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Cation ratio and oxygen defects for engineering the
magnetic transition of monodisperse
nonstoichiometric zinc ferrite nanoparticles
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ABSTRACT Monodisperse nonstoichiometric zinc ferrite
nanoparticles with a tunable size of 4.1–32.2 nm are fabricated
via thermal decomposition. An extrinsic impurity phase of the
ZnO component is present in the zinc ferrite nanoparticles
with a size of <10 nm, but this phase can be eliminated after
the air annealing treatment. The atom ratio of Zn/Fe and
concentration of oxygen vacancies decrease as the particle size
of zinc ferrite increases, causing magnetic transition from
superparamagnetism to ferromagnetism. The X-ray magnetic
circular dichroism spectra reveal that the spin magnetic mo-
ments of Fe3+ are reduced, and the orbital magnetic moments
are frozen with the increasing atom ratio of Zn/Fe. Therefore,
saturation magnetization decreases. The saturation magneti-
zations of all the zinc ferrite nanoparticles decrease after the
air annealing treatment, suggesting that oxygen vacancies
considerably influence the magnetic properties. The air an-
nealing treatment can minimize the number of oxygen defects,
which trigger some of the Fe3+–OV–Fe

3+ ferrimagnetic cou-
plings to transfer into the Fe3+–O2−–Fe3+ antiferromagnetic
couplings. This work provides new insights regarding the
magnetic performance of spinel ferrites by tuning the stoi-
chiometric ratio and oxygen defects.

Keywords: zinc ferrite, nonstoichiometric, magnetic transition,
oxygen defects

INTRODUCTION
As important magnetic materials, spinel ferrites (MFe2O4,

M = Co, Ni, Mn, Cu, Zn, etc.) have been widely used in
fundamental magnetic investigations and technical ap-
plications in high-density magnetic storage [1], environ-
mental remediation [2], catalysis [3], ferrofluids [4], and
microwave absorption [5,6] because of their special
magnetic properties, inoxidizability, chemical/physical
stability, nontoxicity, and biocompatibility. For instance,
Hou et al. [7–9] reported that spinel ferrite nano-
structures can be applied in biomedical applications re-
quiring high magnetization. Spinel ferrites have a che-
mical formula of (M1−δFeδ)[MδFe2−δ]O4, where O2−

constitutes a close-packed cubic lattice with two sub-
lattices of tetrahedron and octahedron. The round and
square brackets represent the metal ions located at tet-
rahedral sites (A sites) and octahedral sites (B sites), re-
spectively. δ is the inverse degree, which is generally
determined based on the fraction of Fe3+ at the A site.
According to the sublattice theory [10], the magnetic
moments at the A sites are antiparallel with those at the B
sites and net magnetic moments are the difference be-
tween the magnetic moments at the A and B sites [11–
13]. Therefore, the cation distributions at the A and B
sites influence the magnetic properties of ferrites, in-
cluding magnetization, blocking temperature, and effec-
tive g factors [14,15].
Bulk stoichiometric zinc ferrite (ZnFe2O4) is a re-

