cycled at 0.1 A g−1 (60°C, Fig. 4b), it
delivers high capacities (discharge: 688mAh g−1 and charge:
552mAh g−1). Besides, it achieves a satisfying initial Coulombic
efficiency (ICE: 80%). In contrast, the V2O5 delivers a low ICE of
66% (Fig. S6). Fig. 4c compares the cycling performance of the
KV3O8 and V2O5 anode at 0.1 A g−1 (60°C), in which the KV3O8

Figure 2 Structure analyses of KV3O8. (a) XRD pattern of KV3O8. High-resolution XPS spectra of (b) V 2p, (c) K 2p and (d) O 1s.

Figure 3 Microstructure and morphology of KV3O8. (a, b) SEM images. (c) TEM image and HRTEM image (inset). (d) Scanning TEM (STEM) and the
corresponding elemental mapping images.
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anode shows excellent sodium storage capacity, while the V2O5
anode exhibits low reversible capacity. Moreover, the high-
temperature sodium storage performance of the KV3O8 is far
better than that of other reported materials (Fig. S7). For
example, NaV1.25Ti0.75O4 anode possesses 106mAh g−1 at
0.02A g−1 (60°C) [54], loofah-like NHCNFs (nitrogen-doped
hollow carbon nanofibers) anode exhibits a capacity of
323mAh g−1 at 0.5 A g−1 (50°C) [55], and C-NTO30 (C-con-
taining Na2Ti7O15) anode maintains the stable values of
225mAh g−1 at 0.2 A g−1 (60°C) [56]. Fig. 4d reveals the rate
capability of the KV3O8 anode at 60°C. The KV3O8 anode deli-
vers specific capacities of 453, 415, 381, 340, 294, and
220mAh g−1 at 0.5, 1.0, 2, 5, 10, and 20A g−1, respectively.
Meanwhile, Fig. S8 illustrates the discharge-charge curves of the
KV3O8 anode at different rates (60°C). The almost 100% Cou-
lombic efficiency indicates the highly reversible redox reaction
of the KV3O8 anode. Impressively, when switching back to
0.5 A g−1, the KV3O8 anode can still restore a specific capacity of
414mAh g−1 (Fig. 4d). In contrast, the V2O5 anode at 60°C
exhibits relatively low capacities of 308, 273, 225, 179, 127, and
56mAh g−1 at 0.5, 1, 2, 5, 10, and 20A g−1, respectively (Fig. S9).
As revealed by EIS in Fig. S10, the charge-transfer resistance
(Rct) of KV3O8 is lower at 60°C compared with that of V2O5,
implying faster charge-transfer kinetics of the KV3O8. Further-

more, at the high rate of 10A g−1, it shows good stability with
almost no capacity fading (Fig. 4e). The KV3O8 electrode has a
capacity of 311mAh g−1 after 1000 cycles at 60°C, indicating its
excellent temperature stability. The large layer spacing of KV3O8,
which improves sodium-ion diffusion, is primarily responsible
for the anode’s excellent electrochemical performance.
The reaction kinetics was evaluated using the CV technique

from 0.1 to 1.0mV s−1 to more intuitively analyze the origin for
the outstanding rate performance of KV3O8. The CV curves at
various scanning rates at 60°C have a slight shift of the cathodic/
anodic peaks with the increase of scan rate, as shown in Fig. 5a,
indicating that sodium intercalation/delamination kinetics are
closely related. For the cathodic peaks (Peak 3, Peak 4) and the
anodic peaks (Peak 1, Peak 2) as shown in Fig. 5b, there is a
linear relationship between their peak currents (ip) and the
square root of scanning rate (v1/2). This illustrates a typical dif-
fusion-controlled process in KV3O8. Thus, the Na+ ion diffusion
coefficient (DNa+) can be determined using the Randles-Sevcik
equation [57]:

i n SD C v= (2.65 × 10 ) , (1)p
5 3/2

Na
1/2

Na
1/2

+ +

where S is the contact area between KV3O8 and electrolyte and n
is the charge-transfer number. CNa+ is the concentration of Na+
in KV3O8. According to the slope in Fig. 5b, the DNa+ was cal-

