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ABSTRACT The design and construction of highly effective
circularly polarized luminescence (CPL)-active materials has
aroused considerable attention due to their widespread ap-
plications in sensors, optical devices, and asymmetric synth-
esis. However, the exploration of novel CPL-active materials
with high luminescence dissymmetry factor (gj,m) values is still
a challenge. Herein, we describe a new approach for the pre-
paration of supramolecular metallacycles with amplified CPL
promoted by hierarchical self-assembly involving Pt---Pt in-
teractions. Notably, the resultant metallacycles exhibited
strong CPL signals with high g values, while their corre-
sponding precursors were CPL silent. The CPL amplification
mechanism was comprehensively validated by ultraviolet-
visible absorption, emission spectroscopy, nuclear magnetic
resonance spectroscopy, scanning electron microscopy,
transmission electron microscopy, atomic force microscopy,
coarse-grained molecular dynamics simulations, and time-
dependent density functional theory calculations. This work
thus provides the first example of preparing highly effective
CPL-active materials based on hierarchical self-assembly in-
volving Pt---Pt interactions.
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INTRODUCTION

Circularly polarized luminescence (CPL) is a fascinating chir-
optical luminescence phenomenon that occurs as a result of the
preferential emission of left or right circularly polarized radia-
tion from the chiral excited state of a molecular system [1-6].
During the past decades, the fabrication of CPL-active materials
has attracted increasing interest because of the wide applications
of such materials in biological chiroptical sensing, three-
dimensional (3D) optical display and storage, chiral photo-
electric devices, and asymmetric catalytic reactions [7-13].
Usually, the luminescence dissymmetry factor (gum) value,
which is used to quantify the level of CPL, of organic molecules

is relatively low and generally within the range of 10°~107 due
to the large electric dipole transitions [14]. Therefore, achieving
a large gium value is one of the most urgent issues in developing
CPL-active materials [15-20]. Many strategies, including the
formation of receptor-ion complexes and configurational
changes upon binding with guests, have been adopted to amplify
the gum value [21,22]. Notably, nature often forms chiral bio-
systems by employing a hierarchical self-assembly strategy, in
which the components are brought together in a stepwise pro-
cess via multiple noncovalent interactions [23,24]. For instance,
the natural system is able to express and amplify molecular
chirality into preferred supramolecular a helicity, such as the
secondary helical structures of peptides and proteins, through
hierarchical self-assembly [25]. Inspired by this, hierarchical
self-assembly might be employed to prepare highly effective
CPL-active systems since it offers the possibility to fabricate
CPL-active materials from not only the chiral luminescent
compounds but also completely achiral luminescent molecules
through chirality transfer, chirality induction, and symmetry
breaking [26-28]. However, compared with many well-known
strategies to fabricate CPL-active systems, hierarchical self-
assembly has rarely been explored and remains a major chal-
lenge.

As one of the most important metallophilic interactions of d8-
and d10-metals, Pt--Pt interactions usually allow intriguing
spectroscopic and luminescence properties as well as tunable
photoluminescence behaviors achieved by modulating the Pt--Pt
distances [29-33]. Recently, Pt---Pt interactions have emerged as
a key driving force for providing the precise control and tuning
of the self-assembly of building blocks into designated supra-
molecular architectures with high photoluminescent properties
[34-37]. Considering that the Pt--Pt interactions usually give
rise to the intriguing luminescence properties and plays a critical
role in self-assembly, we envisioned that the participation of the
Pt--Pt interactions in the fabrication of CPL-active materials
would endow the resultant materials with enhanced luminescent
properties and interesting hierarchical self-assembly behavior.
Very surprisingly, to the best of our knowledge, the fabrication
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of CPL-active materials through hierarchical self-assembly
involving Pt---Pt interactions has not yet been reported.