presentative normal spinel ferrite (δ = 0), where all the
Fe3+ ions at the B sites and all the Zn2+ ions are found at
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the A sites [10]. The d shells of Zn2+ at the A sites are
fulfilled without unpaired electrons, which exhibit no
magnetic moment. The magnetic moments of Fe3+ at the
B sites tend to be antiparallel, resulting in zero net
magnetic moment. The total magnetic moments of
ZnFe2O4 become zero with this specific lattice structure.
Bulk ZnFe2O4 shows an antiferromagnetic feature and a
paramagnetic characteristic below and above Néel tem-
perature (10.5 K), respectively [16–18]. Néel [19] pre-
dicted that the reducing particle size of the
antiferromagnetic materials may induce ferromagnetism
because of the uncompensated magnetic spins on the
surface. Further, ZnFe2O4 nanostructures with various
morphological characteristics have been fabricated
through different mechanisms, including coprecipitation
[20], hydrothermal route [21], ball milling [22], sol–gel
method [23], and thermal decomposition [14,18,24].
Anomalous superparamagnetism or ferromagnetism can
be observed when the particle size is in the nanometer
range [25]. Particle size reduction can induce Zn2+ re-
distribution at the A or B sites; therefore, some Fe3+ ions
transfer from the B sites to A sites, resulting in un-
cancelled magnetic moments [26–33]. However, the
magnetic properties of stoichiometric zinc ferrite nano-
particles are poor; for example, saturation magnetization
is usually less than 5 emu g−1 [34]. Zinc is beneficial for
human physiology; as such, zinc ferrite shows potential
for application in the field of biomedicine. However, the
poor magnetization of the stoichiometric zinc ferrite
nanoparticles limits their applications [8,9]. On the con-
trary, the magnetic properties of nonstoichiometric zinc
ferrite are observed to improve. For example, Han et al.
[35] fabricated Zn0.417Fe2.583O4 nanoparticles with a high
saturation magnetization of 106 emu g−1. Yang et al. [14]
synthesized Zn0.468Fe2.532O4 nanoparticles with an extra-
ordinary saturation magnetization of 110 emu g−1. Ma-
jority of the previously conducted studies have focused on
the fabrication of Fe-rich nonstoichiometric zinc ferrite
(ZnxFe3−xO4, x < 1.0) [14,35-37]. The obtained results
suggest that Zn substitution can induce the redistribution
of Fe ions at the tetrahedral and octahedral sites, resulting
in the tunable magnetic properties. Makovec et al. [38]
prepared nonstoichiometric zinc ferrite with a Zn/Fe ratio
of 0–1.6. Oxygen defects can be observed when Zn/Fe is
greater than 0.5, which may destroy the super-exchange
interactions and decrease magnetization. However, the
intrinsic nature of ferromagnetism in nonstoichiometric
zinc ferrite remains unclear. It is still difficult to under-
stand the origin of magnetic properties in nonstoichio-
metric zinc ferrite. This may provide the basis for

designing spinel ferrites with desired magnetic properties.
In this work, monodisperse nonstoichiometric zinc

ferrite nanoparticles with different cation contents are
fabricated through thermal decomposition. The nano-
structures and magnetic properties are characterized in
detail, and the related magnetic origin is calculated using
the density functional theory (DFT). Results indicate that
the Zn/Fe ratio and oxygen defects considerably influence
the magnetic properties of zinc ferrites. This work pro-
vides novel insights regarding the preparation of non-
stoichiometric zinc ferrite nanoparticles with high
magnetization, thereby contributing to the expansion of
their applications.

EXPERIMENTAL SECTION

Chemicals
The following chemicals were used in this study: zinc
acetylacetonate (Zn(acac)2, 99%; Acros Organics); iron
acetylacetonate (Fe(acac)3, 99%; Alfa Aesar), oleic acid
(C18H34O2, 90%; Alfa Aesar), benzyl ether (C12H10O, 98%;
Alfa Aesar) and oleylamine (C18H37N, 50%; TCI). All the
chemicals were utilized as received without any further
purification.

Synthesis of zinc ferrite nanoparticles
Zinc ferrite nanoparticles were fabricated via thermal
decomposition. In a typical process, Fe(acac)3 (2 mmol),
Zn(acac)2 (1 mmol), oleic acid (x mmol, x = 1, 5, 6, 9),
and oleylamine (12 − x mmol) were gradually added and
dissolved in benzyl ether (20 mL) under magnetic stirring
to obtain a brown solution. Under argon flow, the solu-
tion was heated to 393 K within 15 min and maintained
at this temperature for 60 min. At 393 K, the solution was
completely deoxidized and dehydrated. The solution was
subsequently heated to 473 K within 10 min and main-
tained at this temperature for another 60 min. During this
process, the color of the solution gradually changed from
brown to black. Subsequently, the solution was heated
from 473 to 573 K at a heating rate of 8 K min−1 and
refluxed for 60 min. Finally, the solution was cooled to
room temperature by switching off the heat source. The
products were deposited by adding 20 mL of isopropanol
to the solution and precipitated through high-speed
centrifugation (10,000 rpm for 3 min). The samples were
purified and washed using hexane/isopropanol (1:1 vol)
three times. Under the same condition, four samples were
prepared by changing the ratios of oleic acid and oley-
lamine to 1:11, 5:7, 9:3, and 6:6, which were marked as S1,
S2, S3, and S4, respectively.
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Chracterizations
The samples were characterized using an X-ray diffraction
(XRD) instrument with Cu Kα radiation (λ = 1.5418 Å;
DX-2700, Hao Yuan, China), a transmission electron
microscope (TEM, FEI Tecnai G2 F20), a spherical aber-
ration-corrected electron microscope (FEI Titan Themes
Cubed G2 300), an inductively coupled plasma emission
spectrometer (ICP, THEM), and an X-ray photoelectron
spectrometer (XPS, ESCALAB210). Further, the magnetic
properties were characterized using a superconducting
quantum interference device (SQUID, MPMS-XL, Quan-
tum Design) and X-ray magnetic circular dichroism
(XMCD).

