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ABSTRACT Photothermal reverse water gas shift (RWGS)
catalysis holds promise for efficient conversions of greenhouse
gas CO2 and renewable H2, powered solely by sunlight, into
CO, an important feedstock for the chemical industry. How-
ever, the performance of photothermal RWGS catalysis over
existing supported catalysts is limited by the balance between
the catalyst loading and dispersity, as well as stability against
sintering. Herein, we report a core-shell strategy for the design
of photothermal catalysts, by using Ni12P5 as an example, with
simultaneously strong light absorption ability, high dispersity
and stability. The core-shell structured Ni12P5@SiO2 catalyst
with a relatively small Ni12P5 particle size of 15 nm at a high
Ni12P5 loading of 30 wt% exhibits improved activity, nearly
100% CO selectivity, and superior stability in photothermal
RWGS catalysis, particularly under intense illuminations. Our
study clearly reveals the effectiveness of the core-shell strategy
in breaking the limitation of supported catalysts and boosting
the performance of photothermal CO2 catalysis.

Keywords: photothermal catalysis, RWGS, nickel phosphide,
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INTRODUCTION
The conversion of CO2 and renewable H2 into fuels and
feedstock chemicals through heterogeneous photo-
catalysis is a promising solution to sustainable energy
security and global climate change [1–8]. Among differ-
ent solar-powered CO2 hydrogenation processes, photo-
thermal reverse water gas shift (RWGS) catalysis features
the operation under ambient conditions and powered
solely by sunlight to convert CO2 into CO, an important
feedstock for the chemical industry [9–16]. For example,
CO can be transformed into different liquid fuels (diesel,

gasoline, and alcohols) through further hydrogenation
[17,18]. Compared with direct hydrogenation of CO2 to
produce value-added methanol, the CO hydrogenation
process is more thermodynamically favorable to achieve a
much higher yield [19–21]. Through the endothermic
RWGS reaction, solar energy is transformed into chemi-
cal energy with the ease of large-scale storage and trans-
portation [22,23].
Since the pioneering study by Meng et al. [24] in 2014,

many attempts have been made in the development of
efficient catalysts, mainly based on supported metal
nanoparticles, for photothermal CO2 hydrogenation re-
actions [25–32]. However, the performance of supported
catalysts in photothermal RWGS catalysis is generally
limited by the balance between the metal loading (de-
termining the light absorption ability and photothermal
performance) and dispersity (determining the intrinsic
catalytic performance), as well as stability against sinter-
ing. To ensure strong absorption of the solar spectrum,
the metal loading is typically high and thus the size of
metal nanoparticles is quite large [24,32]. These large-
sized nanoparticles with low atom efficiency (dispersion)
suffer from poor intrinsic catalytic activity and/or se-
lectivity. The selectivity of CO production through the
RWGS process in most studies is quite low because the
competing Sabatier reaction is more favorable over large-
sized metal nanoparticles [33–38]. A few catalysts ex-
hibited very high CO selectivity in photothermal CO2
catalysis but still suffered from poor activity and/or sta-
bility [39–44]. Very recently, we discovered that transi-
tion metal phosphide (such as Ni12P5) nanoparticles
supported on silica could catalyze the photothermal
RWGS reaction with a robust near-unity CO selectivity
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[45]. Nevertheless, the performance of Ni12P5 in photo-
thermal RWGS catalysis is still limited by the trade-off
between the catalyst loading and dispersity. Therefore, it
is highly desired but challenging to improve the perfor-
mance of photothermal RWGS catalysis by breaking the
limitation of supported catalysts.
In this study, we report a core-shell strategy that en-

ables the design of photothermal catalysts simultaneously
with strong light absorption ability, high dispersity and
stability. By using Ni12P5 as an example, we demonstrate
that the core-shell design increases Ni12P5 loading to 30
wt% while maintaining a relatively small Ni12P5 particle
size of 15 nm even at temperatures above 600°C. The
core-shell Ni12P5@SiO2 catalyst exhibits improved activ-
ity, nearly 100% CO selectivity, and superior stability in
photothermal RWGS catalysis, particularly under intense
illuminations.

