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Photodynamic inheritance from methylene blue to
carbon dots against reduction, aggregation, and DNA
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ABSTRACT Photodynamic therapy (PDT) is a treatment that
uses light-sensitive drugs and a light source to destroy cancer
cells. Methylene blue (MB) is an efficient photosensitizing
agent that has been widely used in PDT. However, MB suffers
from the hypochromic effect that is caused by self-aggregation
and DNA binding in vivo. It is also easily reduced to in-
effective leucomethylene blue in the hypoxic environments
surrounding solid tumors. In this work, we prepared MB
carbon dots (MB-CDs) using MB as the carbon source. The
MB-CDs not only inherit the PDT capabilities of MB, but also
demonstrate good biocompatibility and low toxicity. Im-
portantly, MB-CDs demonstrate excellent resistance to inter-
ference from reduction, aggregation, and DNA interactions.
The MB-CDs exhibited satisfactory PDT activities both in
vitro and in vivo. The tumor sizes were reduced to below 20%
of their original volumes when irradiated by a 590-nm light-
emitting diode source.

Keywords: carbon dots, photodynamic therapy, methylene blue,
low toxicity, resistance to interference.

INTRODUCTION
Photodynamic therapy (PDT) is a novel treatment strat-
egy that enables good control over spatial and temporal
resolution [1–6]. Compared with conventional tumor
treatments, PDT avoids the possible risks of organ/neu-
rological damage during surgery, drug resistance during
chemotherapy, and the side effects of exposure to radio-
therapy. Therefore, PDT has been successfully applied to
tumors, such as colonic tumors, basal cell carcinomas,
Kaposi’s sarcomas, and melanomas. Nevertheless, high-
performance photosensitizers are highly needed to im-
prove PDT [7–15].

Methylene blue (MB), an efficient broad-spectrum
photosensitizer, strongly absorbs light at 660 nm in
homogeneous media [16,17]. Although MB is weakly
fluorescent (with a quantum yield of about 0.04), it has
the singlet oxygen quantum yield (~0.57) in solution, and
has been successfully used to treat cutaneous cancers,
melanomas, and tumors in subcutaneous locations
[18,19]. MB is easily reduced to leucomethylene blue
(leucoMB, an uncharged colorless compound) in vivo by
reductant (nicotinamide adenine dinucleotide (NADH),
glutathione, etc.) or reducing enzymes (e.g., diaphorase)
in the hypoxic environments surrounding solid tumors
[20]. Colorless leucoMB fails in PDT and is rapidly ex-
creted. Despite the spontaneous re-oxidation of some
residual leucoMB to MB, leucoMB consumes more O2,
which exacerbates the hypoxic condition [21]. In addi-
tion, MB tends to form dimers due to π–π stacking, re-
sulting in blue-shifted absorption [22]. Moreover, it is
important to note that MB has been reported to interact
with DNA, leading to a hypochromic effect that limits
PDT efficiency [23,24]. Although MB is efficient in vitro,
the above-stated disadvantages impede its efficient ther-
apy of solid tumors.

Lately, carbon dots (CDs) have attracted a great deal of
attention as promising photosensitizers, owing to their
remarkable properties, including good biocompatibility,
low toxicity, and light-selective activation [25–32]. CDs
are prepared from a “bottom-up” approach, namely from
small (bio)molecules via hydrothermal synthesis [33].
Fortunately, similarly to genetic processes, certain char-
acteristics of the original carbon source are transferred to
the down-stream CDs. For instance, Ge et al. [34] suc-
cessfully prepared photosensitized graphene quantum
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dots based on polythiophene derivatives; they exhibited a
high 1O2 quantum yield because both the ΔEST (S1→T1)
and ΔETG (T1→G) energy gaps were sufficient to gen-
erate 1O2. Subsequently, He et al. [35] fabricated diketo-
pyrrolopyrrole-based CDs that effectively inhibited tumor
growth under laser irradiation (540 nm) both in vitro and
in vivo. Recently, Jia et al. [36] further developed special
Mn-doped CDs from manganese(II) phthalocyanine, in
which oxygen was generated by H2O2 via a Mn catalyst to
promote photodynamic effects in hypoxic micro-
environments.