Herein, we present a successful construction of well-defined
chiral metallacycles M-S and M-R (M represents metallacycle)
via coordination-driven self-assembly of the chiral alkynyl-
platinum(II) dipyridine building blocks L-S and L-R (L repre-
sents ligand), respectively, containing optically active (S/R)-3,7-
dimethyloctyl groups with di-platinum(II) acceptor (Fig. 1).
Interestingly, unlike the building blocks L-S and L-R that were
CPL silent, metallacycles M-S and M-R displayed strong CPL
signals with high gum values up to 0.014. Comprehensive
mechanistic studies revealed that the formation of a metallacycle
favored stepwise self-assembly through intermolecular Pt--Pt
and m-m stacking interactions, resulting in the formation of
nanorods with high CPL activity. This research provides the first
successful example of CPL amplification promoted by hier-
archical self-assembly involving Pt---Pt interactions.

EXPERIMENTAL SECTION

Materials and instruments

'H nuclear magnetic resonance (NMR), ?C NMR, and *'P NMR
spectra were recorded on a Bruker 400 MHz Spectrometer (*H:
400 MHz; ®C: 100 MHz; *'P: 161.8 MHz) or Bruker 500 MHz
Spectrometer (*H: 500 MHz; *C: 125 MHz; *'P: 202.2 MHz) at
298 K. The 2D NMR spectra ("H-'H correlation spectroscopy
(COSY), rotating frame overhauser effect spectroscopy (ROESY)
and diffusion ordered spectroscopy (DOSY)) were recorded on a
Bruker 500 MHz Spectrometer (‘H: 500 MHz) at 298 K. The 'H
and *C NMR chemical shifts reported were related to the resi-
dual solvent, and *'P NMR resonances were referred to an
internal standard sample of 85% H;PO, (6 0.0). Coupling con-
stants (J) were denoted in Hz and chemical shifts (§) in ppm.
Multiplicities were denoted as follows: s = singlet, d = doublet, m
= multiplet, br = broad. Electrospray ionization (ESI) mass
spectra were recorded with a Waters Synapt G2 mass spectro-

meter. The cold spray ionization time-of-flight mass spectro-
metry (CSI-TOF-MS) spectra were acquired by using an
AccuTOF CS mass spectrometer (JMS-T100CS, JEOL, Tokyo,
Japan). Scanning electron microscopy (SEM) images were
obtained by using an S-4800 (Hitachi Ltd.) with an accelerating
voltage of 10.0kV. Transmission electron microscopy (TEM)
measurements were performed under a Tecnai G2 20 TWIN
device. All the atomic force microscopy (AFM) images were
obtained on a Dimension FastScan (Bruker), using ScanAsyst
mode under ambient condition. Dynamic light scattering (DLS)
measurements were conducted under a Malvern Zetasizer Nano-
ZS light scattering apparatus (Malvern Instruments, U. K.) with
a He-Ne laser (633nm, 4mW). Ultraviolet-visible (UV-Vis)
spectra were recorded in a quartz cell (light path 10 mm) on a
Cary 50Bio UV-Visible spectrophotometer. Fluorescence spectra
were carried out using an RF-5301PC spectrophotometer. Cir-
cular dichroism (CD) spectra were recorded on a chirascan
series Circular Dichroism Spectropolarimeter. CPL measure-
ments were performed with a JASCO CPL-200 spectrometer
(light path 0.1 mm). Single crystal X-ray diffraction data were
collected on a Rigaku Saturn X-ray diffractometer with graphite-
monochromator Mo-Ka radiation (A = 0.71073 A) at 173K.
Single crystals suitable for X-ray crystallographic analysis were
obtained through slow diffusion of ethanol (EtOH) into
dichloromethane (DCM).

Synthesis of L-S, L-R, L2-S, L2-R, L3-S and L3-R

The synthetic methods and the characterizations of L-S, L-R, L2-
S, L2-R, L3-S and L3-R are detailed in the Supplementary
information (Figs S1-S24 and Table S1).

