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Selective hydrogenation of acetylene on graphene-
supported non-noble metal single-atom catalysts
Hong-Ying Zhuo1,2, Xiaohu Yu3, Qi Yu3, Hai Xiao2*, Xin Zhang1* and Jun Li2,4*

ABSTRACT Large-scale production of polyethylene in in-
dustry requires efficient elimination of the trace amount of
acetylene impurity. Currently, zeolite adsorption or the con-
version of acetylene to ethylene via selective semi-hydro-
genation on Pd catalysts is the commonly used method. In this
work, we investigate the reaction mechanisms of acetylene
hydrogenation on defective graphene (DG) supported single-
atom catalysts (SACs), M1/SV-G and M1/DV-G (M=Ni, Pd and
Pt) using density functional theory (DFT), where SV-G and
DV-G represent DG with single and double vacancies, re-
spectively. It is shown that the metal single-atoms (SAs) as well
as their different coordination numbers both affect the ac-
tivity and selectivity of the hydrogenation process. M1/DV-G
provides better H2 dissociation ability than M1/SV-G, which
accounts for the poor acetylene hydrogenation activity of M1/
SV-G. Based on the reaction barriers, Pt1/DV-G and Ni1/DV-G
are better catalysts than other systems considered here, with
Ni1/DV-G exhibiting high selectivity for the semi-hydro-
genation product of acetylene. These results provide insights
for the design of highly selective and noble-metal-free SACs
for acetylene hydrogenation on carbon materials.

Keywords: graphene, single-atom catalysts, acetylene hydro-
genation, density functional theory

INTRODUCTION
Selective semi-hydrogenation of acetylene to ethylene is
an important industrial process for large-scale production
of polyethylene, because a trace amount of acetylene will
compromise the polymerization of ethylene [1,2]. In this
regard, highly optimized catalysts are required to convert
carbon-carbon triple bonds efficiently and selectively to
carbon-carbon double bonds without full hydrogenation

to ethane. Palladium-based materials are the commonly
used catalysts, but Pd surfaces are usually passivated to
prevent full hydrogenation into alkane in an ethylene-rich
atmosphere due to the presence of subsurface hydrogen
species [3–5], which are very reactive but less selective
than surface H atoms [6–11]. It has been reported that the
formation of subsurface H strongly depends on the size of
Pd particles, and smaller particles form less subsurface H
atoms [12–14]. Therefore, decreasing the size of Pd par-
ticles may be an effective way to mitigate full hydro-
genation.

In the past several years, considerable attention has
been paid to single-atom catalysts (SACs), which mini-
mize the size to the extremum and yet exhibit appealing
catalytic abilities [15–24]. Kyriakou and co-workers [25]
reported that the atomically isolated Pd (Pd1) atoms al-
loyed in the less reactive Cu(111) surface can substantially
enhance the H2 dissociation and display high selectivity in
the hydrogenation process of acetylene. Other metal
supports also have been found to have high acetylene
conversion and high ethylene selectivity, such as Pd1-Au
[26], Pd1-Ag [27–29], Pd1-Zn [30] and Pd1-In [31] bi-
metallic systems. In addition, single-atom Pd1 supported
on mesoporous polymeric graphitic carbon nitride (mpg-
C3N4) also showed a higher activity and product se-
lectivity for the hydrogenation of alkynes and nitroarenes,
compared with the corresponding benchmark catalysts
based on nanoparticles [32]. The prepared Pd1/C3N4
catalysts also exhibited high coking resistance [33]. It is
suggested that the design of Pd1 active site changes the
adsorption mode of ethylene from the strongly σ-bonding
on Pd surface to the weakly π-bonding on SACs, which
suppresses further hydrogenation of ethylene. Therefore,
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the design of singly dispersed Pd1 atoms is a viable
strategy for improving the reaction activity and selectivity
of acetylene semi-hydrogenation.

It has also been found that the existence of subsurface
carbon can increase the selectivity of acetylene semi-
hydrogenation toward ethylene on Pd surfaces [6–8,34–
36]. The dissolved carbon atoms in the top layers of Pd
surface are likely to modify the surface electronic struc-
tures of Pd, which apparently favors partial hydrogena-
tion. Moreover, the formed subsurface Pd-C phase can
exclude the adsorbed hydrogen (H*) from populating the
subsurface regions and hence prevent the complete hy-
drogenation of alkyne [6]. Thus, the selective hydro-
genation reaction catalyzed by the Pd1 atom supported on
carbon materials is worth to be investigated. Indeed,
graphene-supported Pd1 catalysts are reported to exhibit
remarkable hydrogenation selectivity and durability in
1,3-butadiene hydrogenation and acetylene hydrogena-
tion reactions [37,38]. However, the exact structure of
active site and the catalytic reaction mechanism under-
lying its high activity and selectivity remain unclear.