EXPERIMENTAL SECTION

Materials
All chemicals were used as received without further
purification. Oleylamine (OAm, 80%–90%), nickel(II)
acetylacetonate (Ni(acac)2, 95%), and trioctylphosphine
(TOP, >90%) were purchased from Aladdin. Ammonium
hydroxide (NH3·H2O, 28 wt%) and Igepal CO-520 were
obtained from Mackin Biochemical (Shanghai) Co., Ltd.
Tetraethyl orthosilicate (TEOS) was purchased from TCI
(Shanghai) development Co., Ltd. Nickel nitrate, ammo-
nium phosphate ((NH4)2HPO4), ethanol and hexane were
obtained from Sinopharm Chemical Reagent Co., Ltd.
Continuous carbon support film and holey carbon sup-
port film were obtained from Zhongjingkeyi (Beijing)
Film Technology Co., Ltd. Milli-Q water (Millipore,
18.2 MΩ cm at 25°C) was used in all experiments.

Synthesis of SiO2-supported Ni12P5
Ni12P5 nanoparticles were prepared through the same
method reported in our previous study [45]. In a typical
synthesis, nickel nitrate and (NH4)2HPO4 with the molar
ratio of 12:5 were first dissolved in deionized water to
form the precursor solution. SiO2 supports were then
added into the solution. After being dried at 120°C, the
precursor containing SiO2 supports was annealed in air at
550°C for 6 h, and then reduced under flowing 10% H2/
Ar at 600°C for 6 h.

Preparation of Ni12P5@SiO2
In a typical synthesis of Ni12P5 nanocrystals, Ni(acac)2
(2.00 g) was dissolved to the mixture solution of OAm

(20.8 g) and TOP (2.30 g). The reaction mixture was then
heated to 220°C and kept under N2 protection for 2 h.
After cooling down to room temperature, 30 mL of
hexane and ethanol (v/v = 1/1) was added into the so-
lution and the black products were collected by cen-
trifugation, cleaned twice with hexane and ethanol, and
then dispersed in ~10 mL of hexane to reach a con-
centration of 50 mg mL−1 [46]. A layer of silica was then
coated on the surface of the as-obtained Ni12P5 nano-
crystals through a reverse microemulsion method. Briefly,
20 g of Igepal CO-520 was dissolved in 110 mL of cy-
clohexane under ultrasonication for 30 min, followed by
the addition of 1 mL of the hexane dispersion of Ni12P5
nanocrystals (50 mg). After stirring for 4 h, 1.0 mL of
TEOS and 0.4 mL of NH3·H2O were added into the re-
action. After stirring for additional 8 h, the products were
collected by centrifugation, cleaned with ethanol for
several times, and dried naturally. Finally, the as-obtained
black powder was calcined in air at 400°C for 2 h to
remove organic contaminants, followed by the reduction
by H2 in a tube furnace at 400°C for 2 h.

Characterization
Transmission electron microscopy (TEM) images were
obtained with an FEI-Tecnai F20 (200 kV) transmission
electron microscope. Powder X-ray diffraction (XRD)
patterns were recorded on an Empyrean diffractometer
with a Cu Kα radiation. The loadings of Ni12P5 in dif-
ferent samples were measured by an inductively coupled
plasma source mass spectrometer (ICP-MS, Aurora M90,
Jenoptik). Diffuse reflectance spectra were obtained using
a Lambda 950 UV/VIS/NIR spectrometer from Perkin
Elmer equipped with an integrating sphere with a dia-
meter of 150 mm.

Catalytic testing
Photothermal catalytic CO2 hydrogenation experiments
were performed in a home-made flow reactor (Reactor I,
Fig. S1). The reactor was equipped with a circular quartz
window (r = 2.75 cm) to allow illumination from the top.
A 300-W Xe arc lamp was used to illuminate the catalysts
without any filter. The flow rates of feeding gases were
fixed at 5 mL min−1 for CO2, 5 mL min−1 for H2, and
10 mL min−1 for N2. The inner volume of the reactor is
6.2 cm3. The pressure of the reactor was monitored by a
digital pressure gauge from ANCN Smart Instrument Inc.
Reactor I can be heated up to 450°C. For each test,
~10 mg of catalysts were used.
Thermocatalytic steady-state CO2 hydrogenation was

also performed in a quartz tube flow reactor with an inner

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ARTICLES

September 2021 | Vol. 64 No.9 2213© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021



diameter of 4 mm (Reactor II, Fig. S2) under atmospheric
pressure. The catalyst (30 mg) was loaded into the reactor
tube and held in place by quartz wool for each test. The
flow rates of feeding gases were fixed at 5 mL min−1 for
CO2, 5 mL min−1 for H2, and 10 mL min−1 for N2. The
amounts of gas reactants and products were analyzed by a
thermal conductivity detector (TCD) and a flame ioni-
zation detector (FID) with a convertor installed in a gas
chromatography (Agilent 7890B). Reactor II can be he-
ated up to 900°C.