Against this backdrop, we assumed that photo-
sensitizer-derived CDs inherit the excellent PDT cap-
abilities of the carbon source and simultaneously
maintain the intrinsic stability of the CDs against the
redox microenvironment in solid tumors. Furthermore,
multi-charged functional groups (e.g., –COO− and
–NH3+) on the CDs provide effective steric hindrance and
electrostatic interactions that hinder self-aggregation and
binding to DNA, respectively. As a proof of concept, we
synthesized optimal MB-CDs using a one-step hydro-
thermal method (at a temperature of 180°C for 8 h) with

MB as the carbon source, as shown in Scheme 1. As
expected, the MB-CDs not only inherited the photo-
dynamic capabilities of MB, but also retained the ex-
cellent water solubility, photostability, and low toxicity
inherent to CDs, and effectively killed cancer cells in vitro
and in vivo. More importantly, the MB-CDs displayed a
surprising resistance to reduction, aggregation, and in-
teraction with DNA, which perfectly address key issues
associated with MB in PDT.

EXPERIMENTAL SECTION

Materials and instruments
(3-(4,5)-Dimethylthiazol-2-yl)-3,5-diphenyltetrazolium
bromide (MTT), 1,3-diphenylisobenzofuran (DPBF), and
PEG-800 were obtained from Aladdin Co., Ltd. MB was
obtained from Tianjin Bodi Chemical Co., Ltd. The
phosphate buffer saline (PBS) and Dulbecco’s modified
Eagle medium (DMEM) were obtained from Gibco. The
reactive oxygen species (ROS) detection kit DCFH-DA
(2,7-dichlorodihydrofluorescein diacetate) and the An-
nexin V-fluorescein isothiocyanate (FITC) and propi-

Scheme 1 Schematic showing the advantages of MB-CDs compared with MB.
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dium iodide (PI) apoptosis kits were purchased from
Nanjing KeyGen Biotech. Co. Ltd. β-Nicotinamide ade-
nine dinucleotide, reduced dipotassium salt (NADH), and
diaphorase were purchased from Shanghai Yuanye Bio-
Technology Co. Ltd. All chemicals were used directly
without further purification.

The ultraviolet-visible (UV-vis) spectra were recorded
on an Agilent Technologies CARY 60 UV-vis spectro-
photometer (serial no. MY1523004), whereas the fluor-
escent spectra were recorded on a Varian CARY Eclipse
fluorescence spectrophotometer (serial no. MY15210003).
The ultrapure water was provided by a Milli-Q system in
all experiments. We used the Tecnai G2 F30 S-Twin
microscope for transmission electron microscopy (TEM)
analysis with an accelerating voltage of 300 kV. Further-
more, we used the SCALAB250Xi spectrometer for re-
cording the X-ray photoelectron spectra. The confocal
fluorescent images were collected on an Olympus FV3000
confocal microscope (Olympus, Japan), and the MTT
experiment was performed on a Thermo Fisher Spectro-
photometer 3020.

Preparation of MB-CDs
We placed 15 mg MB and 15 mg PEG-800 in a 25-mL
beaker, added 15 mL ultrapure water, and stirred well.
We then transferred the solution into a 50-mL Teflon
autoclave and set it at 180°C for 8 h. After the reaction
bundle was formed, the reaction solution was cooled to
room temperature. Then, the reaction solution was cen-
trifuged in a centrifuge at 8000 r min−1 for 20 min to
remove the larger particles. Then the upper liquid was
passed through a 0.22-µm filter to obtain the purple li-
quid. The filtrate was dialyzed in a 500–1000 molecular
weight dialysis bag for 12 h to obtain the MB-CD solu-
tion. The dialyzed liquid was freeze-dried to obtain MB-
CD solid.