RESULTS AND DISCUSSION
The XRD patterns of all the four samples are presented in
Fig. S1. The diffraction peaks at 29.9°, 35.2°, 42.8°, 53.1°,
56.6°, and 62.1° correspond to the (220), (311), (400),
(422), (511), and (440) crystalline planes, respectively, of
zinc ferrite with a cubic spinel structure, which has an
Fd3m space group (JCPDS card No. 74-2397). The dif-

fraction peaks strengthen and sharpen from S1 to S4,
indicating an enlargement in grain size. The grain sizes of
S1, S2, S3, and S4 obtained using Scherrer’s equation are
5.0, 7.1, 18.3, and 23.8 nm, respectively. The redundant
inconspicuous diffraction peaks at 31.7°, 34.4°, and 36.2°
in S1 and S2 can be indexed to ZnO with a wurtzite
structure (JCPDS card No. 36-1451), indicating that both
these samples contain some ZnO impurities. Table S1
summarizes the lattice parameters and crystalline sizes of
the zinc ferrite nanoparticles. In addition, the Zn/Fe ra-
tios of the four samples were quantitatively analyzed
through ICP spectroscopy (Table S1). The zinc ferrites are
nonstoichiometric, and the atomic ratio of Zn/Fe de-
creases from S1 to S4.
Fig. 1a–d present the representative TEM images of

zinc ferrite nanoparticles. All the zinc ferrite nano-
particles are almost monodispersed with good dis-
persibility. This characteristic is mainly attributed to
electrostatic and steric repulsions, which are provided by
the long-chain alkyl surfactants on the particle surfaces.
The corresponding histograms of particle size (inset of

Figure 1 TEM images of (a) S1, (b) S2, (c) S3, and (d) S4. Insets show the corresponding histograms of particle size. HAADF–STEM images and
corresponding EDX element mappings of (e) S1 and (f) S4.
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Fig. 1a–d) indicate uniform particles with a narrow size
distribution. The average particle sizes of S1, S2, S3, and
S4 are 4.1, 6.5, 17.7, and 32.2 nm, respectively (Table S1).
Fig. 1e shows the high-angle annular dark field-scanning
transmission electron microscopy (HAADF–STEM) im-
age and the corresponding energy disperse spectroscopy
(EDS) element mappings of approximately 20 nano-
particles in S1. No single ZnO nanoparticle can be ob-
served in S1. However, the O and Zn regions are slightly
larger than the Fe region. The HAADF–STEM images
and EDS element mappings of two other smaller areas of
S1 (Figs S2 and S3) containing five and three nano-
particles of S1 were examined to verify this result. The
obtained results reveal that the O and Zn regions are
larger than the Fe region; further, the area of the Fe re-
gion is less than the corresponding area in the HAADF–
STEM image. In S1, the zinc ferrite nanoparticles may be
coated with a layer of ZnO impurities. Fig. 1f presents the
HAADF–STEM image and the corresponding EDS ele-
ment mappings of S4. Fe, Zn, and O are uniformly dis-
tributed in the whole region of nanoparticles.
The atomic resolution images of the individual nano-

particles are characterized through the aberration-cor-
rected STEM technology to identify the cation occupation
and structure of S1 with a nonstoichiometric ratio of
Zn1.186Fe1.814O4. Fig. 2a–c show the atomic HAADF–
STEM images of three typical particles for S1. The crys-
tallographic orientations of the three particles are [011],
[111], and [112] in the spinel zinc ferrite. Fig. 2d–f display
the corresponding line intensity profiles of the atomic
columns in Fig. 2a–c. A 4 × 4 × 8 supercell with 38 Zn2+