Coarse-grained molecular dynamics (CGMD) simulations

The CGMD simulations were applied to investigate the under-
lying mechanism of the self-assembly of the ligand L and the
corresponding metallacycle M. For simplicity, we constructed
the CG model with different topologies by using the different

L-SIL-R

Figure 1
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Self-assembly of 0° dipyridyl donor ligands L-S/L-R and 180° di-Pt(II) acceptor L1 into chiral metallacycles M-S/M-R.
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types of beads (Bz1, Bz2, Pt, S, T beads) to denote the L and M
molecules in the simulations.

Time-dependent density functional theory (TD-DFT) calculations
TD-DFT calculations were carried out to simulate the absorp-
tion spectra of the monomers at PBE0/def2-SVP level with a
resolution of identity (RI) approximation. CD spectra of dimers
were simulated at PBE0/def2-SVP level with Grimme’s disper-
sion correction for 160 excited states.

RESULTS AND DISCUSSION

The chiral alkynyl-Pt(II)-containing dipyridine donor ligands L-
S and L-R were easily synthesized through the etherification
reaction and Sonagashira coupling reaction as shown in the
Supplymentary information. Chiral hexagonal metallacycles M-S
and M-R containing two alkynyl-Pt(II) bzimpy moieties were
constructed by simply mixing the corresponding chiral donor
ligand L-S or L-R, respectively, with the linear diplatinum(II)
acceptor L1 in a molar ratio of 1:1, resulting in a quantitative
yield via coordination-driven self-assembly. As shown in
Figs S25-832, the structures of the obtained metallacycles M-S
and M-R were well characterized by 'H and *'P NMR spectro-
scopy and ESI-TOF-MS, which revealed the formation of dis-
crete and highly symmetric species. The *'P NMR spectra of the
assemblies M-S and M-R displayed a sharp singlet peak
(~18.54 ppm) with concomitant Pt satellites corresponding to
a single phosphorus environment. This charge is consistent with
the electron back-donation from the platinum atoms (M-S ver-
sus L1 by ~5.07ppm and M-R versus L1 by ~5.08 ppm). In
Figs $33 and S34, ESI-TOF-MS provided additional evidence for
the formation of discrete desired metallacycles. The ESI-TOF-
MS spectrum of rhomboidal M-S exhibited three peaks at m/z =
903.56, m/z = 1165.50 and m/z = 1602.39, corresponding to the
different charge states [A-5PF¢ ]**, [A-4PF, ]** and [A-3PF¢ |*,
respectively, where A represents the intact assemblies. These
peaks were isotopically resolved and agreed with the theoretical
isotopic patterns. Similarly, peaks that agreed well with the
corresponding simulated isotope patterns were found in the
mass spectrum of M-R, which allowed the metallacycles to be
unambiguously identified.

Due to the existence of the chiral centers and luminescent
units, the chiroptical properties of both metallacycles M-S and
M-R (5.0 x 10°®molL™) and their building blocks L-S and L-R
(1.0 x 10°mol L™") were investigated by CD and CPL in DCM:

aso
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hexane (50:50 v/v) at 298 K under the ambient conditions. As
shown in Fig. 2a, metallacycles M-S and M-R exhibit obvious
mirror-image CD signals with a crossover at 300 nm, while their
corresponding building blocks L-S and L-R are CD silent. In
addition, we also measured their CD spectra at different volume
ratios of DCM/hexane to study the supramolecular chirality. In
the case of M-S and L-S, the CD spectra of M-S obtained in
DCM:hexane (v/v) = 60:40, 50:50, 40:60, and 30:70 clearly
showed a Cotton effect. However, the samples of other volume
ratios were almost CD silent (Fig. S35a). For L-S, there was no
CD signal observed under any conditions (Fig. S35b). Compared
with the CD response, CPL is a unique property pertaining to
the excited-state of a chiral system. In Fig. S36, no obvious CPL
signal could be detected for the building blocks L-S in DCM/
hexane solution. Unexpectedly, metallacycles M-S showed
strong negative signals at 600 nm, whereas M-R exhibited the
opposite signals at the same wavelength (Fig. 2b). In a same
manner, the CPL spectra of the self-assemblies at different
volume ratios of DCM/hexane were also investigated. Never-
theless, there was no CPL signal for L-S and L-R, while the signal
of M-S was exclusively found in DCM:hexane (50:50 v/v)
(Fig. S37a, S37b). Moreover, the calculated g,m values of CPL
were approximately 0.014 for both metallacycles M-S and M-R,
larger than any of previously CPL-active materials [38,39]. These
results clearly indicated that the CPL signals were significantly
enhanced through the formation of supramolecular metalla-
cycles.