Determination of singlet oxygen quantum yield
We used MB as a reference and DPBF as a singlet oxygen
trap to detect the singlet oxygen quantum yield (Φ△). The
DPBF could be oxidized by 1O2 to o-dibenzoylbenzene,
leading to the absorbance decreases at 415 nm. First, the
DPBF concentration was adjusted in 3 mL di-
chloromethane (DCM) to ensure proper absorbance at
415 nm. We then added the appropriate concentrations
of MB or MB-CDs to ensure proper absorbance of the
mixture at 590 nm. The mixed solution was then irra-
diated by a 590-nm light-emitting diode (LED) source up
to 6 min. The absorption of DPBF was tested at 415 nm
in the presence of MB or MB-CDs. The Φ△ was calcu-

lated by the following equation with MB as a reference:

( )k F k F= × / ( × ) × 100%,MB PS MB MB PS

where is the singlet oxygen quantum yield of MB-
CDs, ΦMB is 0.57 in DCM, representing singlet oxygen
quantum yield of MB, k is the slope at which the DPBF
absorbance at 415 nm decreases with the increase of ir-
radiation time, and F is the correction factor (F = 1 −
10−OD), where OD is UV absorption value of compounds
at 590 nm.

Detection of ROS generation in cell
Human breast cancer cells (MCF-7) were seeded in a
Petri dish containing DMEM with 10% fetal bovine ser-
um (FBS) and incubated for 24 h in an incubator at 37°C
with 5% CO2 and 95% air. Then, 50 μg mL−1 MB-CDs
and 5 μmol L−1 DCFH-DA were added in the dish and
incubated for 1 h, and the cell dishes were washed twice
with PBS and irradiated by a 561-nm laser for 1 min. The
fluorescence signal of DCF was collected at 500–550 nm
by Olympus FV3000 confocal microscope with a 488-nm
laser.

Live/dead cells co-staining assay
MCF-7 cells were seeded in a Petri dish and incubated for
24 h in a cell incubator. Then, 50 μg mL−1 MB-CDs was
added to the dish and incubated for 1 h. The experi-
mental group dishes were exposed to a 590-nm LED
source at 25 mW cm−2 for 15 min; a group with MB-CDs
but without irradiation was tested for comparison, and a
group without any treatment served as the control. After
12-h incubation, the cells were further stained with the
Calcein-AM/PI Double Stain Kit according to the in-
struction manual. Finally, the fluorescence images were
captured by an Olympus FV3000 confocal microscope.
The green channel (AM) was excited at 488 nm, and the
fluorescence signal at 500–550 nm was collected by 4×
objective lens. The red channel (PI) was excited at
561 nm, and the fluorescence signal at 590–650 nm was
collected.

Cytotoxicity assay
The MTT was reduced to formazan crystal by mi-
tochondrial dehydrogenase to evaluate the cytotoxicities
of MB and MB-CDs. Firstly, the MCF-7 cells (4T1 cells)
were equally seeded in a 96-well microplate with 1 ×
105 mL−1 cells for each well. The 96-well microplates were
incubated with 100 μL DMEM (10% FBS) for 24 h in an
incubator. Secondly, the microplates were washed twice
with PBS, and incubated for 1 h after treatment with
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different concentrations of MB (0, 0.1, 0.8, 1.5,
2.0 μmol L−1) and MB-CDs (0, 1, 5, 10, 20, 50 μg mL−1),
respectively. The microplates were exposed to 590-nm or
660-nm light with an average optical density of
25 mW cm−2 for 15 min, respectively, and then incubated
in a cell culture incubator for 12 h. The microplates in the
control group were placed in a dark environment.
Thirdly, the 30 μmol L−1 NADH and 0.05 mg mL−1 dia-
phorase were added to microplates after being incubated
with MB or MB-CDs for 1 h, then incubated for 30 min
before the above light and dark treatment. Cells cultured
in medium without photosensitizer (PS) were used as the
control, and six replicates were set for each group to
eliminate contingency. After being incubated for 12 h, the
100 μL diluted MTT (0.5 mg mL−1 in DMEM) solution
was added into each well and cultured for 4 h more at
37°C in the cell incubator. Finally, the medium was
carefully washed to leave the formed crystals which were
then dissolved in 100 μL dimethyl sulfoxide (DMSO). The
optical density was determined on a microplate reader
(Thermo Fisher Scientific) by subtracting the absorbance
of the free-blank volume at 490 nm. The cell viability was
calculated according to the following equation:

Cell viability=(OD ODK ) /
(OD ODK ),

CD CD

control control

where ODCD is the absorbance at different MB-CD con-
centrations, ODKCD is the blank well absorbance,
ODcontrol is the control well absorbance without treatment,
and ODKcontrol is the DMSO absorbance.