Here we investigated the hydrogenation mechanism of
acetylene on the graphene-supported Pd1 SAC, to provide
new insights into the understanding of its structure-
functionality relationship. Density functional theory
(DFT) calculations were carried out to systematically in-
vestigate the geometric and electronic structures of Pd1/
graphene catalyst, as well as its activity and selectivity for
acetylene hydrogenation. Single-vacancy graphene (SV-
G) and double-vacancy graphene (DV-G) are compared
to understand the support effect, and the difference be-
tween the typical group VIII noble metal (Pd and Pt) and
the non-noble metal (Ni) as SACs is also investigated.

THEORETICAL AND COMPUTATIONAL
DETAILS
All of the theoretical calculations were performed using
periodic DFT with the Vienna ab initio simulation
package (VASP5.3.2) [39,40]. Spin-polarized Kohn-Sham
calculations were carried out by using the generalized
gradient approximation with the Perdew-Burke-Ernzer-
hof (PBE) exchange-correlation functional [41]. The
projector augmented-wave (PAW) potentials with scalar
relativistic effects were used for taking into account the
interaction between the valence electrons and ionic core
with the nucleus. The valence electrons were designated
by 3d84s2 for Ni, 4d95s1 for Pd, 5d96s1 for Pt, 2s22p2 for C,
and 1s1 for H, respectively. An energy cutoff of 400 eV
was used for the plane wave expansion. The geometries
were optimized with the self-consistent field and force

convergence criteria set to 10−5 eV and 0.02 eV Å−1, re-
spectively. Brillouin zone (BZ) integration was sampled
over a 3×3×1 Monkhorst-Pack (MP) k-point grid. No
atoms were geometrically fixed during all our calcula-
tions. Bader charge analysis was used to evaluate the
electron transfer [42]. The charge density differences were
obtained using the formula of Δρ=ρA+B–ρA–ρB, where ρX
(X=A, B or A+B) is the electron density of X. The
minimum-energy pathway for elementary reaction steps
was located using the climbing image nudged elastic band
(CI-NEB) method [43–45]. Vibrational analysis was fur-
ther conducted to confirm the transition states with only
one imaginary frequency.

A hexagonal supercell (6×6 graphene unit cells) of
pristine graphene containing 72 atoms was introduced to
model the graphene supports and a vacuum layer of 15 Å
along the z direction was placed between the graphene
sheet and its mirror images to avoid the artificial inter-
actions among them. One or two carbon atoms of pristine
graphene support were removed to form anchoring sites
of the models for defective graphene (DG), which were
defined as SV-G and DV-G, respectively. We chose these
two kinds of DG because they have been proved to be
better substrates than pristine graphene for anchoring the
single metal atoms [46,47]. The schematic diagram of the
construction of M1/SV-G and M1/DV-G (M1=Ni, Pd and
Pt) models are shown in Fig. 1.

The binding energy (Ebind) between the single metal
atom and DG support is defined as Ebind=EM+EDG–EM /DG1

,
where EM, EDG and EM /DG1

are the calculated energies of
the single-atom metal, the DG support, and the M1/DG
catalyst, respectively. According to this definition, the
higher value of binding energy represents the higher
stability of single atoms. The chemisorption energies

Figure 1 Schematic diagram of the construction of M1/SV-G and M1/
DV-G (M1=Ni, Pd and Pt) models.
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(Eads) of gas molecules on the M1/DG surface were eval-
uated by the equation of Eads=Egas+M /DG1

–EM /DG1
–Egas,

where Egas+M /DG1
and Egas are the total energies of the M1/

DG catalysts with the adsorbed gas molecules and the gas
molecules respectively.