RESULTS AND DISCUSSION
Monodisperse Ni12P5 nanoparticles with the average
diameter of 15 nm were first synthesized through a wet-
chemistry method (Fig. S3). A thin silica layer with the

thickness of 12 nm was subsequently coated on individual
Ni12P5 nanoparticles (Fig. 1a, b). The core-shell design
increases the loading of Ni12P5 to 30 wt% while main-
taining a relatively small size of 15 nm (Table 1). Ele-
mental mapping results confirmed the expected
distributions of different elements in the as-obtained
core-shell structured N12P5@SiO2 nanoparticles (Fig. 1c–
g). Fig. 1h depicts the XRD pattern of N12P5@SiO2 and the
peaks match well with tetragonal phase Ni12P5 (JCPDS
22-1190). The core-shell structure exhibited a strong
broadband absorption of solar spectrum (Fig. 1i).
For comparison studies, two silica-supported Ni12P5

nanoparticles with the loading of 8 wt% and 15 wt%,
denoted as SP-1 and SP-2, respectively, were prepared
through the wetness impregnation method adapted from

Figure 1 (a, b) TEM images, (c–g) EDS elemental mapping images, (h) XRD pattern, and (i) diffuse reflectance spectrum of Ni12P5@SiO2.
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our previous study [45]. Fig. S4 shows the TEM images of
the 8 wt% sample. The average size of Ni12P5 nanocrystals
was found to be 11 nm (Fig. S5). The particle size in-
creased to 19 nm for SP-2 that is even larger than that of
N12P5@SiO2 with a higher loading of 30 wt% (Figs S6 and
S7, Table 1). XRD studies confirmed the formation of
tetragonal phase Ni12P5 (Fig. S8). Owing to their lower
Ni12P5 loading, the as-obtained silica-supported Ni12P5
nanoparticles exhibited weaker sunlight absorption ability
than the core-shell structure (Fig. S9).
The performance of different Ni12P5 catalysts in pho-

tothermal RWGS catalysis was investigated in a flow-type
photoreactor at atmospheric pressure (Reactor I, Fig. S1).
No additional external heating was applied. The feeding
ratio of CO2:H2:N2 was kept at 1:1:2 while varying the
light intensity from 2.0 to 4.0 W cm−2. CO was detected as
the major product with selectivity over 98% under dif-
ferent illumination conditions for all catalysts (Figs S10
and S11).
The effect of light intensity on the performance of SP-1

was first discussed. As expected, the CO production rate,
RCO, increased with the light intensity owing to higher
catalyst temperatures under stronger illuminations
(Fig. 2a). Specifically, the initial CO rates (normalized by
the mass of Ni12P5) of SP-1 were found to be
14 mmol gcat

−1 h−1 for 2.0 W cm−2, 75 mmol gcat
−1 h−1 for

3.0 W cm−2, and 128 mmol gcat
−1 h−1 for 4.0 W cm−2

(Fig. 2a). However, the photocatalytic performance de-
cayed obviously within one hour of testing under strong
illumination conditions, particularly for 4.0 W cm−2. De-
spite a stable CO selectivity, a decline of RCO by ~60% was
observed in a continuous 10-h run under 4.0 W cm−2

