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Regulating the electronic structure of NiFe layered
double hydroxide/reduced graphene oxide by Mn
incorporation for high-efficiency oxygen evolution
reaction
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ABSTRACT The development of highly efficient and cost-
effective oxygen evolution reaction (OER) electrocatalysts for
renewable energy systems is vitally essential. Modulation of
the electronic structure through heteroatom doping is con-
sidered as one of the most potential strategies to boost OER
performances. Herein, a rational design of Mn-doped NiFe
layered double hydroxide/reduced graphene oxide (Mn-NiFe
LDH/rGO) is demonstrated by a facile hydrothermal ap-
proach, which exhibits outstanding OER activity and dur-
ability. Experimental results and density functional theory
(DFT) calculations manifest that the introduction of Mn can
reprogram the electronic structure of surface active sites and
alter the intermediate adsorption energy, consequently redu-
cing the potential limiting activation energy for OER. Speci-
fically, the optimal Mn-NiFe LDH/rGO composite shows an
enhanced OER performance with an ultralow overpotential of
240 mV@10 mA cm−2, Tafel slope of 40.0 mV dec−1 and ex-
cellent stability. Such superior OER activity is comparable to
those of the recently reported state-of-the-art OER catalysts.
This work presents an advanced strategy for designing elec-
trocatalysts with high activity and low cost for energy con-
version applications.

Keywords:Mn, NiFe layered double hydroxides, electrocatalysts,
oxygen evolution reaction, DFT calculations

INTRODUCTION
Oxygen evolution reaction (OER) is a critical process for
the renewable energy systems [1–3]. However, the OER
suffers from the sluggish kinetic process due to the
multiple electron transfer [4,5]. Therefore, the rational
design and construction of efficient electrocatalysts to
boost the OER process are highly desirable for the sus-
tainable energy systems. Generally, Ir- and Ru-based
nanomaterials are considered as the benchmark electro-
catalysts for OER to date, but the scarcity and high cost
limit their commercial applications in large scale [6–9].
Thus, developing highly efficient electrocatalysts based on
earth-abundant metals represents a promising alternate to
reduce the consumption of precious metals and many
research efforts have been devoted to this field [10–13].

Recently, layered double hydroxides (LDHs) have ex-
hibited remarkably potential applications in designing
advanced OER electrocatalysts [14–19]. For example,
NiFe LDH displayed enhanced OER performance in al-
kaline solutions [20,21] and the improvement of activity
was generally attributed to the high oxidation state of Fe
during the OER process [22,23]. Nevertheless, compared
with other LDHs systems, NiFe LDHs usually possess a
weak binding energy of *O on the active sites, which is
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unfavorable for the OER process [24]. Thus, designing an
effective NiFe LDH catalyst to break the theoretical lim-
itation is of great significance yet challenging.

On the other hand, previous reports indicated that the
intrinsic activity of LDH can be improved by doping with
third metals (Al, V, Cr, Ce, and Mo) to modulate the
electronic structure of surface atoms [25–29]. For ex-
ample, Jin and coworkers [30] reported that the NiFeCr
LDH exhibited an exceptionally high electrocatalytic ac-
tivity with an overpotential of 225 mV to reach
10 mA cm−2 due to the dopant of Cr. In addition, the
theoretical calculation revealed that the Co-doped NiFe
LDH can decrease the energy barrier for the formation of
OOH*, thus accelerating the OER kinetics [31]. Inspired
by the above achievements, we explore the incorporation
of other dopants into NiFe LDH to adjust the energy
barrier for the adsorption of oxygen intermediates during
OER.

Herein, we demonstrate that the Mn-doped NiFe LDH/
reduced graphene oxide (Mn-NiFe LDH/rGO) exhibits
an outstanding OER performance with a low over-
potential to reach 10 mA cm−2 (240 mV), a small Tafel
slope of 40.0 mV dec−1 and remarkable stability in
1.0 mol L−1 KOH. The density functional theory (DFT)
calculations reveal that the Mn dopant in the Mn-NiFe
LDH/rGO can modulate the electronic structure of Fe
active site and reduce the energy barrier in OER reaction,
which can break up the scaling relationships of oxygen
intermediates and accelerate the OER kinetics. This work
presents a feasible synthetic approach to construct highly
active and durable OER electrocatalysts, which will not
only pave an avenue for the future study of the layered
hydroxide composites, but also promote the development
of earth-abundant metal-based materials for energy
conversion and storage.