Application of PDT in 4T1 tumor-bearing mouse model
All animals were tested in accordance with the Guide for
the Care and Use of Laboratory Animal Resources and
the National Research Council. Tests were approved by
the Biology and Medical Ethics Committee of the Dalian
University of Technology. The tumor model mice were
established by injecting 4T1 cells into the right hind leg of
Balb/c female mice (6 weeks old). When the tumor size
reached about 100 mm3, all tumor-bearing mice were
divided into four groups (N = 3): (I) injection of PBS;
(II) injection of PBS with LED source irradiation
(590 nm, 50 mW cm−2, 20 min); (III) injection of MB-
CDs (50 μg mL−1); (IV) injection of MB-CDs
(50 μg mL−1) with LED source irradiation (590 nm,
50 mW cm−2, 20 min). The PDT effects were investigated
by recording the tumor volumes and body weights of
each group every 2 d for a total of 20 d. The tumor vo-
lumes were tested and estimated by using the equation of
V = a × b2/2, where V represents the tumor volume of

mouse, and a and b represent the tumor length and
width, respectively. The tumor-bearing mice were eu-
thanized after the 20-d treatment, whereas the tumor and
main organs (heart, liver, spleen, lung, and kidney) were
collected and then fixed to buffered formalin. The he-
matoxylin and eosin (H&E) staining was used for pa-
thological analysis after paraffin sectioning.

RESULTS AND DISCUSSION

Structural characterization of MB-CDs
As shown in Fig. 1a, b, uniformly dispersed MB-CDs with
an average diameter of 4.1 nm from 3.1 to 7.5 nm were
observed by TEM and dynamic light scattering in water
(Fig. S1). And high-resolution TEM (HR-TEM) ob-
servation shows the relevant lattice spacing of 0.21 nm,
which is consistent with the (100) facet of graphite. The
zeta potential of MB-CDs was around −3.63 mV (Fig. S2).
The elemental compositions and surface states of the MB-
CDs were examined by X-ray photoelectron spectroscopy
(XPS). As shown in Fig. 1c, the typical C 1s, N 1s, O 1s,
and S 2p peaks were observed at 284.6, 399.4, 531.4, and
163.8 eV with relative atomic percentages of 60.53%,
13.11%, 22.36%, and 4.00%, respectively. The high-re-
solution C 1s spectrum was divided into three typical
peaks at 284.6, 285.9, and 288.0 eV that correspond to
C–C/C=C, C–N/C–O/C–S, and C=O units, respectively
(Fig. 1d) [37]. The N 1s spectrum (Fig. 1e) shows two
peaks at 399.6 and 401.5 eV that correspond to pyridinic
and graphitic N, respectively [38]. The high-resolution
S 2p spectrum revealed three peaks (164.0, 165.2, and
168.4 eV) that correspond to S 2p3/2 and S 2p1/2 of the
thiophene S and oxidized S, respectively (Fig. 1f) [37,39].
The high-resolution O 1s spectrum showed the presence
of C–OH (531.3 eV) and C=O (532.8 eV) units (Fig. S3)
[40,41]. As expected, the core MB structure was retained
during the synthesis of the MB-CDs, including the sulfur
and nitrogen heteroatoms, which is critical for PDT
performance.