In order to gain deep insight into CPL amplification upon the
formation of supramolecular metallacycles, the UV-Vis
absorption and emission spectra of metallacycles M-S and M-R
with the ligands L-S and L-R in DCM/hexane of different
volume ratios were recorded. In Fig. S38, the absorption spectra
of metallacycles M-S and M-R and their ligands L-S and L-R
displayed intense intraligand (IL) absorption bands at A = 261-
333 nm and weak absorption bands at A = 381-450 nm in DCM.
The low-energy absorption bands were attributed to a metal-to-
ligand charge-transfer (MLCT) transition together with a ligand-
to-ligand charge-transfer (LLCT) transition [40]. As shown in
Fig. 3a and Fig. S39a, with the gradual addition of hexane into
the solutions, a gradual decrease in the intensity of the absorp-
tion band at A = 350nm and a concomitant growth of an
absorption tail at A ~ 500 nm were observed for metallacycle M-S
or M-R when the volume fraction of hexane was less than 40%.
It was noteworthy that the low-energy absorption tail at A ~

lg. | =0.014 DCM:hexane (50:50 v/v)
lum '

600 700

Wavelength (nm)

500 800

Figure 2 (a) CD spectra of L-S/L-R (1.0 x 10 °molL™) and M-S/M-R (5.0 x 10 °molL™") in DCM:hexane (50:50 v/v). (b) CPL spectra (excited at A =

330nm) of M-S and M-R in DCM:hexane (50:50 v/v) at room temperature.
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Figure 3 UV-Vis absorption spectra of (a) M-S (5.0 x 10 *mol L") and (b) L-S (1.0 x 10 °mol L") in DCM upon increasing the hexane content (insets: plots
of absorbance versus volume percentage of hexane). Emission spectra (excited at A = 420 nm) of (¢) M-S (5.0 x 10 *mol L") and (d) L-S (1.0 x 10 °molL™) in

DCM upon increasing the hexane content.

500 nm could be usually attributed to a typical metal-metal-to-
ligand charge-transfer (MMLCT) transition, which is related to
intermolecular Pt--Pt and m-n stacking interactions [41]. Sur-
prisingly, a further increase in the percentage of hexane fraction
from 40% to 70% resulted in a reduction for the low-energy
absorption tail at A ~ 500 nm for M-S and M-R. This indicated
the metallacycles M-S and M-R underwent an aggregation-par-
tial disaggregation process when the n-hexane fraction was
increased from 0% to 70% [41,42]. In contrast, for the ligands L-
S and L-R, a gradual decrease in the intensity of the absorption
band at A = 329nm and nearly no change in the low-energy
absorption tail at A ~ 500nm were observed as the hexane
fraction increased, implying that the ligands L-S and L-R could
not form Pt--Pt or m-n stacking interactions even when the n-
hexane fraction was increased to 70% (Fig. 3b and Fig. S39b). On
the other hand, the emissions of the ligands L-S and L-R at Ay«
= 551 nm, corresponding to the emission of the monomeric
Pt(II) bzimpy complex, were gradually quenched upon
increasing the n-hexane fraction from 0% to 70%, while the
emission spectra of the metallacycles M-S and M-R displayed a
significant redshift of the emission maxima from 552 to 627 nm
under the same conditions (Fig. 3¢, 3d and Fig. S39¢, S39d) [43].
This result further indicated that Pt--Pt interactions occurred
only in the metallacycles M-S and M-R but not in the ligands L-S
and L-R. All obtained data demonstrated that the Pt--Pt inter-
actions played a crucial role in the hierarchical self-assembly of
the metallacycles M-S and M-R.