EXPERIMENTAL SECTION

Synthesis of Mn-NiFe LDH/rGO
Mn-NiFe LDH/rGO was prepared via a simple hydro-
thermal reaction. Specifically, the rGO was firstly ob-
tained through the chemical reduction of graphene oxide
(Supplementary information, SI). After that, 5.0 mg of
rGO was dispersed in 10 mL of ethylene glycol with the
aid of ultrasonication. Then, 10 mL of water solution
containing NiCl2·6H2O, FeCl3·6H2O and MnCl2·4H2O
(the molar ratio of Ni, Fe and Mn is 50:15:3, and the total
concentration of metal is 0.262 mmol L−1) was added
dropwise into the above rGO solution under stirring.
After being continuously stirred for 5 h, 100 mg of urea

was introduced into the above mixed solution. Subse-
quently, the as-obtained homogeneous solution was
transferred into a 25-mL Teflon-lined stainless-steel au-
toclave and heated at 120°C for 12 h. The resulting pro-
duct (denoted as x Mn-NiFe LDH/rGO, where the x is the
molar content of the doped Mn) was washed with dis-
tilled water and absolute ethanol, and then dried in a
vacuum oven for further characterization. Other mass
contents of doped Mn-NiFe LDH/rGO, NiFe LDH/rGO,
and Mn-NiFe LDH were also prepared with the similar
procedures.

Characterization
Structures and morphologies of the samples were char-
acterized by powder X-ray diffraction (XRD), scanning
electron microscopy (SEM), and transmission electron
microscopy (TEM). Elemental mapping images were
characterized by energy-dispersive X-ray spectrometry
(EDS) attached on FEI Tecnai F20 TEM. Chemical states
of the samples were analyzed by X-ray photoelectron
spectroscopy (XPS). The Fe K-edge and Ni K-edge were
obtained from Beijing Synchrotron Radiation Facility
(BSRF). The detailed characterization conditions are
shown in SI.

Electrochemical measurements
All electrochemical measurements were tested by a CHI
760 E electrochemical workstation via the three-electrode
systems, and the detailed testing methods and measure-
ment conditions are shown in SI.

DFT calculations
All calculations were performed by means of spin po-
larized DFT methods using the Vienna Ab initio Simu-
lation Package (VASP), and the detailed DFT calculation
methods and process are shown in SI.

RESULTS AND DISCUSSION
XRD evidences that there is no sign of other characteristic
peaks after Mn doping compared with that of the original
NiFe LDH/rGO (Fig. 1a), suggesting a small amount of
Mn dopant will not destroy the crystalline structure of
NiFe LDH/rGO. The morphologies of NiFe LDH/rGO,
Mn-NiFe LDH and Mn-doped NiFe LDH/rGO were
characterized by SEM and TEM images (Fig. S1, and
Fig. 1b, c), which confirmed that 5.0 Mn-NiFe LDH/rGO
retained the original shape of nanosheets after the Mn
doping. High-resolution TEM (HRTEM) image displays
the crystallinity of 5.0 Mn-NiFe LDH/rGO (Fig. 1d) and
the spacings of the lattice fringes of 0.19 (Fig. 1e) and
0.33 nm (Fig. 1f) are assigned to the (018) plane of NiFe
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LDH and the (002) plane of rGO, respectively. In addi-
tion, the high angle annular dark field scanning TEM
(HAADF-STEM) and the corresponding EDS images
evidence that a small amount of Mn is homogeneously
distributed throughout the entire materials (Fig. 1g and
Fig. S2), suggesting that the Mn doping in NiFe LDH/
rGO system has been successfully achieved.