Spectral properties of MB-CDs
The absorption spectrum of the MB-CDs shows broad
absorption peaks in the 500–650 nm range that are
mainly attributed to n-π∗ (C–N/C–S) transitions. The
MB-CDs displayed maximum fluorescence absorption at
around 590 nm in water (Fig. 2a). Interestingly, only the
intensity of fluorescence emission at 620 nm changed
significantly as the excitation wavelength was increased
from 530 to 620 nm while keeping the emission wave-
length the same (Fig. 2b). This excitation-independent
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fluorescence behavior is related to various surface sites
(surface state) and carbon core [33,42]. In addition, the
MB-CDs were favorably dispersed and remained stable in
water, PBS, and DMEM media (Figs S4 and S5). Com-
pared with excitation wavelengths of 300–550 nm that
were mostly used for CDs reported in the literature, we
used a 590-nm LED light source that avoids background
absorption (e.g., by hemoglobin) and penetrates deeper
[43–46]. An excellent-performing photosensitizer should
strongly absorb light, efficiently undergo intersystem
crossing to generate the triplet state, and exhibit a long
triplet lifetime, for facilitating interactions with other
reactant molecules [47]. The nanosecond time-resolved
transient absorption spectra (Fig 2c, d, and Fig. S6) in-
dicate that the MB-CDs have inherited the photo-
sensitization advantages of MB with a long triplet lifetime
(τ = 11.43 µs), which promotes effective photosensitiza-
tion. 1O2 efficiency was examined using DPBF as a 1O2
trap. As shown in Fig. 2e, f, the absorbance of DPBF at
415 nm decreased sharply in the presence of the MB-CDs
when irradiated by the 590-nm LED source for a pro-
longed time (Fig. S7). The singlet oxygen quantum yield
of MB-CDs was calculated to be 0.24 using MB as a re-
ference (Fig. S8), highlighting their strong potential for
PDT.

Cell imaging and cytotoxicity experiments of MB-CDs
MCF-7 cells were used to study the biocompatibility and

cell penetrability of the MB-CDs in vitro experiments.
MB-CDs quickly penetrated MCF-7 cells. The cells
emitted a strong red fluorescence signal after incubation
with the MB-CDs for 1 h (Fig. 3a). In addition, we also
used 4T1 cells for fluorescence imaging. They showed a
red fluorescence signal after being incubated with the
MB-CDs for 1 h (Fig. S9). Relative cell viabilities, which
indicate the PDT effect, were determined using the
standard MTT assay. As shown in Fig. 3b, MCF-7 cells
were first incubated with MB-CDs of different con-
centrations (0, 1, 5, 10, 20, and 50 μg mL−1) without being
irradiated. We obtained almost 100% cell viability (black
bars) without any obvious morphological changes after
12 h of incubation. This result indicates negligible cyto-
toxicity in the absence of light. The cell viability clearly
decreased when MB-CD concentration increased, and
cells were exposed to a 590-nm LED source
(25 mW cm−2, 15 min) (blank bars). This demonstrates
the great ability of MB-CDs to kill cancer cells. The high
photodynamic impact of MB-CDs is also demonstrated
by MTT data from the 4T1 cells (Fig. S10).

We used DCFH-DA, a commercial fluorescent 1O2 in-
dicator, to show O2 production by the MB-CDs in the
cells [48]. Fig. 3c reveals that MCF-7 cells incubated with
MB-CDs and DCFH-DA exhibit strong green fluores-
cence when exposed to a 561-nm laser. This is mainly due
to the oxidation of dichlorolfuorescein. A weak fluores-
cence signal was observed in the absence of MB-CDs

Figure 1 (a) TEM of MB-CDs (inset: HR-TEM image). (b) Dynamic light scattering of MB-CDs. (c) XPS spectrum of MB-CDs. (d) High-resolution
XPS spectra of (d) C 1s, (e) N 1s, and (f) S 2p.
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(control group) under the same conditions. The green
fluorescence signal was significantly weaker after adding
exogenous NaN3 (a reactive oxygen scavenger), indicating
that the intracellular ROS had been quenched. Annexin
V-FITC and PI were then used to evaluate treatment-
induced apoptosis. The green FITC fluorescence signal
was detected in the cell membrane, indicating apoptosis.
Meanwhile, the red fluorescence of PI was also observed
in the nucleus, indicating cell death after PDT (Fig. S11).
This result is consistent with the flow cytometry results
(Fig. S12). Furthermore, Calcein-AM and PI, as a com-
mercial live/dead cell-staining detection kit, were used to
confirm the MB-CD PDT results. As shown in Fig. 3d,
the green fluorescence signal of AM in the MCF-7 cells

