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The rise of plastic deformation in boron nitride
ceramics
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Ceramics are bonded by ionic or covalent bonds, with
very limited slip systems for dislocation nucleation and
movement [1]. The poor deformability and natural brit-
tleness are the major drawbacks of ceramics, especially
when compared with metals. Under stress, ceramics tend
to fracture before noticeable plastic deformation takes
place. Cracks occur and propagate rapidly in ceramics
subjected to stress much lower than the theoretical
strength [2]. As a result, ceramics can only endure very
small strains (<1%), absorb limited mechanical energy,
and display poor toughness [3]. Moreover, microstructure
imperfections in ceramics may decrease the toughness
even further. Due to the lack of significant plastic de-
formation capacity for ceramic materials, the catastrophic
failures without warning are easy to happen under stress
which critically increases the unreliability of ceramics in
the applications as structural materials.

Compared with traditional ceramics with a rigid
structure, ceramics with a layered atomic structure and
relatively weak interactions between atomic layers might
possess a promoted capability in deformation, with con-
tributions from a range of deformation modes, such as
basal slip, kink and shear band deformations, and grain
delamination [4–6]. Typical ceramics of this type include
graphite and MAX phases [7,8]. Polycrystalline graphite
shows a compressive strength up to 100 MPa and fracture
strain less than 2.2%, with a residual plastic strain less
than 0.2% [9]. MAX (the ternary carbides and nitrides
with the general formula Mn+1AXn (MAX)—where n = 1,
2, or 3; M is an early transition metal; A is an A-group
element (a subset of group 13–16 elements); and X is C
and/or N) phase ceramics with fine grains usually show a
brittle nature and tend to fracture under small com-

pressive strains, e.g., Ti2AlC fractures under strain of
1.2%, with a maximum residual strain of 0.55% [10].
Ti3SiC2 with oriented millimeter-sized grains displays
improved compression ductility [11]. However, the yield
strength (ca. 200 MPa) is significantly reduced, only one-
fifth of that of the fine-grained Ti3SiC2 ceramics [11,12].
It is a great challenge to simultaneously improve the de-
formability and strength of ceramics with a layered
atomic structure.

Hexagonal boron nitride (hBN) possesses a layered
atomic structure similar to graphite [13]. It has an ex-
cellent combination of chemical and physical properties,
such as high thermal conductivity, thermal shock re-
sistance, ablation resistance, and thermal and chemical
stability, and thus it is widely used in many fields such as
metallurgy, automotive industry and aerospace [14,15].
However, hBN ceramics show inferior mechanical prop-
erties, which arouse numerous research efforts recently
[16–20]. The compressive strength of the densified hBN
ceramics prepared with spark plasma sintering (SPS) is
limited to about 100 MPa [20]. Meanwhile, the de-
formation behaviors of the hBN ceramics are essentially
left out. In this study, the hBN ceramic samples were
fabricated with SPS with two precursors, onion-like BN
(oBN) nanoparticles and hBN nanoplates. The ceramic
from oBN nanoparticles (BN-I) is constructed with ran-
domly oriented nanolaminae interlocked into a three-
dimensional (3D) structure, exhibiting a compressive
strength as high as 343 MPa and fracture strain up to
4.2%. In comparison, the ceramic from hBN nanoplates
(BN-II) is made of micron-sized laminae with a preferred
orientation, and shows inferior mechanical properties
compared with BN-I. Both samples display an obvious
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residual deformation (plastic deformation) up to 1.1%
after decompression.

To produce dense ceramics, home-made oBN nano-
particles [21] and hBN nanoplates (Alfa Aesar) were
sintered in an SPS apparatus (SPS-3.20 MK-IV, Syntex
Inc., Japan) at 50 MPa for 10 min, with the temperature
of 1700°C and 1800°C, respectively. The densities of BN-I
and BN-II ceramics are 2.07 and 2.08 g cm−3, respectively,
which are slightly lower than the theoretical density of
hBN (2.27 g cm−3). The phase composition of the BN-I
and BN-II ceramics along with the precursors was de-
termined by X-ray diffraction (XRD, Smartlab Rigaku
with Cu-Kα radiation), as shown in Fig. 1. A remarkable
difference is observed in the XRD patterns for BN-I and
oBN (Fig. 1a), indicating substantial structural transfor-
mation during sintering. oBN precursors show broad
peaks at 24°–26° and 40°–45°, related to the turbostratic
layered structure in oBN. This is consistent with the
transmission electron microscopy (TEM) observation of
oBN nanoparticles where multilayered concentric spheres
of intrinsically puckered BN layers and numerous stack-
ing faults are revealed [21–23]. XRD patterns of the BN-I
ceramic show similar character with that of hBN. For
example, the broad peak at 24°–26° for oBN becomes
narrowed and shifts to higher angle in BN-I, with an
interlayer spacing of 0.334 nm corresponding to the (002)
d-spacing of hBN [13]. In comparison, there is no ob-
vious difference in XRD patterns of hBN nanoplate pre-
cursors and BN-II ceramic (Fig. 1b), and both of them are
dominated by the hBN phase.