The oxidation state of surface and electronic structure
of Mn-doped NiFe LDH/rGO and NiFe LDH/rGO were
investigated by XPS. The full scan spectra (Fig. S3) reveal
that the 5.0 Mn-NiFe LDH/rGO is composed of Ni, Fe,
Mn, C and O elements, which is consistent with the EDS
mapping (Fig. 1g). As shown in Fig. 2a, the Mn 2p peak is
deconvoluted into four peaks. The peaks located at
binding energies of 641.7 and 653.3 eV correspond to
Mn 2p1/2 and Mn 2p3/2, confirming the existence of Mn3+

in the 5.0 Mn-NiFe LDH/rGO [32]. While the hydroxyl

ion is a weak-field ligand, the Mn3+ ions in bimetallic
LDH are shown in a high spin state, which will result in
lattice instability in LDH composite [17]. Therefore, the
Mn3+ can be easily oxidized to Mn4+, and thus the peaks
of Mn (IV) can be observed in the Mn 2p XPS spectra.
The incorporation of metal can modulate the electronic
structure of active sites [12,22], improving the electro-
catalytic activity. Consequently, after Mn doping, the
peak of Fe 2p3/2 in 5.0 Mn-NiFe LDH/rGO shifts 0.4 eV
lower relative to that of the NiFe LDH/rGO (Fig. 2b).
Additionally, the binding energy of Ni 2p3/2 of 5.0 Mn-
NiFe LDH/rGO also shifts negatively for ~0.5 eV against
that of the NiFe LDH/rGO (Fig. 2c). XPS fitting shows
that the peaks of 712.2 and 724.8 eV are attributed to
Fe 2p3/2 and Fe 2p1/2, respectively, in 5.0 Mn-NiFe LDH/
rGO, indicating the presence of Fe3+ [17]. Another two
peaks belong to the Fe satellite (Fig. 2b). For the Ni 2p

Figure 1 Morphology and structural characterization of NiFe LDH/rGO and Mn-doped NiFe LDH/rGO. (a) The XRD patterns of NiFe LDH/rGO,
1.0 Mn-NiFe LDH/rGO, 2.5 Mn-NiFe LDH/rGO, 5.0 Mn-NiFe LDH/rGO and 7.5 Mn-NiFe LDH/rGO; (b) SEM, (c) TEM, (d) HRTEM images of 5.0
Mn-NiFe LDH/rGO. The enlarged areas denoted in (d) correspond to the HRTEM images of (e) NiFe LDH and (f) rGO, respectively. (g) HADDF-
STEM image and corresponding EDS mapping of 5.0 Mn-NiFe LDH/rGO.
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spectra, peaks at binding energies of 855.6 and 873.3 eV
are assigned to Ni p3/2 and Ni p1/2 of Ni (II), while the two
peaks at 861.4 and 879.5 eV correspond to the Ni satellite
(Fig. 2c) [33]. Moreover, three peaks at 530.8, 532.5, and
533.6 eV are clearly observed from the O 1s spectra
(Fig. S4), which correspond to metal-oxide bond, C=O
and adsorbed water, respectively.

X-ray absorption near-edge structure (XANES) and
extended X-ray absorption fine structure (EXAFS) were
performed to characterize the precise electronic struc-
tures of Fe and Ni in 5.0 Mn-NiFe LDH/rGO. From the
Fe K-edge XANES spectra (Fig. 2d), the absorption edge
of Fe K-edge in 5.0 Mn-NiFe LDH/rGO shifted to lower
energy compared with NiFe LDH/rGO due to the Mn
dopant, suggesting a slight decrease in the Fe oxidation
state after the introduction of Mn in 5.0 Mn-NiFe LDH/

rGO. The first derivative can be more intuitive to char-
acterize the change of metal oxidation state based on the
absorption threshold energy (E0) [34,35]. According to
the first derivatives of the Fe K-edge XANES spectra, the
first maxima E0 is 7111, 7122.6, 7127.1, 7126.6, and
7126.4 eV for Fe foil, FeO, Fe2O3, NiFe LDH/rGO, and
5.0 Mn-NiFe LDH/rGO (Fig. S5), respectively. Based on
the Fe K-edge XANES spectra, the fitting average oxida-
tion states are shown in Fig. 2f. The average valence state
of Fe in the 5.0 Mn-NiFe LDH/rGO is about +2.803,
which is slightly lower than that of Fe in NiFe LDH/rGO
(+2.845).