was hardly detected after cell exposure to light, a result
consistent with that of few living cells. The PI channel
showed strong red fluorescence, consistent with that of
dead cells after PDT. At the same time, MCF-7 cells
emitted a green fluorescence signal in the absence of light,
revealing that the MB-CDs are essentially nontoxic in the
dark. In line with the above-stated results, we showed that
the MB-CDs have a high photodynamic efficiency.

Photodynamic therapy experiments in vivo
To further investigate the photodynamic properties of the
MB-CDs in vivo, we used 4T1 tumor-bearing Balb/c mice
as a model. First, we injected a PBS buffer containing
MB-CDs (50 μg mL−1) into the tumors of the above-

Figure 2 (a) UV-vis absorption spectra of MB and MB-CDs in water. (b) The fluorescence spectra of MB-CDs with different excitation wavelengths
over 530–620 nm in water. (c) Nanosecond time-resolved transient absorption spectra of MB-CDs in deoxygenated water. (d) Dynamics spectra of
MB-CDs in deoxygenated water. (e) Absorbance decrease of DPBF under 590-nm LED source irradiation in the presence of MB-CDs in DCM.
(f) Linear fit of absorbance for DPBF at 415 nm for MB-CDs under light irradiation.
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mentioned Balb/c mice to test whether or not the MB-
CDs accumulate and metabolize in the tumor. As shown
in Fig. S13, tumors injected with the MB-CD solution
show stronger fluorescence signals than other parts of the
body. The 4T1 tumor-bearing Balb/c mice were divided
into four groups when the tumor volume reached
100 mm3: (I) mice injected with PBS, (II) mice injected
with PBS and LED irradiated (590 nm, 50 mW cm−2,
20 min), (III) mice injected with MB-CDs, and (IV) mice
injected with MB-CDs and LED irradiated (590 nm,
50 mW cm−2, 20 min). The tumor volumes and body
weights of the mice in the four groups were measured and
recorded every two days. As shown in Fig. 4a, the tumors
increased in size significantly (about 9–12 times larger
than the original) over time in the (I) PBS, (II) PBS + 590-
nm LED, and (III) MB-CD groups. The tumor growth in
group (IV) was efficiently inhibited. The average tumor
volume was reduced to 19.5% of the initial volume when
irradiated by the 590-nm LED. No significant weight
losses were observed in all four groups during the entire
treatment process. This indicated the limited biotoxicity
of MB-CDs (Fig. 4b). In addition, we separated and
measured the tumors of the four groups. The tumor vo-
lume in group (IV) was significantly smaller than the

other three groups (Fig. 4c, d). Furthermore, the tumor
slices after H&E staining clearly show that the MB-CDs
had destroyed the tumor tissue. As Fig. 4e shows, there is
no obvious necrosis in the other three groups. To further
examine the biocompatibility of MB-CDs, the main or-
gans (heart, liver, spleen, lungs, and kidneys) of the mice
were stained, revealing no detectable pathological da-
mage. This indicated high biocompatibility (Fig. S14).

Anti-reduction and DNA interference experiments in vitro
MB is readily reduced to uncharged and colorless leu-
coMB in vitro and in vivo by reductants (NADH, glu-
tathione, and so on, Fig. 5a) in a typical “blue bottle”
experiment. Blue-to-colorless changes were observed
when an MB solution (1% NaOH) was shaken in the
presence of glucose (1%) as a reductant. In contrast to the
~98% decrease in the absorption intensity observed for
free MB, the MB-CDs demonstrated almost no decline in
intensity, suggesting they are anti-reductive (Fig. 5b).
Furthermore, we prepared a solution consisting of NADH
and diaphorase to replicate the reductive microenviron-
ment in a solid tumor. As expected, the fluorescence
signal of MB in the NADH + diaphorase containing the
experimental group was rapidly quenched to 8% of its