To obtain more detailed information concerning the hier-
archical self-assembly, the concentration-dependent and sol-
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vent-dependent 'H NMR spectra of the representative
metallacycle M-S were acquired. As shown in Fig. S40, upon
increasing the concentration of [Dy4] n-hexane, remarkable
downfield shifts of the pyridine protons H; and H, as well as the
up-field shifts of the phenyl protons H; and H;, were observed,
indicating the formation of n-n stacking interactions upon the
generation of aggregates via hierarchical self-assembly. In
Fig. S41, the concentration-dependent '"H NMR spectra of M-S
undoubtedly further supported the existence of m-m stacking
interactions. To elucidate the plausible packing arrangements,
the 'H-'H NOESY NMR spectrum of the M-S (5.0 x
10*mol L™) in CD,Cl, upon addition of [D4] n-hexane was
recorded. As shown in Fig. S42, the observation of the cross
peaks between the signals of H;, and Hs and between those of
His and Hy confirmed the presence of n-n stacking that brought
the protons into vicinity [42,44]. Furthermore, these newly
observed cross peaks suggested that the adjacent metallacycles
were probably arranged in a head-to-tail packing form with a
slightly staggered structure along the Pt--Pt chain to minimize
the steric hindrance between the long chiral alkyl chain and the
bulky triethylphosphine units.

The morphologies of the assemblies of the ligands L-S and L-R
and those of the metallacycles M-S and M-R were observed by
using SEM, TEM, and AFM. The SEM, TEM, and AFM images
revealed that L-S and L-R formed uniform nanovesicles in a
diameter of approximately 500 nm (Fig. 4a, b and Fig. S43). The
thickness of the observed nanovesicles was determined to be
~33.4nm from the TEM images, implying that they were multi-
layered vesicles. In contrast, metallacycles M-S and M-R were

February 2022 | Vol.65 No.2
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Figure 4 SEM and TEM images of (a, b) L-S (1.0 x 10°molL™) and (e, f) M-S (5.0 x 10 °mol L") in DCM:hexane (50:50 v/v). (c) A typical equilibrium
snapshot of the assembled structure of the ligand L in the simulation. The inset shows the particular packing styles in the multi-layered structure (top: inter-
layer packing; down: intra-layer packing). (d) The distribution of the number of Pt beads along the z direction in the simulation. (g) A typical equilibrium
snapshot of the assembled structure of metallacycle M in the simulation. The snapshots in the box display the particular packing style in the assembly.

self-assembled into nanorods with a length of approximately
600nm (Fig. 4e, f and Fig. S44). DLS experiments were also
conducted to verify the identity of the aggregate species for L-S
and M-S. Fig. 545 shows that the average hydrodynamic dia-
meters (Dy) were 476.3 nm for L-S, 546.2 nm for M-S, 460.6 nm
for L-R, and 522.7 nm for M-R in DCM/hexane, consistent with
the SEM and TEM images. To provide more insights into the
distinct morphology of the aggregates, CGMD simulations were
applied to investigate the self-assembly process of the ligand L
and its corresponding metallacycle M. In the simulation, L and
M were modelled through the CG method, where each unit in
the molecules was represented by using one CG bead (Fig. S46).
As shown in Fig. 547, hundreds of L molecules were first ran-
domly placed in the simulation box. Due to the effective inter-
action among the aromatic rings and the alkaline tails, several L
molecules quickly packed together mainly in a head-to-tail
conformation and formed the aggregates. Subsequently, these
aggregates gradually turned into the regular and layered struc-
tures. Interestingly, due to the m-m stacking between the head
beads, the aggregates finally adopted a multi-layered structure
(Fig. 4c and d). In Fig. S48, since the interaction in the xy plane
was much stronger than that in the z direction, the ligand L was
preferentially grown into a layered structure, which consisted
with the multi-layered vesicle in the experiment. On the con-
trary, the linear growth of the M molecules was observed in the
simulations (Fig. 4g and Fig. $49). As shown in Fig. S50, despite
the existence of the interactions between the aromatic rings (that
induced the in-plane growth), the Pt--Pt interactions (in the z
direction) dominated the self-assembly process, leading to the
rod-like aggregates in the assembly. Notably, owing to the
existing steric hindrance between the alkane tails (i.e., T beads)
and the PEt; (ie., S beads), some misplacement between the
neighbouring metallacycles occurred. Thus, the linear growth
was not ideal, where the symmetry of M arrangement was
slightly broken in the nanorods. The distinct morphologies of
the ligands and the metallacycles might result in their different
CPL properties since the molecular arrangements of the ligands
were more symmetric than those of the metallacycles.