(Fig. 2b, Table 1). TEM images and the XRD pattern of
the spent SP-1 sample revealed that the size of Ni12P5
nanoparticles increased from 11 to 18 nm with no ob-
vious change in chemical composition (Figs S12 and S13).
The sintering of catalyst particles reduced the number of
active sites, which is responsible for the performance
decay under reaction conditions.
It is well known that smaller nanoparticles possess

higher surface free energy and lower Tammann tem-
peratures, leading to a stronger tendency of agglomera-
tion [47–49]. However, it was found that the stability of
SP-2 under photothermal catalytic conditions was mildly
improved but at the expense of decreased activity. Similar
to that of SP-1, the RCO of SP-2 increased with the light
intensity increasing from 2.0 to 4.0 W cm−2 (Fig. 2a).
Under the same intensities, the activity of SP-2 was found
to be rather lower than that of SP-1. This can be ex-
plained by the presence of fewer active sites in SP-2 for
the photothermal RWGS reaction. While the stability of
SP-2 is slightly enhanced under 3.0 W cm−2, the drop of
performance due to particle sintering was clearly ob-
served under 4.0 W cm−2 (Fig. 2a, b). After testing for

Table 1 Properties and photothermal performance of Ni12P5 under 4.0 W cm−2

Sample Ni12P5 (wt%) D0
a (nm) D10h

b (nm) R0
c R10h

d Rate drop (%)

SP-1 8 11 18 128 52 58

SP-2 15 19 32 48 23 52

Ni12P5@SiO2 30 15 15 135 134 < 1

a) The initial size of Ni12P5 particles. b) The size of Ni12P5 after testing for 10 h. c) The initial CO rate with the unit of mmol gcat
−1 h−1. d) The CO

rate at 10 h with the unit of mmol gcat
−1 h−1.

Figure 2 (a) Intensity-dependent activities of SP-1 and SP-2 in photothermal RWGS catalysis. (b) Time-dependent activities of SP-1 and SP-2 in a
continuous 10-h run of photothermal catalytic testing under the 4.0 W cm−2 illumination.
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10 h, the activity of SP-2 dropped by 50% to
23 mmol gcat

−1 h−1 along with increase of Ni12P5 particle
size from 19 to 32 nm (Fig. 2b, Table 1).
To further demonstrate the poor stability of the sup-

ported Ni12P5 catalysts at high temperatures, we also
tested their thermocatalytic performances under dark
conditions in a quartz tube flow reactor (Reactor II,
Fig. S2). SP-1 exhibited higher activity than SP-2 under
the same conditions, which can be attributed to more
active sites for the former (Fig. 3a). Despite the stable CO
selectivity of over 98% at 300–600°C, both samples ex-
hibited an obvious decline in the CO rate with time under
the testing conditions of above 400°C (Fig. 3). The poor
stability of the supported Ni12P5 catalysts against sintering
would limit the improvement of photothermal catalytic
performance by raising the light intensity.
Compared with the silica-supported Ni12P5 catalysts,

the core-shell structure exhibited an enhanced activity
and stability in photothermal RWGS catalysis. The initial
catalytic activity of Ni12P5@SiO2 was higher than those of
SP-1 and SP-2 under the same illumination conditions

(Fig. S14). More importantly, no obvious performance
decay was observed for Ni12P5@SiO2 under all tested
conditions (Fig. 4a). Distinct from SP-1 and SP-2, the
core-shell structure exhibited a nearly constant rate in the
continuous 10-h testing under 4.0 W cm−2 (Fig. 4b). After
10 h, the stabilized activity of Ni12P5@SiO2 under
4.0 W cm−2 was 2.6 and 5.8 times as high as those of SP-1
and SP-2, respectively (Table 1). Both XRD and TEM
studies revealed that the size and composition of en-
capsulated Ni12P5 nanoparticles kept unchanged under
the testing conditions (Figs S15 and S16). These results
clearly reveal that the core-shell engineering could en-
hance the structural stability of Ni12P5 nanoparticles and
thereby their photothermal catalytic performances under
intense illuminations.
The excellent stability of the core-shell catalyst was

further demonstrated in thermocatalytic tests in Reactor
II under dark conditions. Ni12P5@SiO2 exhibited very
stable activity and selectivity at 300–600°C (Fig. 5a).
Moreover, no obvious drop in the activity or selectivity
was observed for the core-shell structure in a continuous

Figure 3 (a) Temperature-dependent performances and (b) CO selectivities of SP-1 and SP-2 in thermocatalytic CO2 hydrogenation under dark
conditions.