XRD patterns were collected from the ceramic surfaces
perpendicular (Fig. 1, red curves) and parallel (blue
curves) to the uniaxial compressing direction of SPS. The
index of orientation preference (IOP) calculated from
(002) and (100) diffractions of hBN reveals an important
difference between the BN-I and BN-II ceramics [24].
IOP values of BN-I and BN-II are −1.6 and −6.2, re-
spectively. Therefore, hBN grains in BN-II ceramic are
preferentially oriented with the basal planes perpendi-
cular to the compressing direction of SPS, while the
grains in BN-I ceramic are more randomly oriented. Such
a difference in texture can be attributed to the form of
precursors. During SPS sintering, the anisotropic hBN
nanoplates (see Fig. 2c for the morphology) tend to align
with the lateral flow, with the basal plane perpendicular to
the compressing direction [25]. oBN nanoparticles
(Fig. 2a), however, go through a transition to layered
structure under suitable temperature and pressure. Due
to the isotropic spherical shape of the nanoprecursor, the
generated grains would be randomly oriented and mu-

tually restrained.
The morphology and microstructure of the precursors

and ceramics were characterized with scanning electron
microscopy (SEM, SCIOS FEI, USA). The spherical oBN
nanoparticles show an average particle size of ca. 200 nm
(Fig. 2a), and the hBN nanoplates show a lateral size of ca.
180 nm and a thickness of tens of nanometers (Fig. 2c).
After sintering, both ceramics show grains in a laminar
shape, with difference in preferred orientation though. In
BN-I, nanolaminae with an average width of ca. 700 nm
are randomly distributed (Fig. 2b), while in BN-II, thin

Figure 1 XRD patterns of the BN-I and BN-II ceramics and the cor-
responding precursors. (a) BN-I and oBN. (b) BN-II and hBN nano-
plates. XRD patterns were acquired from top and side surfaces of the
ceramics (see the inset for the positioning).

Figure 2 SEM images of the precursors and SPS ceramics. (a) Spherical
oBN nanoparticles. (b) Freshly fractured surface of BN-I ceramic. (c)
hBN nanoplate precursor. (d) Freshly fractured surface of BN-II cera-
mic. The ceramic surface was covered with a thin layer of Pt film by ion-
sputtering before the SEM observation.
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nanosheets, ca. 600 nm in width, are packed into micron-
sized regions that are preferentially oriented (Fig. 2d).
The observed microstructure further verifies the different
texture revealed by the XRD results.

Uniaxial compression tests were performed on cylind-
rical specimens of the SPS ceramics (Fig. 3). Two speci-
mens were prepared for each ceramic, perpendicular (⊥)
and parallel (//) to the compressing direction of SPS. A
thin copper foil was placed between the cylinder tops and
loading plates to alleviate the edge effects. The com-
pression process was monitored with a digital image
correlation system (Mercury RT, Sobriety SRO, Czech).
The compression strain rate was set to 1×10−4 s−1. The
compressive stress-strain curves of BN-I and BN-II in-
dicate a nonlinear compression characteristic (Fig. 3a),
distinct from the traditional technical ceramics (e.g., SiC,
MgO, Al2O3, Si3N4, etc.), which comes from the unique
deformation modes in the layered materials including the
formation of ripplocation, buckling, and kink bands
[5,6,26,27]. The compressive strength of BN-I// reaches
343 MPa, three times that of BN-II// (112 MPa). The
corresponding fracture strain of BN-I// is 4.2%, nearly

double that of BN-II// (2.2%). In the direction perpendi-
cular to the sintering pressure, BN-I and BN-II show
slightly degraded strength and deformability. The com-
pressive strengths for BN-I⊥ and BN-II⊥ are 295 and
82 MPa, with fracture strains of 3.8% and 1.9%, respec-
tively.

The cyclic compression/decompression curves of BN-I//
and BN-II// specimens are shown in Fig. 3b, c, respec-
tively. Note the final failure cycle is not shown. Two
common characteristics are revealed from the stress-
strain curves for both ceramics: (i) the hysteresis loop
appears from the beginning of load-unload cycles; (ii)
small plastic deformation occurs even after the first cycle,
as indicated by the residual strain. Similar reversible
hysteresis loops have been observed in MAX phase
ceramics, which can be explained by the response of the
anisotropic microstructure generating strongly varied
microstrains in every grain [28]. The plastic deformation
can be attributed to the accumulated irreversible damages
in the forms of kink bands, delamination and cracks
which occur during compression [4]. BN-I// can be cy-
clically compressed to 330 MPa with a corresponding