The R-space spectra (Fig. 2e) exhibit that the peak in-
tensity of 5.0 Mn-NiFe LDH/rGO is slightly lower than
that of the NiFe LDH/rGO, which is attributed to the
increase of disorder degree around Fe caused by Mn

Figure 2 XPS and XAS analyses of NiFe LDH/rGO and Mn-doped NiFe LDH/rGO. The high-resolution XPS spectra of (a) Mn 2p, (b) Fe 2p and
(c) Ni 2p of 5.0 Mn-NiFe LDH/rGO; (d) Fe K-edge XANES spectra; (e) magnitude of k3-weighted Fourier transforms of Fe K-edge EXAFS spectra of
Fe foil, FeO, Fe2O3, NiFe LDH/rGO and 5.0 Mn-NiFe LDH/rGO; (f) oxidation states of Fe in the NiFe LDH/rGO and 5.0 Mn-NiFe LDH/rGO; (g) Ni
K-edge XANES spectra; (h) magnitude of k3-weighted Fourier transforms of Ni K-edge EXAFS spectra of Ni foil, NiO, NiFe LDH/rGO and 5.0 Mn-
NiFe LDH/rGO; and (i) oxidation states of Ni in the NiFe LDH/rGO and 5.0 Mn-NiFe LDH/rGO.
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doping. Moreover, the Ni K-edge XANES spectra and Ni
K-edge FT EXAFS were also conducted to reveal the Ni
structure in 5.0 Mn-NiFe LDH/rGO (Fig. 2g and h),
displaying a trend similar to that of Fe. According to the
first derivatives of the Ni K-edge XANES spectra, the first
maxima E0 is 8333.1, 8344.7, 8342.6, and 8341.7 eV for Ni
foil, NiO, NiFe LDH/rGO, and 5.0 Mn-NiFe LDH/rGO
(Fig. S6), respectively. The fitting average oxidation states
show that the average valence state of Ni in the 5.0 Mn-
NiFe LDH/rGO is about +1.483 (Fig. 2i), which is lower
than that of Ni in NiFe LDH/rGO (+1.638). Then, the
products of NiFe LDH/rGO and 5.0 Mn-NiFe LDH/rGO
were characterized by Auger electron spectroscopy (AES,
Fig. S7). The results also show that the kinetic energies of
Fe (Fig. S7a) and Ni (Fig. S7b) shift to high energy after
Mn doping, which indicates that the valence states of Ni
and Fe decrease [36]. Here, when Mn is doped, the effects
on the oxidation states of Ni and Fe are different, which
may be caused by the difference in electronegativities of
Mn, Ni, and Fe [36,37], and the induction effect of high-
valent Mn on Ni and Fe [38]. Thereby, the above analyses
indicate that Mn dopant can modulate the electronic
properties of Fe and Ni in 5.0 Mn-NiFe LDH/rGO.

The OER electrocatalytic activity of the as-prepared
catalysts was evaluated in the oxygen-saturated
1.0 mol L−1 KOH with 95% iR compensation and all the
potentials were referenced to a reversible hydrogen elec-
trode (RHE) (SI for more details). The peak around
1.43 V of the as-prepared composites is assigned to the
Ni(II)/Ni(III or IV) redox process in alkaline environ-
ment (Fig. 3a and b) [39]. Compared with the NiFe LDH/
rGO, the Mn-NiFe LDH/rGO exhibits higher current
density at given applied potentials. To be specific, the 5.0
Mn-NiFe LDH/rGO displays the lowest overpotential
(240 mV) to achieve the current density of 10 mA cm−2,
which is superior to that of NiFe LDH/rGO (293 mV), 1.0
Mn-NiFe LDH/rGO (268 mV), 2.5 Mn-NiFe LDH/rGO
(261 mV) and 7.5 Mn-NiFe LDH/rGO (274 mV). In
addition, the overpotential of 5.0 Mn-NiFe LDH/rGO to
deliver 10 mA cm−2 is also lower than that of Mn-NiFe
LDH (278 mV), Ni LH/rGO (450 mV), NiFe LDH/rGO
(293 mV) and RuO2 (370 mV) (Fig. 3b). Moreover, the
OER activity of 5.0 Mn-NiFe LDH/rGO also surpasses
other reported advanced LDH catalysts, including the
NiCoFe-LDH HP (276 mV@10 mA cm−2) [40], GCN/
Ni(OH)2 (290 mV@10 mA cm−2) [41], ZnNi LDH/
N-rGO (290 mV@10 mA cm−2) [42], Ni0.75V0.25 LDH
(310 mV@10 mA cm−2) [43], NP Au/Cr-NiFe (323 mV@
10 mA cm−2) [32], and 3D NiFe-LDH HMS (290 mV@
10 mA cm−2) [44].