ions and 58 Fe3+ ions was developed to satisfy the Zn/Fe
ratio of S1 and identify the cation distributions in non-
stoichiometric zinc ferrites. Among the transition metal
ions, Zn2+ exhibits the strongest preference to occupy the
A sites. We assume that 32 Zn2+ ions primarily occupy the
A sites, whereas the six residual Zn2+ ions and all the 58
Fe3+ ions occupy the B sites. Fig. 2g–i present the per-
spective view of the Zn38Fe58O128 supercell along the
[011], [111], and [112] orientations. The corresponding
theoretical STEM images projected along the [011], [111],
and [112] zone axes were simulated through quantitative
TEM/STEM simulation (QSTEM) (Fig. 2j–l). The relative
intensity variations of the simulated HAADF–STEM
images (Fig. 2m–o) are almost similar to those of the
experimental HAADF–STEM images (Fig. 2d–f) under
identical orientations. These observations indicate that
the simulated results agree with the experimental results.
Therefore, Zn2+ prioritizes occupying the A sites in

nonstoichiometric zinc ferrites. Fig. S4 shows the atomic
HAADF–STEM image of S4 in the perspective view along
the [111] orientation.
Fig. 3 showsthe XPS spectra of S1 and S4. The survey

scans (Fig. 3a) reveal that both the samples include O, Fe,
and Zn. The C signal can be attributed to the conductive
adhesive substrate. The intensity ratio of the Zn and Fe
signals for S1 is stronger than that associated with S4, and
this observation is consistent with the ICP results
(Table S1). Fig. 3b presents the representative high-
resolution Fe 2p spectra of S1 and S4, which can be fitted
with six peaks. The main peaks located at approximately
711.8 and 725.4 eV can be attributed to the Fe 2p3/2 and
Fe 2p1/2 of Fe

3+, respectively, whereas the peaks at 709.9
and 723.7 eV can be attributed to the Fe 2p3/2 and Fe 2p1/2

of Fe2+, respectively. The two residual peaks at 732.8 and
718.0 eV are satellite peaks [39]. Similarly, the high-
resolution Fe 2p spectra of all the samples can be fitted
with six peaks (Fig. S5). Table S2 presents the corre-
sponding fitting parameters of the Fe 2p XPS spectra.
Results indicate the coexistence of Fe2+ and Fe3+ in all the
four samples, and Fe3+ is the main component. The
Fe2+/Fe3+ ratios decrease from S1 to S4 with the de-
creasing Zn/Fe ratio in nonstoichiometric zinc ferrites.
Fig. S6 shows the electron energy loss spectroscopy
(EELS) spectra of O and Fe, indicating the coexistence of
Fe2+ and Fe3+ in the samples. Fig. 3c presents the typical
high-resolution Zn 2p spectra of S1 and S4. The two
peaks at 1022.4 and 1045.5 eV correspond to the Zn 2p3/2

and Zn 2p1/2 of Zn2+, respectively. Fig. 2d presents the
high-resolution O 1s spectra, which can be fitted with two
peaks. The peak with a binding energy of 530.2 eV is
associated with the lattice oxygen (marked as OL),
whereas the other peak at 532.2 eV can be attributed to
the oxygen defects (marked as OV) [40,41]. Obviously,
more oxygen defects are found in S1 than in S4 probably
because of the combined effects of the higher Zn/Fe
atomic ratio and smaller particle size.
Fig. 4a shows the magnetization versus magnetic field

(M–H) curves of the four zinc ferrite nanoparticles at
room temperature. Table 1 presents the magnetic para-
meters. All the zinc ferrite nanoparticles have S-type
shapes, which can be identified based on the para-
magnetism of bulk ZnFe2O4. Saturation magnetization
(Ms) increases from S1 to S4. S4 with a chemical com-
position of Zn0.438Fe2.562O4 exhibits the highest Ms of
81.30 emu g−1. Magneton number ( B), which is the sa-
turation magnetization per formula unit in μB, can be
calculated as follows [42]:
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M M= ( × ) / 5585, (1)B s

where M is the molecular weight. S1, S2, S3, and S4 have
B values of 0.98, 2.37, 2.97, and 3.43 μB, respectively.