RESULTS AND DISCUSSION

Geometric and electronic structures
Previous theoretical investigations have shown that the
metal single-atoms (SAs) prefer to be trapped at the va-
cancy site on DG as dopants [47–53]. Our findings are
consistent with the previous results. For SV-G substrate,
the dopant metal SAs bind with the three under-
coordinated C atoms at the vacancy and protrude upward
from the graphene surface (as shown in Fig. 1 and
Table 1). The bond lengths of the three metal–carbon
(M–CG, M=Ni, Pd and Pt) bonds are equal, indicating a
local C3v symmetry. Binding energies (Table 1) of Ni1/
SV-G, Pd1/SV-G and Pt1/SV-G are 6.96, 5.23 and 7.23 eV,
respectively, in agreement with the literatures
[47,49,54,55]. These energies are much higher than the
adsorption energies of the corresponding SAs on pristine
graphene surface, where metal atoms tend to form metal
clusters due to weak binding with graphene [49,56]. For
DV-G supports, the Ni1, Pd1 and Pt1 atoms also sit at the
middle position of the di-vacancy and form four M–CG
bonds with the neighboring under-coordinated carbon
atoms around the vacancy. The metal atoms are slightly
elevated from the graphene plane, and the height is much
lower than that on SV-G. Especially, the metal SA is al-
most embedded in the graphene surface for Ni1/DV-G
likely because of the small size of Ni atom. The calculated
binding energies of SAs on DV-G are slightly smaller
than those on SV-G, due to the structure deformation of
optimized DV-G (Fig. S1). We also calculated the cohe-
sive energy for the bulk form of each metal. The cohesive
energies are 6.58, 3.71, and 5.53 eV for Ni, Pd, and Pt,

respectively, which indicates that these metal SAs could
be stable on the abovementioned DG surfaces.

According to Bader charge analysis (Table 1), metal SAs
trapped on DG are positively charged, which are con-
sistent with the charge density difference plots (Fig. S2),
where significant charge transfer can be seen between
metal SAs and their associated C atoms. The presence of
increased charge densities in the region between the SA
and the surrounding C atom indicates strong covalent
metal-support interaction (CMSI) between them. In order
to gain more insight into the electronic structures of M1/
SV-G and M1/DV-G (M=Ni, Pd and Pt), the density of
states (DOS) plots were also plotted, as presented in Fig.
S3. We can see the significant overlap between the M d
orbitals and C 2p orbitals in all cases. All these changes in
the electronic structures indicate the strong metal-support
interaction between metal SA and the DG support.
Therefore, the metal SAs are stable on SV-G and DV-G
surfaces under ambient condition.

We also performed calculations on the corresponding
SACs supported on double-layer graphene (G-DL), de-
fined as M1/SV-G-DL and M1/DV-G-DL, as shown in
Fig. S4. It is found that the metal SAs form similar
structures with those on the single-layer graphene. No
obvious differences on the binding energies, geometric
and electronic parameters (Table S1) are found compared
with the results of the corresponding single-layer gra-
phene model. Especially, the Bader charges of metal SA on
G-DL model are almost the same with those on the single-
layer graphene model. As most of the published theore-
tical investigations on graphene-supported SACs utilized
the single-layer graphene model [57–60], we only use the
single-layer graphene model in this work. Moreover, our
GGA calculations predict the Ni, Pd and Pt doping in DG
favors closed shell systems with zero spin moment.

Adsorption of gas molecules
For semi-hydrogenation of acetylene to ethylene, strong
adsorption of H2 and C2H2 and the facile activation of H2

Table 1 Binding energies (Ebind), metal-carbon distances (RM-CG), heights (h) of the metal atoms, Bader charges (q(M)) of M1/SV-G and M1/DV-G
(M=Ni, Pd and Pt)

SV-G DV-G

Ni Pd Pt Ni Pd Pt

Ebind (eV) 6.96 5.23 7.23 6.22 4.09 6.90

RM-CG (Å) 1.80 1.95 1.94 1.87 2.04 1.99

h (Å) 1.43 1.81 1.87 0.26 0.98 1.22

q(M) (e) 0.71 0.52 0.51 0.84 0.54 0.73
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and weak adsorption of C2H4 hold the key for the selec-
tive hydrogenation step. Therefore, the adsorption of the
reactants and products are the important factors to be
considered.