Tafel slope is an intrinsic activity derived from the
corresponding linear sweep voltammetry (LSV) curves of
a catalyst [39]. As shown in Fig. 3c, the 5.0 Mn-NiFe
LDH/rGO shows the lowest Tafel slope (40.0 mV dec−1)
among all the as-prepared composites and is even com-
parable to the recently reported advanced OER electro-
catalysts under similar conditions (Table S1), such as Ni-
Fe LDH (49.4 mV dec−1) [20], NiCoFe-LDH HP
(56 mV dec−1) [40], GCN/Ni(OH)2 (77 mV dec−1) [41],
Ni0.75V0.25 LDH (50 mV dec−1) [43], 3D NiFe-LDH HMS
(51 mV dec−1) [44], and TiO2C@CNx,950 (69 mV dec−1)
[45], which suggests the most favorable OER kinetics of
5.0 Mn-NiFe LDH/rGO.

The electrochemical active surface area (ECSA) is an
important factor for an electrocatalyst, and the larger
ECSA is beneficial for the electrocatalytic activity [46,47].
Fig. S8 shows the CV curves of 5.0 Mn-NiFe LDH/rGO,
NiFe LDH/rGO, Mn-NiFe LDH and RuO2 with different
scan rates in 1.0 mol L−1 KOH. The double-layer capa-
citance (Cdl) can be achieved by plotting the ΔJ/2 (=1/2(Ja
−Jc)) at 1.2 V versus the scan rate, and the Cdl is pro-
portional to the ECSA [47]. The Cdl of 5.0 Mn-NiFe LDH/
rGO is 5.7 mF cm−2, which is 2.4, 3.2 and 4.1 times that of
Mn-NiFe LDH, NiFe LDH/rGO and RuO2, respectively
(Fig. 3d), indicating that 5.0 Mn-NiFe LDH/rGO has a
larger electroactive surface area, which enhances the OER
performance. Additionally, electrochemical impedance
spectroscopy (EIS) was performed at the overpotential of
285 mV to evaluate the intrinsic conductivity for cata-
lysts. The equivalent circuit is fitted by a Rs−(R1||CPE1)
−(Rct||CPE2) model (inset Fig. 3e), where Rs is the solution
resistance, R1||CPE1 is related to the porosity of electrode
surface and the Rct||CPE2 corresponds to the kinetics of
the OER. Fig. 3e and Fig. S9 display that the 5.0 Mn-NiFe
LDH/rGO exhibits smaller Rct (27.4 Ω) than Mn-NiFe
LDH (40.7 Ω), NiFe LDH/rGO (71.4 Ω) and RuO2
(689.0 Ω), suggesting that a much faster charge-transfer
rate due to the dopant of Mn, resulting in the remarkable
electrocatalytic activity for OER [48,49], which is in good
agreement with the result of the Tafel slope. These results
indicate that Mn dopant can improve the intrinsic
property of the electrocatalyst.