Fig. 4b presents the magnified view of the corresponding
magnetization curves when considering a low magnetic
field. The residual magnetism (Mr) increases from 0.0035
to 6.49 emu g−1, whereas coercivity (Hc) varies from ap-

Figure 2 (a–c) Atomic HAADF–STEM images of S1 (Zn1.186Fe1.814O4) along the [011], [111], and [112] orientations, respectively. (d–f) The corre-
sponding line intensity profiles for the atomic columns in (a–c). (g–i) Perspective view of Zn38Fe58O128 supercell along the [011], [111], and [112]
orientations. (j–l) Three theoretical STEM images simulated using QSTEM and projected along the [011], [111], and [112] zone axes. (m–o) The
corresponding simulated line intensity profiles for the atomic columns in (j–l).
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proximately 1.44 to 45.60 Oe. The distinguishing mag-
netic properties associated with the nonstoichiometric
zinc ferrite nanoparticles can be mainly attributed to the
particle size, cation ratio, and cation redistribution at
tetrahedral sites (A sublattices) and octahedral sites (B
sublattices). According to the ferromagnetic theory of
Néel’s sublattice model [10], the magnetic moments of
cations at the A or B sites are parallel within each sub-
lattice, whereas the magnetic moments in the A sublattice
are antiparallel to those in the B sublattice. The net
magnetic moments of each formula unit cell can be at-
tributed to the difference between the A (spin upward)
and B (spin downward) sites; this phenomenon can be
evaluated using Equation (2) [13,43].

M M M= , (2)tet.(A) oct.(B)

where M tet.(A) and Moct.(B) are the sums of the mag-
netic moments with respect to the A and B sublattices,
respectively. Stoichiometric ZnFe2O4 is a typical normal
spinel ferrite, wherein Zn2+ primarily occupies the A sub-
lattice and all the Fe3+ ions occupy the B sublattice. The
spin associated with the Fe3+ ions in the B sublattice tends
to be antiparallel because the spin magnetic moment of the
Zn2+ ions in the A sublattice is zero. Based on the above
results obtained using the HAADF–STEM images, the

cation redistributions and chemical formulas of S1
(Zn1.186Fe1.814O4), S2 (Zn0.633Fe2.367O4), S3 (Zn0.481-Fe2.519O4),
and S4 (Zn0.438Fe2.562O4) can be expressed as (Zn1)[Zn0.186-
Fe1.814]O4, (Zn0.633Fe0.367)[Fe2]O4, (Zn0.481Fe0.519)- [Fe2]O4,
and (Zn0.438Fe0.562)[Fe2]O4, respectively. The round and
square brackets represent the A and B sublattices, re-
spectively, and the magnetic moments of Fe3+ and Zn2+ are
5.9 and 0 μB, respectively [44,45]. Therefore, the net
magnetic moments (NMMs) per formula unit of S1, S2,
S3, and S4 can be obtained as 1.10, 2.17, 3.06, and 3.32 μB,
respectively. These values are close to the B obtained
based on the measured saturation magnetization (Table 1).
Fig. 4c–f represent the temperature dependence of the

zero-field-cooled (ZFC) and field-cooled (FC) magneti-
zation curves of the zinc ferrite nanoparticles. The zinc
ferrite nanoparticles were cooled from 300 to 5 K for
measuring the ZFC magnetization. When the tempera-
ture reached 5 K, the FC magnetization was recorded
from 5 to 300 K in an external magnetic field of 100 Oe.
For S1 and S2, the ZFC magnetization initially increases
and subsequently decreases as the temperature increases
from 5 to 300 K. The ZFC magnetizations of S1 and S2
reach maximum magnetization values at 16.5 and 60.5 K,
respectively, corresponding to their blocking temperature
(TB). At temperatures lower than the blocking tempera-