Figure 4 Electrochemical performance of KV3O8 anode at 60°C. (a) CV curves. (b) Charge/discharge profiles at 0.1 A g−1. (c) Cycling performance at
0.1 A g−1. (d) Rate performance and (e) long-term cycling performance at 10A g−1.
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culated to be 6.2 × 10−7–1.9 × 10−9 cm2 s−1 at 60°C.
To reveal the sodium storage mechanism in the KV3O8

nanobelts, ex-situ XRD measurements were conducted. Fig. 6a
shows ex-situ XRD patterns during the first discharge/charge
cycle, in which no peak appears or disappears during the cycling
process, indicating that KV3O8 undergoes the reversible inter-
calation reaction. The amplified view of the ex-situ XRD result of
KV3O8 between 11° and 12° shows that the main peak (100) at
11.7° obviously shifts, which relates to the variation of layer
spacing. The peak (100) moves to the highest angle when dis-
charged to 0.01V, implying a shrinkage of the interlayer spacing,
which could be due to the coordination between the oxygen and
intercalated Na+. This unusual phenomenon is frequently
observed in layer vanadium oxide materials. After the charging
process, this peak shifts completely back to its original position,
indicating the high reversibility of the KV3O8 anode, which
brings the excellent cycling stability. These series of changes
during the charge/discharge process are illustrated in Fig. 6b.
Based on the results of ex-situ XRD, the KV3O8 electrode pos-
sesses a good reversible Na+ intercalation/deintercalation per-
formance, guaranteeing excellent cyclability at high
temperatures. Fig. S11 illustrates SEM observation of the cycled

KV3O8 anode. After the 500th and 1000th cycles at 10A g−1, the
nanobelts structure of the KV3O8 anode can still be well main-
tained, further proving their excellent stability.

CONCLUSIONS
In summary, KV3O8 nanobelts were successfully fabricated using
a simple potassium intercalation process for applications in
high-temperature SIBs. At 60°C, the KV3O8 nanobelt anode
possesses a high capacity (414mAh g−1 at 0.1 A g−1), satisfactory
rate capability (220mAh g−1 at 20.0 A g−1), and outstanding
cycling stability. The satisfactory electrochemical performance of
KV3O8 can be ascribed to the high Na+ ion diffusion coefficient
(6.2 × 10−7–1.9 × 10−9 cm2 s−1) and the reversible sodiation/des-
odiation throughout the entire operating voltage range. Overall,
the KV3O8 nanobelt is believed to be a promising electrode
material to achieve high-performance SIBs for large-scale
applications at high temperatures.
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层状钒酸钾应用于高性能高温钠离子电池
陈栋1†, 程亚飞2†, 潘洪革3,4, 孙文平3,4, 耿洪波2*, 芮先宏1*

摘要 在大规模储能领域中, 高温钠离子电池(SIBs)受到了广泛关注.
然而, 较低的充放电效率和较差的循环稳定性仍是制约高温钠离子电
池发展的主要因素. 因此, 开发性能优异的电极材料是高温钠离子电池
发展的关键. 本工作中, 我们通过简单的钾离子插入法制备了KV3O8纳
米带作为高温钠离子电池的负极材料. 在60°C高温下, KV3O8纳米带表
现出高的储钠容量(在0.1 A g−1电流密度下, 可逆容量为414 mA h g−1)、
卓越的倍率性能(在20 A g−1的高电流密度下为220 mA h g−1)和优异的
循环稳定性(10 A g−1的电流密度下循环1000次, 容量几乎没有衰减). 此
外, 通过非原位XRD分析发现, KV3O8纳米带的结构在整个充放电过程
中未发生明显变化, 进一步证实了其优异的稳定性. 本研究表明KV3O8

纳米带具有成为高温钠离子电池负极材料的潜力.
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