The stabilities of the 5.0 Mn-NiFe LDH/rGO, NiFe
LDH/rGO and RuO2 were performed by a chron-
opotentiometry measurement at 10 mA cm−2. As shown
in Fig. 3f, the overpotential of 5.0 Mn-NiFe LDH/rGO
displays a slight increase about 5 mV after 72,000 s con-
stant test. Nevertheless, the overpotential of NiFe LDH/
rGO and RuO2 both increase 12 mV. Furthermore, the
XPS and TEM were employed to investigate the stability
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of 5.0 Mn-NiFe LDH/rGO. The peak positions of Fe 2p
and Ni 2p without obvious change after the stability test
indicate great chemical stability of 5.0 Mn-NiFe LDH/
rGO (Fig. S10). The morphology of 5.0 Mn-NiFe LDH/
rGO remains unchanged after the electrochemical ana-
lysis (Fig. S11), highlighting the excellent structural in-
tegrity for Mn-doped NiFe LDH/rGO in alkaline media.

To deeply understand the mechanism of the enhanced
water oxidation activity, DFT+U calculations were em-
ployed to systematically investigate the intermediate
binding energies and reaction overpotential of the NiFe

LDH/rGO and Mn-NiFe LDH/rGO. The reaction path-
ways were proposed based on the following mechanism
[50]:
Step 1: l GH O( ) + 2* *+*OH + H + e ; 12

+

Step 2: G*OH+ * *+*O + H + e ; 2+

Step 3: l G*O + *+H O( ) *OOH + H + e ; 32
+

Step 4: g G*OOH O ( )+ H + e ; 42
+

where “*” represents the active site on the surface of NiFe
LDH and Mn-NiFe LDH. “*OH”, “*O” and “*OOH” are
the adsorbed oxygen intermediate species during the OER

Figure 3 Electrocatalytic performance of NiFe LDH/rGO and Mn-doped NiFe LDH/rGO for OER. (a) The LSV curves of different Mn-doped NiFe/
rGO with 95% iR corrected in the O2-saturated 1.0 mol L−1 KOH; (b) the LSV curves of 5.0 Mn-NiFe LDH/rGO, RuO2, NiFe LDH/rGO, Mn-NiFe
LDH and Ni LH/rGO with 95% iR corrected in the O2-saturated 1.0 mol L−1 KOH; (c) Tafel slope derived from the (b); (d) Cdl values at different scan
rates (1.20 V vs. RHE); (e) Nyquist plots of 5.0 Mn-NiFe LDH/rGO, NiFe LDH/rGO and Mn-NiFe LDH in 1.0 mol L−1 KOH at the overpotential of
285 mV; (f) stability of 5.0 Mn-NiFe LDH/rGO, NiFe LDH/rGO and RuO2 at the current density of 10 mA cm−2. The inset in Fig. 3e is the equivalent
circuit.
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process. The theoretical overpotential of the OER is de-
fined as η = max {(ΔG1, ΔG2, ΔG3, ΔG4)/e} − 1.23 V [50].

The Gibbs free energy diagrams of NiFe LDH and Mn-
NiFe LDH are shown in Figs 4 and 5. For pristine NiFe-

Figure 4 DFT calculations of the Gibbs free energy for NiFe LDH. The Gibbs free energy diagrams of (a) *Fe-NiFe LDH and (b) *Ni-NiFe LDH.
The symbol * represents the active sites.

Figure 5 DFT calculations of the Gibbs free energy for Mn-NiFe LDH. The forming energy of (a) Mn-sub-Ni sites and (b) Mn-sub-Fe sites in Mn-
NiFe LDH; the Gibbs free energy diagrams of (c) *Fe-3Mn-NiFe LDH, (d) *Ni-3Mn-NiFe LDH, (e) *Mn-3Mn-NiFe LDH and (f) contour plot of
theoretical overpotential as a function of ΔG(OH*) and ΔG(O*)−ΔG(OH*). The symbol * represents the active sites.
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LDH, the Fe is the major active sites and its potential
limiting step is the second step (*OH → *O) with an
energy barrier as high as 1.96 eV, providing the high
overpotential of 0.73 V (Fig. 4). Specifically, the high
overpotential of NiFe LDHs is essentially caused by the
weak adsorption of O* on Fe sites. Therefore, strength-
ening the binding energy of O* is a significant pathway to
decrease the overpotential.