Figure 3 XPS spectra of S1 and S4: (a) survey scan, (b) Fe 2p, (c) Zn 2p, and (d) O 1s.
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ture (T < TB), the magnetic moment of each nanoparticle
of S1 and S2 is frozen under a local magnetic field and
coherently oriented because of the magnetic anisotropy
energy [20,46]. At temperatures higher than the blocking
temperature (T > TB), the orientation of the magnetic
moment for each nanoparticle is unfrozen via thermal
fluctuation. The magnetic moments are randomly or-
iented. Therefore, S1 and S2 show superparamagnetic
features at temperatures higher than 16.5 and 60.5 K,
respectively. The FC magnetizations of S1 and S2 pro-
gressively increase below TB, suggesting the absence of
dipolar interactions [47]. The superparamagnetic block-
ing diameter (Dsp) can be estimated as follows [48]:

D k T
K= 6 ln , (3)sp
B

0

1/3

where kB is the Boltzmann constant, K is the magneto-
crystalline anisotropy constant, T is the measured tem-
perature, is approximately 100 s for SQUID
measurement, and 0 is approximately 10−9 s. The effec-
tive anisotropy constants (Keff) of S1 and S2 calculated
based on TB and the particle sizes of S1 and S2 are 157.8
and 145.2 kJ m−3, respectively. The superparamagnetic
blocking diameters of S1 and S2 at room temperature are
10.7 and 11.0 nm, respectively. In S3 and S4, the ZFC
curves monotonically increase as the temperature in-
creases up to 300 K; further, the FC curves do not tend to
decline and overlap with the ZFC curves. These results
indicate that the blocking temperatures of S3 and S4 are
higher than 300 K and demonstrate that S3 and S4 show a
ferromagnetic feature at room temperature. The FC
curves of S3 and S4 are almost flat in the whole tem-
perature range, implying the presence of a strong mag-
netic dipole–dipole interaction among the nanoparticles.
Fig. S7 shows the O K-edge X-ray magnetic circular

dichroism (XMCD) spectra of zinc ferrite nanoparticles.
Zn2+ can affect the O 2p–Fe 3d hybridizations. Fig. 5
depicts the Fe L-edge XMCD spectra of the four zinc
ferrite nanoparticles recorded via circularly polarized X-
rays with a magnetic field of B = ±1 T. Two XMCD peaks
can be observed at the L3 edge. The high- and low-energy
peaks can be attributed to Fe3+ and Fe2+, respectively [49–
51]. The existence of Fe2+ can be attributed to the lattice
distortion of oxygen defects and the changes in relative
ratio. The same sign of the XMCD signals of Fe2+ and Fe3+

indicates their ferromagnetic coupling [49,52]. The orbi-
tal and spin moments of Fe were calculated based on the
XMCD sum rules to analyze the structural and magnetic
properties. Table 2 summarizes the spin magnetic mo-
ments (SMMs), orbital magnetic moments (OMMs), total
magnetic moments (TMMs), and relative ratios of the
spin magnetic moment (RSMM) of the zinc ferrite na-
noparticles. Fig. S8 presents the relation of magnetization
( B, NMM, OMM, SMM, and TMM) with oxygen defect
concentration and Zn/Fe atom ratio. The SMM and
OMM increase with the decreasing oxygen defect con-

Table 1 Comparison of the magnetic parameters of the zinc ferrite nanoparticles

Samples Chemical formula Mr (emu g−1) Hc (Oe) Ms (emu g−1)
B
a (µB) NMMb (µB)

S1 Zn1.186Fe1.814O4 0.0035 1.44 22.60 0.98 1.10

S2 Zn0.633Fe2.367O4 0.35 9.16 55.76 2.37 2.17

S3 Zn0.481Fe2.519O4 1.32 7.73 70.30 2.97 3.06

S4 Zn0.438Fe2.562O4 6.49 45.60 81.30 3.43 3.32

a) ηB was obtained from Ms per formula unit in µB. b) Net magnetic moment was calculated on the basis of the chemical formula unit cell.