Figure 3 (a) The confocal fluorescent images of MCF-7 cells after incubation with MB-CDs. (b) The viability of MCF-7 cells incubated with a series
of concentrations of MB-CDs before and after 590-nm LED source irradiation for 15 min. (c) Confocal microscopy imaging of MCF-7 cells with
photo-induced intracellular ROS generation. (d) Confocal microscopy imaging of MCF-7 cells stained with Calcein-AM and PI before and after PDT
treatment.
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original value within 1 min, whereas after 50 min, the
signal recovered slightly due to the reductant depletion
(pink triangles, Fig. 5c and Fig. S15). The MB-CDs ex-
hibited a transitory decrease in fluorescence intensity (to
82%) and then recovered to nearly 100% of the original
value within 15 min and remained stable thereafter (red
points, Fig. 5c and Fig. S16). These experimental results
show that the MB-CDs are very anti-reducing and
maintain good photodynamic activity in a reducing at-
mosphere compared with MB.

Next, we investigated how NADH and diaphorase af-
fect the efficiency of MB and MB-CDs for PDT in MTT
experiments. As shown in Fig. 5d, the cell viability was
above 80% after introducing increasing amounts of MB,

indicating that MB is non-biotoxic (black bars) in the
absence of light. Cell viability slightly changed after in-
troducing NADH and diaphorase to the MCF-7 cells,
which shows they are safe (backslashed bars). As ex-
pected, the cell viability of the MB group decreased ra-
pidly (100%→73%→33%→2%→1%) when exposed to
light (slashed bars). However, the presence of NADH and
diaphorase significantly retarded the rate of cell death
(100%→94%→56%→45%→26%, blank bars). For ex-
ample, 0.1 μmol L−1 MB killed 27% of the cells when
exposed to light; however, the presence of the NADH and
diaphorase supplied a reductive environment and re-
stricted MB effects completely. A cell viability of around
2% was achieved when 1.5 μmol L−1 of MB was used

Figure 4 (a) Tumor growth curves for groups (I)–(IV). (b) Relative changes in body weight for groups (I)–(IV). (c) Photos of 4T1 tumor-bearing
mice after PDT treatment for 20 d in groups (I)–(IV). (d) Photos of the tumors after PDT treatment for 20 d in groups (I)–(IV). (e) H&E stained
tumor sections for groups (I)–(IV) (scale bars: 50 µm).
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under light irradiation, while around 45% of the cells
remained viable for the MB + NADH + diaphorase group
under the same conditions. These results show that the
reductive microenvironment significantly affects the PDT
effectiveness of MB.

As shown in Fig. 5e, 100% of the cells remained viable
using the MB-CDs, even at 50 μg mL−1, clearly showing
that the MB-CDs are less biotoxic (black bars) than MB
(80%) in the absence of light. No obvious change in cell
viability was observed after introducing NADH and dia-
phorase to the MCF-7 cells (backslashed bars). The cell
viability of the MB-CD group decreased significantly
(100.0%→81.4%→71.2%→61.7%→31.8%→1.5%, slashed
bars) with increasing concentration (0, 1, 5, 10, 20, and
50 μg mL−1) during the photodynamic process when ir-

radiated with light. However, cell viability was affected
little by introducing NADH and diaphorase. This result
highlights the anti-reductive properties of the MB-CDs.