Figure 3 Uniaxial compression characterization of the BN ceramics. (a) Single compressive stress-strain curves of BN-I and BN-II. Cylindrical
specimens (Φ3 mm×4.5 mm) were cut from the SPS plate perpendicular (⊥) and parallel (//) to the compressing direction of SPS. (b) Cyclic stress-
strain curves of BN-I// specimen. (c) Cyclic stress-strain curves of BN-II// specimen. (d) Plastic strain as a function of total strain, indicating a smaller
plastic strain component in the total strain for BN-I than that for BN-II.
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strain of 3.7%, while BN-II// can be compressed to
110 MPa with a strain of 2.2%. For each cycle, the total
strain is compared with the corresponding residual plastic
strain after unloading (Fig. 3d). The plastic strain for both
ceramics increases up to 1.1% with elevated total strain.
With the same total strain, BN-I clearly shows a smaller
plastic component compared with BN-II, implying much
less irreversible damage accumulated in BN-I. In addi-
tion, a strength degradation is revealed in BN-II when the
applied stress is higher than 60 MPa, which can also be
attributed to the accumulated damage during the load-
unload cycles. In comparison, BN-I does not show ob-
vious strength degradation even at the highest stress of
300 MPa, highlighting excellent damage tolerance.

To understand the different compressive behaviors of
BN-I and BN-II, the morphology of the fractured surface
after compression test was analyzed with SEM (Fig. 4).
For BN-I, the fractured surface shows randomly arranged
BN nanoflakes with a 3D interlocked structure. In this
configuration, the slips in and between individual nano-
flakes can be confined by the surrounding nanoflakes
with different orientations, resulting in a high compres-
sive strength. Due to such a confinement effect, thin
nanoflakes may also deform flexibly under external stress,
and contribute to a substantial deformability of the BN-I
ceramic. The deformation may occur with the formation
of kink bands (see the bent BN nanoflakes marked with
red arrows in Fig. 4b), similar to MAX phase ceramics
under compression [6]. For BN-II, the cleavage planes
with size of several microns are recognized (Fig. 4c).
Closer examination indicates these cleavage micron-sized
laminae are actually composed of numerous highly-
aligned nanosheets (see the green loops in Fig. 4d). The
failure mode of BN-II is similar to that of the ordinary
hBN ceramics [18,20], with an enhanced strength and
deformability though.

To achieve room-temperature high strength and large
deformability simultaneously in ceramics is considered as
a tough challenge. However, the BN-I and BN-II ceramics
with a layered atomic structure produced in this study
specify a feasible pathway to plastic ceramics. The uni-
axial compression tests reveal the enhanced compressive
strength, substantial plastic deformation, and a nonlinear
compression character different from the traditional
ceramics. BN-I from the oBN nanoparticles shows a high
compressive strength of 343 MPa and a large fracture
strain of 4.2%. BN-II from the hBN nanoplates shows a
compressive strength of 112 MPa, which is comparable to
the best of ordinary hBN ceramics, and a strain of 2.2%. A
plastic strain as high as 1.1% is achieved in both BN-I and

BN-II. The microstructure characterizations reveal that
3D interlocked architecture with randomly oriented na-
nolaminae plays an essential role for enhanced strength
and deformability. This study sheds light on future de-
velopments of plastic ceramics, with current strategy
applicable to other ceramics with similar atomically
layered structure.
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塑性氮化硼陶瓷的兴起
武英举1†, 张洋1,2†, 张爽爽1†, 王小雨1, 梁子太1, 胡文涛1,
赵智胜1*, 何巨龙1, 于栋利1, 徐波1, 柳忠元1, 田永君1*

摘要 传统陶瓷材料的刚性结构变形能力非常有限, 通常在很小的
应变下就发生断裂. 具有层状原子结构的陶瓷, 原子层间存在较弱
的相互作用, 因而具有大的变形潜力. 我们以氮化硼(BN)为例, 研
究了该类陶瓷的室温压缩行为. 分别以洋葱结构BN纳米颗粒和石
墨状六方BN纳米片为原料, 采用放电等离子烧结(SPS)技术分别制
备了BN-I和BN-II陶瓷材料. 在BN-I中, 随机取向的BN纳米薄片构
成三维互锁的结构, 而在BN-II中, BN纳米薄片表现出垂直于SPS压
缩方向的择优取向. BN-I的压缩强度为343 MPa, 断裂应变为4.2%.
相比之下, BN-II的强度和应变分别为112 MPa和2.2%. 不同的微观
组织结构导致了BN-I和BN-II压缩性能的差异. 此外, 这两种陶瓷
材料均表现出1.1%的塑性变形. 该研究表明, 对于具有层状原子结
构的陶瓷, 其纳米片作为结构基元构筑成无(或低)择优取向的三维
互锁结构, 有望同时提高其强度和变形能力.
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