C2Hx (x=2, 4, 6) adsorption
In order to obtain the most stable adsorption configura-
tions of C2Hx (x=2, 4, 6) on different surfaces (M1/SV-G
and M1/DV-G (M=Ni, Pd and Pt)), several adsorption
modes were considered. For C2H2 and C2H4 adsorption,
metal SAs form metal–carbon bonding (M–C, M=Ni, Pd
and Pt) with the two carbon atoms of C2H2 and C2H4, with
the π adsorption mode. This adsorption pattern is different
from that on the corresponding metal surfaces, where the
favorable adsorption of C2H2 is at the hollow site and C2H4
is bonded in a di-σ adsorption mode [8,61,62]. For C2H6,
the saturated molecule is hardly adsorbed on the surface
except through weak van der Waals interaction. Generally,
the adsorption strengths of C2Hx species change in the
order of C2H2 > C2H4 > C2H6 (Table S2).

H2 adsorption and dissociation
The adsorption and activation of H2 are key steps in the
hydrogenation reactions, which influence the activity and
selectivity. For traditional selective hydrogenation cata-
lysts, like Pd-based materials, H2 can be easily dissociated,
and the formed hydrides on metal surfaces/nanoparticles
can incorporate into the interstitial sites and form the less
selective subsurface hydride [6]. Therefore, controlling
the amount of hydrogen (coverage) near the reaction
intermediate is an efficient way to avoid the complete
hydrogenation. While for SACs, especially those with
inert supports, the activation of molecular H2 is often
heterolytic, different from that on traditional metal cat-
alysts. How easy is the dissociation of molecular H2 is one
of the critical steps for the hydrogenation reaction on
SACs [63].

Four different adsorption types, including one mole-
cular adsorption and three dissociative adsorption types

(shown in Fig. S5), are calculated on each surface. On Ni1/
SV-G and Pd1/SV-G surfaces, the H2 molecular adsorp-
tion states, with negative Eads (Table 2), are more favorable
than the dissociative adsorption states, where the Eads are
positive. On the Pt1/SV-G surface, HH-1 mode has the
most stable structure, where the two dissociated H atoms
both adsorbed on the Pt1, with an Eads of −0.34 eV. This is
similar to the theoretical results on the trinuclear metal
clusters (M3, M=Ni, Pd, Pt) [64] and the (111) surfaces of
Ni, Pd, and Pt [65], where H2 is most easily dissociated on
Pt. This trend may be attributed to the relativistic effects
[64], which usually cause the 5d-metals to be off the trend
from 3d- to 4d-metals, and the M–H bond strength, as it
has been reported that the M–H bond dissociation en-
ergies follow the sequence Pd < Ni < Pt [66,67].

On all M1/DV-G surfaces, HH-3 mode has the most
stable configuration, where the dissociated H atoms ad-
sorb on the carbon atoms nearby the central metal atom,
with relatively negative Eads. Compared with other ad-
sorption structures, the HH-3 adsorption mode results in
the structure distortion of M1/DV-G, especially Pd1/DV-
G (Fig. S6). The downward Pd1 atom severely affects the
further acetylene adsorption and the hydrogenation ac-
tivity. The cleaved H atoms on M1/DV-G are protic with
positive Bader charges, suggesting that the carbon atoms
nearby the central metal SA on DV-G may play an im-
portant role to bind the H atom via electron sharing. The
origin for the different H2 adsorption behavior can be
ascribed to the coordination number of metal SAs. In
DV-G, four M–CG bonds are formed between the metal
SA and the nearby C atoms with the Mayer bond order of
~0.6 (Ni: 0.63; Pd: 0.66; Pt: 0.66). While, the formed three
M–CG bonds in M1/SV-G possess larger Mayer bond
order, 0.84, 0.93 and 1.02 for Ni, Pd and Pt, respectively.
As a result, the C atoms with lower saturation in DV-G
become favorable landing sites for the dissociated H
atoms. On the contrary, the cleaved H atoms prefer to
bind with the three coordinated metal SAs in M1/SV-G.
As shown in Figs S7 and S8, the adsorbed H atom at the

Table 2 Adsorption energy (Eads, eV) of H2 on the single-atom site of M1/SV-G and M1/DV-G (M=Ni, Pd and Pt)a

Mode
SV-G DV-G

Ni Pd Pt Ni Pd Pt

H2 −0.15 −0.18 −0.29 0.03 −0.08 −0.02

HH-1 0.50 0.77 −0.34 − − 0.35

HH-2 0.08 0.27 −0.05 − − −

HH-3 0.09 0.57 0.88 −1.47/−1.00 −2.11/−0.85 −0.87/−0.26

a) On M1/DV-G surface, HH-3 has two different types, one case is with the two H atoms in ortho-positions, the other case with para-positions.
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SA site will diffuse to the nearby C site during the geo-
metry optimization process on the Pt1/DV-G surface.
However, the transfer of H atom from the SA site to the
nearby C atom on Pt1/SV-G needs to overcome an energy
barrier as large as 1.14 eV (Fig. S9).