Figure 4 (a, b)M–H loops of the four samples. ZFC/FC curves of (c) S1,
(d) S2, (e) S3, and (f) S4.
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centration and Zn/Fe atom ratio. Therefore, B and Ms
improve. The OMM is frozen in small nanoparticles,
which is accordant with the existence of the block tem-
peratures in S1 and S2 (Fig. 4d).
Based on the XRD and XPS results, the nonstoichio-

metric zinc ferrite nanoparticles have numerous oxygen
defects, and S1 and S2 contain some ZnO impurities.
Makovec et al. [38] reported the presence of oxygen va-
cancies in nonstoichiometric zinc ferrite nanoparticles
when Zn/Fe is greater than 0.5. They suggested that
oxygen vacancies can destroy super-exchange interactions
and decrease magnetization. The four zinc ferrite nano-
particles were annealed at 473 K in air for 1 h to in-
vestigate the effect of oxygen vacancies on the magnetic
properties. The samples annealed in air are marked as S1–
A. Fig. 6a shows the XRD patterns of S1 before and after
annealing in air. The diffraction peaks of the ZnO im-
purities in S1, which are marked with red shuriken,
completely disappear after the air annealing treatment.
However, the morphological characteristics and dis-
tribution of S1 are slightly influenced by the air annealing
treatment (TEM images in Fig. 6b). Fig. S9 presents the
magnified part of the predominant (311) diffraction peaks
of S1 and S1–A. The diffraction peaks shift to a lower
degree after the air annealing treatment. Therefore, the
lattice parameters are enhanced probably because of the

Figure 5 XMCD spectra of the Fe L-edge absorption of (a) S1, (b) S2,
(c) S3, and (d) S4.

Table 2 SMM, OMM, TMM and RSMM of zinc ferrite nanoparticles

Samples SMM OMM TMM RSMM (%)

S1 0.1150 0.0652 0.1806 63.82

S2 0.2755 0.0806 0.3561 77.37

S3 0.4869 0.0914 0.5783 84.63

S4 0.4922 0.2058 0.6980 70.52

Figure 6 (a) XRD patterns, (b) TEM images, (c) M–H curves, and (d) O 1s XPS spectra of S1 before and after annealing at 473 K in air for 1 h. S1
annealed in air at 473 K is marked as S1–A.
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entry of oxygen into the lattice and the repair of oxygen
defects. Thus, Fe3+–O2−–Fe3+ antiferromagnetic couplings
are formed. In addition, the Fe 2p XPS spectra (Fig. S5)
and the corresponding fitting results (Table S2) indicate
that the amount of Fe2+ considerably decreases after the
air annealing treatment. These results suggest a change in
the chemical environment of Fe3+. Furthermore, the ex-
trinsic impurity phase of the ZnO impurities in S1 can be
attributed to the high Zn/Fe atom ratio and abundant
oxygen defects. Fig. 6c presents theM–H curves of S1 and
S1–A measured at room temperature. The paramagnetic
contribution of samples in M–H curves is subtracted. The
Ms of S1 decreases after the air annealing treatment. This
result is considerably interesting because the non-
magnetic phase of ZnO impurities disappears and crys-
tallinity improves after the air annealing treatment.
Further, the magnetic properties are enhanced. This ab-
normal phenomenon was investigated based on the high-
resolution O 1s XPS spectra of S1 and S1–A (Fig. 6d). The
oxygen defect concentration decreases from 52.94% to
7.98%. The M–H curves and high-resolution O 1s XPS
spectra of the other three samples before and after air
annealing were also characterized (Fig. S10). The Ms va-
lues and oxygen defect concentrations of all the samples
decrease after the air annealing treatment. This result

suggests that oxygen defects considerably affect the
magnetic properties of zinc ferrite nanoparticles. The air
annealing treatment can reduce oxygen defects, causing
some of the Fe3+–OV–Fe

3+ ferrimagnetic couplings to
transform into the Fe3+–O2−–Fe3+ antiferromagnetic
coupling in the spinel structure.
Further, a 2 × 2 × 2 stoichiometric zinc ferrite supercell

with or without oxygen defects was constructed (Fig. S11)
to investigate the effect of oxygen defect on the magne-
tization of zinc ferrite. The related magnetic properties
were estimated by applying the GGA + U method. Fig. 7a
shows the spin-charge density image of the 2 × 2 × 2
ZnFe2O4 supercell without oxygen defects but with a
rigorous Fe3+–O2−–Fe3+ antiferromagnetic coupling. The
related total density of state (DOS) spectrum (Fig. 7b)
denotes that the spin-up and spin-down states are sym-
metric, indicating antiferromagnetic properties. However,
when an oxygen atom is removed from the 2 × 2 × 2
ZnFe2O4 supercell, the spin-charge density spectra
(Fig. 7c) indicate that the rigorous Fe3+–O2−–Fe3+ anti-
ferromagnetic coupling is transformed into Fe3+–OV–Fe