MB can interact with biomolecules, such as DNA
(Fig. 6a). However, to the best of our knowledge, no study
has examined how MB-DNA interactions affect PDT. As
shown in Fig. 6b, the absorption of MB at 665 nm de-
creased significantly (100.0%→75.9%→60.4%→51.1%→
44.8%→40.8%) with the gradual addition of dsDNA (0, 1,
2, 3, 4, 5 μg mL−1), while that of the MB-CDs remained
stable even in the presence of 50 μg mL−1 of dsDNA
(100.0%→91.9%). Hypochromicity is observed because
MB interacts with DNA through intercalative binding.
According to the Grotthuss-Draper law (i.e., the photo-
chemical activation law), only light absorbed by the

Figure 5 (a) Schematic diagram showing the chemistry of MB in the reductive microenvironment of diaphorase and NADH. (b) Blue bottle
experiment (glucose + NaOH): fluorescence intensities of MB-CDs and MB at 680 nm as functions of time. (c) Fluorescence intensities of MB and
MB-CDs as functions of time in the presence or absence of diaphorase and NADH ([MB] = 0.3 μmol L−1, [MB-CDs] = 100 μg mL−1, [NADH] =
30 μmol L−1, [diaphorase] = 0.05 mg). Viabilities of MCF-7 cells incubated with various concentrations of (d) MB and (e) MB-CDs with and without
irradiation with light and in the absence and presence of diaphorase and NADH.
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photosensitizer can be used in PDT. Therefore, binding
between MB and DNA decreases the PDT effectiveness,
as shown by the MTT results. Fig. 6c reveals that MB is
not much biotoxic (black bars) in the absence of light. In
the absence of light, DNA introduction increased cell
viability by 10%–20% (backslashed bars), indicating in-
teractions between MB and dsDNA. The cell death rate
for the MB + DNA group was obviously lower than that
of the MB group when irradiated by light. This trend
became more obvious with increasing MB concentration.
As shown in Fig. 6d, almost 100% cell viability was ob-
served for the MB-CDs, both in the presence and absence
of DNA (black bars and slashed bars). Most importantly,
we observed almost the same changes in cell viability for
the MB-CDs in the absence and presence of DNA when
irradiated by light (backslashed bars and blank bars). The
different behavior of MB and the MB-CDs with DNA
stems from their different zeta potentials. The positively
charged MB was transformed into the negatively charged
MB-CDs (zeta potential: −3.63 mV; Fig. S2) during the
hydrothermal reactions. Therefore, both steric effects and
electrostatic repulsion between the MB-CDs and dsDNA
inhibit their interactions.

CONCLUSIONS
In summary, we used a hydrothermal reaction with MB
as the carbon source to synthesize unique MB-CDs that
are very biocompatible and nontoxic. Importantly, the
MB-CDs inherited the excellent photosensitive properties
of MB and evolved to include additional capacities against
reduction, aggregation, and DNA interference that
heavily affect MB performance during solid-tumor PDT.
The MB-CDs proved effective for PDT in both in vitro
and in vivo experiments. Tumor sizes were reduced to
below 20% of their original volumes upon only once ir-
radiation, compared with more than 9-fold increase of
tumor size without light treatment. Currently, a combi-
nation of PDT and surgery is the most feasible strategy, in
which PDT kills residual cells after visible tumors have
been surgically removed. The MB-CDs developed in this
work, which require only once irradiation, show sig-
nificant potential for tumor treatment applications.
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基于亚甲基蓝制备的抗还原、抗聚集和抗DNA干
扰的光动力治疗碳点
徐宁1, 谷泉泳1, 杜健军1,2*, 葛浩英1, 龙飒然1,2, 孙文1,2,
樊江莉1,2, 彭孝军1

摘要 光动力疗法(PDT)是一种重要的癌症治疗手段 , 亚甲基蓝
(MB)作为一种有效的光敏剂被广泛应用于光动力治疗. 然而, MB
在体内由于聚集以及与DNA结合而导致减色效应. 同时, MB在实
体瘤的低氧环境中容易被还原为无色的还原态leucoMB, 从而丧失
光动力能力. 因此, 我们以MB作为碳源, 制备碳点MB-CDs. MB-
CDs不仅继承了MB的PDT能力, 而且表现出良好的生物相容性和
低毒性. 重要的是, MB-CDs具有出色的抗还原、抗聚集和抗DNA
干扰的能力, 并且MB-CDs在体外和体内均表现出良好的PDT活性,
仅用590 nm LED光源照射一次, 即可使肿瘤体积减小到原始体积
的20%以下.
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