We also calculated the H2 dissociation process on each
surface. For the M1/SV-G cases (Fig. 2a), Pd1 has the
largest energy barrier, and Pt1 has the lowest energy
barrier. The results are consistent with the Brønsted-
Evans-Polanyi (BEP) relationship, which indicates that
the reaction barrier increases with the increase of reaction
energy for each elementary step [68]. For the M1/DV-G
cases (Fig. 2b), Pd1 still has the highest energy barrier.
The dissociation energy barrier on M1/DV-G is generally
lower than that on M1/SV-G, except for Pt1, in which case
the energy barrier on Pt1/DV-G is 0.21 eV higher than
that on Pt1/SV-G. The results indicate that the H2 dis-
sociation capability of M1/DV-G is superior to that of
M1/SV-G surface.

Hydrogenation mechanism

C2H2 hydrogenation on M1/SV-G (M=Ni, Pd and Pt)
According to our calculations, the adsorption of C2H2 on

M1/SV-G surface is much easier than H2. Therefore, the
metal center of M1/SV-G will be occupied by C2H2 first.
The most stable co-adsorption configuration of C2H2 and
H2 is with H2 dissociated (Fig. S10a), indicating that the
hydrogenation process of C2H2 on M1/SV-G proceeds
through the Horiuti-Polanyi mechanism [69]. The energy
profiles of C2H2 hydrogenation process on M1/SV-G are
presented in Fig. 3. The dissociation of H2 needs to
overcome high energy barriers of 1.22, 2.11 and 1.14 eV,
respectively, which are higher than the corresponding H2
dissociation barriers on clean M1/SV-G. As reported by
Shang and Liu [70], the critical value for a surface reac-
tion to take place at room temperature is around 0.75 eV,
in this regard, the large barriers of H2 dissociation on M1/
SV-G surfaces will impede the hydrogenation reaction.
We also found that the co-adsorption energy of C2H2
dimer (Fig. S10b), which is the competing process for
hydrogenation of acetylene, is almost comparable to or
even larger (Pd1/SV-G and Pt1/SV-G surface) than that of
C2H2 and H2. This indicates that the co-adsorbed C2H2
dimer can cover the active sites, which would further

Figure 2 Energy profiles of H2 dissociation on (a) M1/SV-G, and (b)
M1/DV-G (M=Ni, Pd and Pt).

Figure 3 (a) Energy profiles of C2H2 hydrogenation and (b) corre-
sponding structures of transition states on M1/SV-G (M=Ni, Pd and Pt).
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hinder the dissociation of H2. Thus, the M1/SV-G cata-
lysts are hardly eligible for acetylene hydrogenation re-
actions due to high H2 dissociation barriers and large co-
adsorption energies of C2H2 dimer.

C2H2 hydrogenation on M1/DV-G (M=Ni, Pd and Pt)
Different from the M1/SV-G cases, H2 dissociation on M1/
DV-G is much easier, so the reaction starts with the ad-
sorption of HH*. For the hydrogenation process on Ni1/
DV-G (Fig. 4, black line), C2H2 is first hydrogenated to
C2H4 through an ethylene-like C2H3Ni intermediate by
two steps. The hydrogenation barriers of the first and
second steps are 0.89 and 0.60 eV, respectively. On Pd1/
DV-G (Fig. 4, red line), the barrier of the first hydro-
genation step is 1.54 eV (TS1), and the second step is
0.82 eV (TS2). On Pt1/DV-G (Fig. 4, blue line), the energy
barrier is 0.79 eV (TS1) and 0.72 eV (TS2), respectively.
Thus, Ni1/DV-G and Pt1/DV-G present better catalytic
activity than Pd1/DV-G, likely due to relativistic effects.
Further hydrogenation of C2H4 on Ni1/DV-G and Pt1/
DV-G (Fig. S11) needs to overcome barriers of 0.80 and
0.60 eV to form the C2H5* intermediate, which are 0.39
and 0.12 eV higher than the desorption energies of C2H4
(0.41 and 0.48 eV), implying that C2H4 prefers desorption

to further hydrogenation on both catalysts. As reported
by previous work, the energy difference defined as
ΔEsel=Ea–Edes can be used to estimate the reaction se-
lectivity [61], where Ea and Edes are the effective hydro-
genation barrier of C2H4+H2→C2H6 and the desorption
energy of C2H4, respectively. Obviously, Ni1/DV-G has
larger ΔEsel than Pt1/DV-G, implying better selectivity for
the former.