Consequently, after Mn substitutes Ni atoms in NiFe
LDH (Fig. 5a and b, and Fig. S12), the Gibbs free energy
analysis reveals that Fe is still the major active sites and
the inherent activity followed the decreasing order of Fe >
Mn ≈ Ni (Fig. 5c–e, and Figs S13 and S14). Interestingly,
the potential limiting step of Mn-NiFe LDH is switched
to the formation *OOH from *O with free energy of
1.79 eV, resulting in the reduced overpotential (η =
0.56 V, Fig. 5c) in comparison with the pristine NiFe
LDH (η = 0.73 V, Fig. 4a). This optimal overpotential of
3Mn-NiFe LDH will endow it with excellent OER activity.
The above discussion demonstrates that the intrinsic ac-
tivity can be modulated by introduction of Mn.

Moreover, with the DFT calculation, the relation be-
tween the Mn concentration and the OER activity can be
completely interpreted. The theoretical calculation reveals
that the potential limiting step of Mn-NiFe LDH is the
formation *OOH from *O. When the Mn concentration
decreases or increases in Mn-NiFe LDH, the Fe active
sites exhibit strong adsorption of *O, leading to the high
overpotential for OER (Fig. S15 and Table S2).

In order to provide a precise representation map, an
overpotential contour plot is provided, which is based on
the theoretical activities of metal sites [51,52]. Fig. 5f
obviously displays that the central red region (Fe sites)
represents the low overpotential in comparison with the
border region (Ni and Mn sites). Fe sites on 3Mn-NiFe
LDH (near the center of the red region) exhibit moderate
binding energies of intermediates, resulting in the ex-
cellent OER activity. Benefiting from the overpotential
contour plot, one can efficiently adjust the binding en-
ergies of oxygen intermediate species by regulating the
electronic structures and consequently construct highly
active electrocatalysts for water oxidation [53−55].

CONCLUSIONS
In summary, the Mn-doped NiFe LDH/rGO is success-
fully prepared via a simple hydrothermal strategy. The
obtained Mn-NiFe LDH/rGO exhibits highly efficient
OER activity with a low overpotential (240 mV) to derive
10 mA cm−2, small Tafel slope (40.0 mV dec−1) and re-
markable stability in 1.0 mol L−1 KOH, which outper-

forms the NiFe LDH/rGO and RuO2. The outstanding
OER performance of Mn-NiFe LDH/rGO is attributed to
the Mn dopant, which efficiently optimizes the electronic
structure of the metal active sites, accelerating the OER
kinetics. The DFT calculations reveal that Mn with the
appropriate concentration in the NiFe LDH/rGO can
modulate the adsorption energy of oxygen intermediate
species on Fe actives sites and consequently reduce the
energy barrier of the rate-determining step. This work
provides an effective approach to design highly active and
stable OER electrocatalysts of LDH with a potential ap-
plication in water splitting under alkaline conditions.
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Mn调控NiFe LDH/rGO活性位点的电子结构作为
高效水氧化催化剂
江彬彬1,3†, 张永臻2,4†, 屠仁勇2, 孙凯安2, 柳守杰5, 吴孔林1*,
尚恒帅1, 黄爱鉴6*, 王淼1, 郑黎荣7, 魏先文1, 陈晨2*

摘要 发展廉价、高效的水氧化(OER)催化剂对发展可持续能源
具有重要意义. 杂原子掺杂调节活性位点的电子结构提高催化剂
的OER性能被认为是一种高效的策略. 本文通过水热法制备得到
Mn掺杂的层状镍铁氢氧化物/还原氧化石墨烯(Mn-NiFe LDH/
rGO)作为高效、稳定的水氧化催化剂. 实验和模拟计算研究都表
明Mn能调整活性位点的电子结构, 改善其对水氧化反应中中间产
物的吸附能垒, 从而减小OER反应中决速步骤的反应势垒. 具体而
言, 最优的Mn-NiFe LDH/rGO复合材料在过电位仅为240 mV就能
驱动10 mA cm−2的电流密度, Tafel斜率低至40.0 mV dec−1, 并且具
有良好的稳定性. 该催化剂优异的活性优于最近报道的OER电催化
剂. 本工作为制备用于能源转换领域的高活性、廉价的电催化剂
提供了新的思路.
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