Figure 4 Performance of core-shell Ni12P5@SiO2 in photothermal RWGS catalysis (a) under different light intensities and (b) in a continuous 10-h
run under 4.0 W cm−2.
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run of 30-h thermocatalytic testing at 600°C (Fig. 5b).
The morphology and particle size were preserved in the
tested sample (Fig. S17). Notably, the activity of Ni12P5@
SiO2 was higher than both of the supported catalysts at all
temperatures. We also calculated the CO2 conversion
degrees of SP-1, SP-2 and Ni12P5@SiO2. Owing to the
highest loading and structural stability of Ni12P5@SiO2, it
exhibited higher conversion degrees than the supported
catalysts under the same conditions, particularly at high
temperatures (Fig. S18). For example, the CO2 conversion
of Ni12P5@SiO2 catalyst reached 30% at 600°C, much
higher than those of SP-1 (12%) and SP-2 (5%).
To estimate the local temperature of Ni12P5 under il-

luminations, the thermocatalytic activity of Ni12P5@SiO2
under dark conditions was also measured in Reactor I at
temperatures ranging from 200 to 450°C. In this study,
the equivalent working temperature of photothermal
catalysis, Te, is defined as the temperature when the ac-
tivity in thermocatalysis reaches the same as that under
the specific illumination without applying the external
heating. Te were found to be 295°C for 2.0 W cm−2, 391°C
for 3.0 W cm−2, and 426°C for 4.0 W cm−2 (Fig. S19).
Since the core-shell catalyst is stable even at 600°C, there
is plenty of room for further improving the photothermal
catalytic performance of Ni12P5@SiO2 by using even
stronger light illuminations.
One of the distinguishing features of Ni12P5 catalysts is

the robust near-unity CO selectivity that is independent
of, among other parameters, the CO2/H2 feeding ratio. To
demonstrate the similar property of Ni12P5@SiO2, we in-
vestigate the effect of the CO2/H2 feeding ratio in the
range of 1:5 to 5:1 on its photothermal catalytic perfor-
mance under different light intensities. Similar to the
supported Ni12P5 catalysts, the core-shell structure ex-
hibited changing rates but constantly high CO selectivity

under conditions of different CO2/H2 ratios and illumi-
nations (Figs S20 and S21). This brings more opportu-
nities for further optimizations of the photothermal
catalytic performance of Ni12P5 materials in addition to
the structural design demonstrated in the present study.

CONCLUSIONS
In conclusion, our study reveals that the core-shell
structure design not only increases the loading of Ni12P5
without sacrificing the dispersity, but also enhances the
efficiency and stability in photothermal RWGS catalysis,
particularly under intense illuminations. While the scope
of the present study is focused on the material design, the
performance of Ni12P5 catalysts can be further improved
through the optimization of the photoreactor design and
testing conditions, as well as deeper understanding of the
photothermal catalytic mechanism. Our results also sug-
gest there could be plenty of room for further improving
the performance of Ni12P5@SiO2 by using even stronger
light illuminations. Our study reveals the importance of
catalyst structure in boosting the performance of photo-
thermal CO2 catalysis. The design of metal phosphides
photothermal RWGS catalysts with an improved effi-
ciency, nearly 100% selectivity and long-term stability
paves the way for the practical implementation of the
solar CO2 refinery.
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核壳结构增强光热逆水煤气变换催化性能
娄德月1†, 朱智杰1†, 徐杨帆2†, 李超然1*, 冯凯1, 张大科1,
吕康孝1,吴之怡1,张城城1, Geoffrey A. Ozin2*,何乐1*,张晓宏1

摘要 光热催化逆水煤气变换有望实现完全太阳能驱动条件下, 将
温室气体CO2和可再生H2转化为重要的化工原料CO. 然而现有负
载型光热逆水煤气变换催化剂的性能受限于催化剂负载量、分散
性、稳定性的相互制约 . 本文提出了一种核壳结构策略 , 并以
Ni12P5为例, 设计了同时具有强光吸收、高分散度和高稳定性的光
热催化剂. 获得的Ni12P5@SiO2核壳结构催化剂在Ni12P5负载量高达
30 wt%时, 依然保持了15 nm的较小颗粒尺寸, 从而在光热催化逆
水煤气变换反应中表现出了更高的活性、接近100%的CO选择性
和极佳的稳定性, 尤其是在强光照条件下性能更加突出. 本研究揭
示了核壳策略能有效突破传统负载型催化剂的局限, 提高光热催
化CO2还原的性能.
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