February 2022 | Vol.65 No.2
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The investigation into the chirality properties of the molecules
might shed some light onto the CPL mechanism. To explain the
role of the Pt--Pt interactions involved in the CPL amplification
process, attempts to obtain X-ray-quality single crystals of L and
M were frustrated. Fortunately, yellow crystals of the precursor
compound L2-S were obtained for the X-ray diffraction, which
was cultivated in a DCM/EtOH solution, similar to other
alkynylplatinum(II) complexes [45,46]. From the X-ray crystal-
lographic analysis, the dimeric structure of the L2-S complex was
observed in a head-to-tail packing arrangement with “short” and
“long” Pt-Pt distances of 4.752 and 8.540 A, respectively
(Fig. 5a). The Pt---Pt distances implied that the Pt---Pt interaction
was negligible since the efficient Pt--Pt interactions should be
within the range of 3.09-3.50 A, as was determined in the pre-
vious reports [47,48]. On the other hand, the centroid-to-cen-
troid distances (3.514, 3.619, and 3.482 A) indicated that the
intermolecular m-n interaction played a significant role in this
molecule (Fig. 5b). The chiral alkyl chains were centrosymmetric
in the head-to-tail dimer, resulting in relatively weak CD signals,
consistent with the corresponding UV-Vis and CD spectra
(Fig. S51). Additionally, two models, La and Ma (Fig. S52), were
generated to simulate the absorption spectra of L and M by TD-
DFT calculations (Figs S53-S55), and the results were in good
agreement with the experimental absorption spectra. Since the
Pt-PEt; groups did not contribute to the electronic transitions in
the lower excited states (Figs S56 and S57, Tables S2 and S3), M
could be further simplified as La to investigate the electronic
structure in the excited states of its dimer. The CD spectra were
simulated by TD-DFT calculations in four models, L-S, L-R, M-
S, and M-R, in which the dimers were stacked in different
orientations with the Pt atoms face-to-face, as shown in Fig. 5c.
The simulated CD spectra demonstrated that the chirality of the
Pt---Pt interaction-driven self-assembled M was enhanced when
the crossing angles of the dipole moments increased from 0° to
90° (Figs S58 and S59). In Fig. S60, the differences between the
simulated spectra and the experimental measurements were
possibly due to the effect of solvents. Moreover, the models of L-
S and L-R agreed well with the crystal structure of L2-S, in which
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Figure 5 (a, b) The crystal packing of L2-S. PFs anions were omitted for clarity (the short and long Pt---Pt distances were 4.752 and 8.540 A, respectively; the
n-1 distances were measured as 3.514, 3.619, and 3.482 A). (c) The TD-DFT-simulated dipole moments of the monomers.

the dipole moments of the dimers were parallel or anti-parallel
to one another.

CONCLUSIONS

In summary, two well-defined chiral metallacycles M-S and M-
R, which could form the highly effective CPL-active materials
through hierarchical self-assembly involving Pt---Pt interactions,
were constructed in this work. In contrast to their precursors,
which were CPL silent, they were found as prominent CPL-
active materials with a high gyum value of up to 0.014. The
mechanistic studies revealed that the intermolecular Pt--Pt
interaction played a significant role in CPL signal amplification.
This work not only provides a facile approach to the fabrication
of highly effective CPL-active materials, but also offers a new
strategy for the design and preparation of other chiroptical
materials based on transition-metal complexes featuring metal-
lophilic interactions.
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