In order to compare the activities of different metal
elements for the hydrogenation of acetylene to ethylene,
turnover frequencies (TOFs) were calculated according to
the energetic span model [71–73],

k T
hTOF e E RTB /a

eff
, (1)

where Ea
eff is the effective reaction barrier that is the

energy difference between the two rate-determining states
in the whole reaction instead of the reaction barrier of the
rate determining step. The estimated ln(TOF) was plotted
against the adsorption energies of acetylene on different
catalysts (Fig. 5). Ni1/DV-G and Pt1/DV-G show better
hydrogenation activities than Pd1/DV-G, which is with
the strongest acetylene adsorption energy. The results are
totally different for the same metal SAs alloyed on the Cu
(111) surface [74]. As reported by Yang et al. [74], Pd1-Cu
and Pt1-Cu are more active hydrogenation catalysts than
Ni1-Cu. The reason may be attributed to the inert DV-G
support, which changes the electronic structures of em-
bedded metal SAs, the acetylene adsorption mode and the
H2 dissociation pathway (see insert of Fig. 5). On the M1/
DV-G surface, the π adsorption mode of acetylene and
ethylene inhibits the side reactions, whilst benefits the
desorption of ethylene, a key for semi-hydrogenation of
acetylene. In addition, the less saturated C atoms nearby

Figure 4 (a) Energy profiles of C2H2 hydrogenation and (b) corre-
sponding structures of transition states on M1/DV-G (M=Ni, Pd and Pt).

Figure 5 Plots of ln(TOF) against the adsorption energy of acetylene,
with data of blue points from Ref [74].
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the central metal SA play a key role in the dissociation of
H2, and the dissociated H atoms are active for the further
hydrogenation reaction.

CONCLUSIONS
In summary, we have expounded the reaction pathways
of acetylene hydrogenation on DG-supported SACs
through computational chemistry study. We have found
that one of the keys for the hydrogenation reaction on
M1/DG is the dissociation of H2. The DV-G support
provides higher hydrogenation activity than the SV-G
support, and the activity follows the order of Pt > Ni >>
Pd, which can be explained by the large relativistic effects
for Pt. On M1/SV-G, the dissociation of H2 directly affects
the hydrogenation activity, and the huge structure dis-
tortion of HH-3 dissociative adsorption on Pd1/DV-G
impedes the hydrogenation reaction. Furthermore, we
propose the Ni1/DV-G as a highly active and selective
catalyst for selective hydrogenation of acetylene, which
enriches the wide applications of graphene-supported
SACs [75]. Our results provide important theoretical in-
sights into the active site of M1/graphene catalysts and the
further design of noble-metal-free catalysts for selective
hydrogenation of acetylene.
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石墨烯负载的非贵金属单原子催化剂的乙炔选择
性加氢反应研究
卓红英1,2, 于小虎3, 于琦3, 肖海2*, 张鑫1*, 李隽2,4*

摘要 在工业上批量生产聚乙烯的过程中去除痕量乙炔杂质的常
用方法是沸石吸附或钯基催化剂选择性半氢化乙炔生成乙烯. 本
文通过密度泛函理论研究了乙炔在缺陷石墨烯负载的单原子催化
剂M1/SV-G和M1/DV-G (其中M=Ni, Pd, Pt; SV-G, DV-G分别代表
具有单碳缺陷和双碳缺陷的石墨烯)表面上加氢转化为乙烯的反应
机理. 研究表明, 金属单原子及其配位环境均会影响加氢过程的活
性和选择性. M1/DV-G催化剂比M1/SV-G具有更好的氢分子解离
能力, 这是因为M1/DV-G具有较强的乙炔氢化能力. 基于计算得到
的加氢能垒, Pt1/DV-G和Ni1/DV-G的催化活性明显优于其他催化
剂, 其中Ni1/DV-G催化剂还具有高的乙炔半加氢选择性. 本研究结
果为设计以碳材料为载体的、具有高选择性的非贵金属单原子乙
炔氢化催化剂提供了理论基础.
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