3+

ferrimagnetic couplings. Further, the spin-up and spin-
down states in the total DOS spectrum (Fig. 7d) become
asymmetric. Table S3 reveals the magnetization of specific
Zn, Fe, and O in the 2 × 2 × 2 ZnFe2O4 supercell without

Figure 7 (a) Spin-charge density image and (b) total DOS spectrum of a 2 × 2 × 2 ZnFe2O4 supercell without oxygen defects. (c) Spin-charge density
image and (d) total DOS spectrum of a 2 × 2 × 2 ZnFe2O4 supercell with one oxygen defect.
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and with one oxygen defect. The polarization state and
magnetization of Zn, Fe, and O remarkably improve
when one oxygen defect forms. The total magnetization
changes from a negligible value of 0.002 to −1.902 µB
when considering the construction of one oxygen defect.
Therefore, oxygen defects can induce ferrimagnetic
properties in zinc ferrites.

CONCLUSION
In summary, monodisperse nonstoichiometric zinc ferrite
nanoparticles are fabricated through thermal decom-
position in this study. The Zn/Fe atom ratio can be
controlled from approximately 0.65 to 0.17 by tuning the
surfactant ratios; further, the particle size can be changed
from approximately 4.1 to 32.2 nm. Zinc ferrite nano-
particles with a particle size of <10 nm contain some
extrinsic ZnO impurities that can be probably attributed
to the excess Zn concentration and oxygen defects.
Magnetic transition from superparamagnetism to ferro-
magnetism can be observed with the decreasing Zn/Fe
atom ratios and increasing particle size. Further, satura-
tion magnetization is observed to improve because of the
increasing spin magnetic moments of Fe3+ and the un-
frozen orbital magnetic moments. After the air annealing
treatment was conducted, the zinc ferrite nanoparticles
show reduced saturation magnetization with decreased
oxygen defects, which can induce the transformation of
Fe3+–OV–Fe

3+ ferrimagnetic coupling into Fe3+–O2−–Fe3+

antiferromagnetic coupling in the spinel structure. These
results indicate that the Zn/Fe atom ratios and oxygen
defects can cause ferromagnetic ordering in non-
stoichiometric zinc ferrite nanoparticles, which are quite
different from bulk ZnFe2O4. This work provides new
insights regarding the origin and regulation of the mag-
netic properties of ferrites.
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非化学计量比锌铁氧体中阳离子比与氧缺陷对其
磁性转变的调控研究
孙勇1†, 邓霞3†, 宗妍1,2, 李兴华1,2*, 张军伟4, 冯娟1,2, 池啸5*,
史振华6, 郑新亮1,2, 彭勇4*

摘要 本文采用热解法制备了粒径在4.1–32.2 nm范围内可调的单
分散非化学计量比锌铁氧体纳米颗粒. 当颗粒尺寸小于10 nm时,
样品中含有少量的非本征ZnO杂质相, 且空气退火后该杂质相消
失. 锌铁氧体中锌/铁原子比与氧缺陷浓度均随着颗粒尺寸的增大
而降低, 导致其从超顺磁性转变为铁磁性. 磁性圆二色谱表明, 随
着Zn/Fe比的增加, Fe3+的自旋磁矩减小, 轨道磁矩冻结, 饱和磁化
强度降低.经过空气退火,所有样品的饱和磁化强度降低,表明氧缺
陷(OV)对其磁性有很大影响. 空气退火会降低氧缺陷含量, 部分
Fe3+–OV–Fe

3+铁磁耦合转变为Fe3+–O2−–Fe3+反铁磁耦合. 该工作通
过调控化学计量比和氧缺陷实现了对锌铁氧体磁性的调节, 为理
解和调控铁氧体的磁学性质提供了新的思路.
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